Displaying publications 1 - 20 of 80 in total

Abstract:
Sort:
  1. Zakaria SM, Sharif Zein SH, Othman MR, Yang F, Jansen JA
    Tissue Eng Part B Rev, 2013 Oct;19(5):431-41.
    PMID: 23557483 DOI: 10.1089/ten.TEB.2012.0624
    Hydroxyapatite is a biocompatible material that is extensively used in the replacement and regeneration of bone material. In nature, nanostructured hydroxyapatite is the main component present in hard body tissues. Hence, the state of the art in nanotechnology can be exploited to synthesize nanophase hydroxyapatite that has similar properties with natural hydroxyapatite. Sustainable methods to mass-produce synthetic hydroxyapatite nanoparticles are being developed to meet the increasing demand for these materials and to further develop the progress made in hard tissue regeneration, especially for orthopedic and dental applications. This article reviews the current developments in nanophase hydroxyapatite through various manufacturing techniques and modifications.
    Matched MeSH terms: Bone Substitutes/chemistry*
  2. Bajuri MY, Selvanathan N, Dzeidee Schaff FN, Abdul Suki MH, Ng AMH
    Tissue Eng Regen Med, 2021 06;18(3):377-385.
    PMID: 34043210 DOI: 10.1007/s13770-021-00343-2
    BACKGROUND: Managing massive bone defects, a great challenge to orthopaedics reconstructive surgery. The problem arise is the supply of suitable bone is limited with many complications. Tissue-engineered hydroxyapatite bone (TEHB) scaffold impregnated with osteoprogenitor cells developed as an alternative to promote bone regeneration.

    METHODS: This animal protocol has been approved by Universiti Kebangsaan Malaysia Animal Ethical Committee. The TEHB scaffold prepared from hydroxyapatite using gel casting method. A total of six adolescent female sheep were chosen for this study. Later, all the sheep were euthanized in a proper manner and the bone harvested for biomechanical study. Bone marrow was collected from iliac crest of the sheep and bone marrow stem cells (BMSCs) isolated and cultured. BMSCs then cultured in osteogenic medium for osteoprogenitor cells development and the plasma collected was seeded with osteoprogenitor cells mixed with calcium chloride. Bone defect of 3 cm length of tibia bone created from each sheep leg and implanted with autologous and TEHB scaffold in 2 different groups of sheep. Wound site was monitored weekly until the wound completely healed and conventional X-ray performed at week 1 and 24. Shear test was conducted to determine the shear force on the autologous bone and TEHB scaffold after implantation for 24 weeks.

    RESULTS: All of the sheep survived without any complications during the study period and radiograph showed new bone formation. Later, the bone harvested was for biomechanical study. The highest shear force for the autologous group was 13 MPa and the lowest was 5 MPa while for the scaffold group, the highest was 10 MPa and the lowest was 3 MPa. Although, proximal and distal interface of autologous bone graft shows higher shear strength compared to the TEHB scaffold but there is no significant difference in both groups, p value > 0.05. Histologically in both proximal and distal interface in both arms shows bone healing and woven bone formation.

    CONCLUSION: TEHB scaffold impregnated with osteoprogenitor cells has the potential to be developed as a bone substitute in view of its strength and capability to promote bone regeneration.

    Matched MeSH terms: Bone Substitutes*
  3. Ataollahi Oshkour A, Pramanik S, Shirazi SF, Mehrali M, Yau YH, Abu Osman NA
    ScientificWorldJournal, 2014;2014:616804.
    PMID: 25538954 DOI: 10.1155/2014/616804
    This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.
    Matched MeSH terms: Bone Substitutes/chemistry*
  4. Hoque ME, Zainal NH, Syarif J
    Med J Malaysia, 2008 Jul;63 Suppl A:91-2.
    PMID: 19024999
    This study aims at investigating the mechanical properties of the contemporary metallic bone plates determining the effect of their length, width and thickness on the properties and compares with the composite bone plates. Three-points bending test was performed over the stainless steel plates of different length, width and thickness. The test results showed that different plates had different mechanical properties. However, the properties are still much higher than that of particular bones intended to be treated. Therefore, the reported findings strongly encourage developing composite bone plates with biocompatible polymers/fibers that would have modulated properties according to the requirements.
    Matched MeSH terms: Bone Substitutes*
  5. Ramesh S, Tan CY, Aw KL, Yeo WH, Hamdi M, Sopyan I, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:89-90.
    PMID: 19024998
    The sintering behaviour of a commercial HA and synthesized HA was investigated over the temperature range of 700 degrees C to 1400 degrees C in terms of phase stability, bulk density, Young's modulus and Vickers hardness. In the present research, a wet chemical precipitation reaction was successfully employed to synthesize a submicron, highly crystalline, high purity and single phase stoichiometric HA powder that is highly sinteractive particularly at low temperature regimes below 1100 degrees C. It has been revealed that the sinterability of the synthesized HA was significantly greater than that of the commercial HA. The temperature for the onset of sintering and the temperature required to achieve densities above 98% of theoretical value were approximately 150 degrees C lower for the synthesized HA than the equivalent commercial HA. Nevertheless, decomposition of HA phase upon sintering was not observed in the present work for both powders.
    Matched MeSH terms: Bone Substitutes*
  6. Mustaffa R, Besar I, Andanastuti M
    Med J Malaysia, 2008 Jul;63 Suppl A:95-6.
    PMID: 19025001
    In this study, porous hydroxyapatite (HA) samples were fabricated via sponge techniques with the aid of sago as part of the binder mixture. Development processes for the production of porous bone graft substitutes are studied using polyurethane sponge. To obtain the optimum amount of binder for successful fabrication of porous HA were done. Initially, porous HA powder was synthesized using calcium hydroxide and orthorphosphoric acid. Meanwhile, sago was mixed with PVA in a certain ratio to be used as binder for preparing the porous HA. After a series of investigative tests were conducted to characterize the sintered samples, the use of the sago and polymeric mixture was found to successfully aid the fabrication of porous HA samples. In this investigation, comparison of physical and mechanical characteristics between samples prepared using difference techniques was made.
    Matched MeSH terms: Bone Substitutes/chemical synthesis; Bone Substitutes/chemistry*
  7. Hazmi AJ, Zuki AB, Noordin MM, Jalila A, Norimah Y
    Med J Malaysia, 2008 Jul;63 Suppl A:93-4.
    PMID: 19025000
    This study was conducted based on the hypothesis that mineral and physicochemical properties of cockle shells similarly resemble the properties of corals (Porites sp.). Hence, the mineral and physicochemical evaluations of cockle shells were conducted to support the aforementioned hypothesis. The results indicated that cockle shells and coral exoskeleton shared similar mineral and physicochemical properties.
    Matched MeSH terms: Bone Substitutes/chemistry*
  8. Toibah AR, Sopyan I, Mel M
    Med J Malaysia, 2008 Jul;63 Suppl A:83-4.
    PMID: 19024995
    The incorporation of magnesium ions into the calcium phosphate structure is of great interest for the development of artificial bone implants. This paper investigates the preparation of magnesium-doped biphasic calcium phosphate (Mg-BCP) via sol gel method at various concentrations of added Mg. The effect of calcinations temperature (ranging from 500 degrees C to 900 degrees C) and concentrations of Mg incorporated into BCP has been studied by the aid of XRD, TGA and infrared spectroscopy (IR) in transmittance mode analysis. The study indicated that the powder was pure BCP and Mg-BCP with 100% purity and high crystallinity. The results also indicated that beta-tricalcium phosphate (beta-TCP) phase can be observed when the powder was calcined at 800 degrees C and above.
    Matched MeSH terms: Bone Substitutes
  9. Sopyan I, Rosli A, Raihana MF
    Med J Malaysia, 2008 Jul;63 Suppl A:81-2.
    PMID: 19024994
    A novel hydrothermal process has been developed various hydroxyapatite(HA) powder. The HA powder was investigated in different calcination temperatures over the range of 200 degrees C-800 degrees C. TG/DTA and XRD analysis revealed that at temperatures of 700-800 degrees C the decomposition processes and phase changes took place. It is due to the appearance of TCP phase substituting the HA phase. FESEM observation showed that the produced hydroxyapatite powder was extraordinarily fine with nanosize primary particles and almost evenly spherical in shaped. Its high purity proved that the powder fulfills medical requirement.
    Matched MeSH terms: Bone Substitutes/chemistry
  10. Tan CY, Ramesh S, Aw KL, Yeo WH, Hamdi M, Sopyan I
    Med J Malaysia, 2008 Jul;63 Suppl A:87-8.
    PMID: 19024997
    The sintering behaviour of synthesized HA powder that was calcined at various temperatures ranging from 700 degrees C to 1000 degrees C was investigated in terms of phase stability, bulk density, Young's modulus and Vickers hardness. The calcination treatment resulted in higher crystallinity of the starting HA powder. Decomposition of HA phase to form secondary phases was not observed in all the calcined powders. The results also indicated that powder calcination (up to 900 degrees C) prior to sintering has negligible effect on the sinterability of the HA compacts. However, powder calcined at 1000 degrees C was found to be detrimental to the properties of sintered hydroxyapatite bioceramics.
    Matched MeSH terms: Bone Substitutes/chemical synthesis; Bone Substitutes/chemistry*
  11. Natasha AN, Sopyan I, Mel M, Ramesh S
    Med J Malaysia, 2008 Jul;63 Suppl A:85-6.
    PMID: 19024996
    The effect of Manganese (Mn) addition on the Vickers hardness and relative density of nanocrystalline hydroxyapatite (HA) dense bodies were studied. The starting Mn doped HA powders was synthesized via sol-gel method with Mn concentration varies from 2 mol% up to 15 mol% Mn. The Mn doped HA disc samples were prepared by uniaxial pressing at 200MPa and subsequently sintered at 1300 degrees C. Characterization was carried out where appropriate to determine the phases present, bulk density, Vickers hardness of the various content of Mn doped HA dense bodies. The addition of Mn was observed to influence the color appearance of the powders and dense bodies as well. Higher Mn concentration resulted in dark grey powders. It was also found that the hardness and relative density of the material increased as the Mn content increased and influenced by the crystallinity of the prepared Mn doped HA powders.
    Matched MeSH terms: Bone Substitutes/chemical synthesis; Bone Substitutes/chemistry*
  12. Dewo P, Sharma PK, van der Tas HF, van der Houwen EB, Timmer M, Magetsari R, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:21-2.
    PMID: 19024964
    The enormous need of orthopaedic (surgical) implants such as osteosynthesis plates is difficult to be fulfilled in developing countries commonly rely on imported ones. One of the alternatives is utilization of local resources, but only after they have been proven safe to use, to overcome this problem. Surface properties are some of the determining factors of safety for those implants. We have succeeded in developing prototype of osteosynthesis plate and the results indicate that Indonesian-made plates need improvement with regards to the surface quality of physical characterization.
    Matched MeSH terms: Bone Substitutes*
  13. Sopyan I
    Med J Malaysia, 2008 Jul;63 Suppl A:14-5.
    PMID: 19024961
    Porous calcium phosphate ceramics have found enormous use in biomedical applications including bone tissue regeneration, cell proliferation, and drug delivery. In bone tissue engineering it has been applied as filling material for bone defects and augmentation, artificial bone graft material, and prosthesis revision surgery. Their high surface area leads to excellent osteoconductivity and resorbability providing fast bone ingrowths. Porous calcium phosphate can be produced by a variety of methods. This paper discusses briefly fundamental aspects of porous calcium phosphate for biomedical applications as well as various techniques used to prepare porous calcium phosphate.
    Matched MeSH terms: Bone Substitutes*
  14. Tan KK, Tan GH, Shamsul BS, Chua KH, Ng MHA, Ruszymah BHI, et al.
    Med J Malaysia, 2005 Jul;60 Suppl C:53-8.
    PMID: 16381285
    Spinal fusion using autologous bone graft is performed in an increasing rate for many spinal disorders. However, graft harvesting procedure is associated with prolonged operation time and potential donor site morbidity. We produced an engineered 'bone graft' substitute by using porous hydroxyapatite (HA) scaffold seeded with autologous bone marrow osteoprogenitor cells (OPCs) and fibrin. This obviates bone graft harvesting, thus eliminates donor site morbidity and shortens the operation time. The aim of this study is to evaluate Hydroxyapatite (HA) ceramics as scaffold for autologous tissue engineered bone construct for spinal fusion in a sheep model. The sheep's marrow was aspirated from iliac crest. The bone marrow mesenchymal stem cells (BMMSCs) were cultured for several passages in the presence of growth and differentiation factors to increase the number of OPCs. After the cultures reached confluence, they were trypsinized and seeded on Hydroxyapatite scaffold (HA). Approximately 5 million cells were generated after 3 weeks of culture. Microscopically, very tight Colony Forming Units (CFU-Fs) were seen on monolayer culture. The Von Kossa and Alizarin Red staining of monolayer culture showed positive mineralization areas; indicating the presence of OPCs. Sheep underwent a posterolateral spinal fusion in which scaffolds with or without OPCs seeded were implanted on both sides of the lumbar spine (L1-L2). Intended fusion segments were immobilized using wires. At the end of third month, the fusion constructs were harvested for histological examination. Fibrous tissue infiltration found in the inter-connecting pores of plain HA ceramics indicates inefficient new bone regeneration. New bone was found surrounding the HA ceramics seeded with autologous cells. The new bone is probably formed by the sheep BMMSCs that were initially encapsulating HA while it remained intact. The new bone is naturally fused with the vertebrae. In conclusion, the incorporation of autologous bone marrow cells improved the effectiveness of HA ceramics as 'bone graft' substitute for spinal fusion.
    Matched MeSH terms: Bone Substitutes*
  15. Shukur MH
    Med J Malaysia, 2005 Jul;60 Suppl C:1-2.
    PMID: 16381272
    Matched MeSH terms: Bone Substitutes*
  16. Azmi A, Latiff AZ, Johari A
    Med J Malaysia, 2004 Aug;59(3):418-21.
    PMID: 15727391
    We conducted a prospective study in order to audit our experience of repairing cranial defects using Methyl methacrylate. This included a total of 49 patients undergoing cranioplasty using methyl methacrylate, of which 45 were males and 4 females. The age of patients at the time of surgery ranged from 16 to 40 years old, with an average of 24 years. Malays were the majority (67%), followed by Chinese (23%) and Indian (10%). Cranial defects were mainly caused by motor vehicle accident (94%), while gunshot wounds, industrial accidents and tumours, each contribute 2%. Bone flaps were commonly removed during previous surgery related to traumatic subdural haemorrhage (33%), contusion (21%) and intracerebral haemorrhage (14%). The size of cranial defects ranged from 28 cm2 to 440 cm2, with an average of 201 cm2. Most had right sided (55%) and lateral defects [temporoparietal (52%) followed by temporal (16%), frontal (16%), frontotemporal (14%) and occipital (2%)]. Duration of surgery ranged from 70 to 275 minutes, with an average of 135 minutes. Nine of 12 patients (75%) with neurological disability had some improvement while 85% of symptomatic patients had symptoms improvement after cranioplasty. The infection rate in this series was 4%.
    Matched MeSH terms: Bone Substitutes/therapeutic use*; Bone Substitutes/chemistry
  17. Fadilah A, Zuki AB, Loqman MY, Zamri-Saad M, Norimah Y, Asnah H
    Med J Malaysia, 2004 May;59 Suppl B:178-9.
    PMID: 15468876
    The study was carried out to evaluate macroscopically the ability of coral to repair a large size bone defect. A total 12 adult, male sheep were used in the study. The large bone defect (2.5cm x 0.5cm x 0.5cm) was created surgically on the left proximal femur and replaced by a block of coral (Porites sp.). Radiographs were obtained immediately after surgery and at 2, 4, 8 and 12 weeks post-implantation. Ultrasonographic examinations were carried out every 2 weeks after implantation up to 12 weeks using ultrasound machine (TOSHIBA Capasee II) connected with 7MHz frequency transducer. The sheep were euthanased at 2, 4, 8, and 12 weeks post-implantation and the bone examined grossly. Both ultrasonographs and radiographs taken at 8 and 12 weeks showed that the implants had been resorbed and left the space that much reduced in size. There was no sign of implant rejection observed in all animals. The results showed that processed coral has potential to become bone substitute for reconstructive bone surgery.
    Matched MeSH terms: Bone Substitutes/analysis*
  18. Inayat-Hussain SH, Rajab NF, Roslie H, Hussin AA, Ali AM, Annuar BO
    Med J Malaysia, 2004 May;59 Suppl B:176-7.
    PMID: 15468875
    Biomaterials intended for end-use application as bone-graft substitutes have to undergo safety evaluation. In this study, we investigated the in vitro cytotoxic effects especially to determine the mode of death of two hydroxyapatite compounds (HA2, HA3) which were synthesized locally. The methods used for cytotoxicity was the standard MTT assay whereas AO/PI staining was performed to determine the mode of cell death in HA treated L929 fibroblasts. Our results demonstrated that both HA2 and HA3 were not significantly cytotoxic as more than 75% cells after 72 hours treatment were viable. Furthermore, we found that the major mode of cell death in HA treated cells was apoptosis. In conclusion, our results demonstrated that these hydroxyapatite compounds are not cytotoxic where the mode of death was primarily via apoptosis.
    Matched MeSH terms: Bone Substitutes/toxicity*
  19. Shamsuria O, Fadilah AS, Asiah AB, Rodiah MR, Suzina AH, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:174-5.
    PMID: 15468874
    The aim of this study was to evaluate the in vitro cytotoxicity of biomaterials; Hydroxyapatite (HA), Natural coral (NC) and Polyhydroxybutarate (PHB). Three different materials used in this study; HA (Ca10(PO4)6(OH)2), NC (CaCO3) and PHB (Polymer) were locally produced by the groups of researcher from Universiti Sains Malaysia. The materials were separately extracted in the complete culture medium (100mg/ml) for 72h and introduced to the osteoblast cells CRL-1543. The viability of osteoblast CRL-1543 cultivated with these extraction materials after 72h incubation period was compared to negative control with neutral red assay by using spectrophotometer at 540nm. The results showed the non-cytotoxicity of the materials. After 72h of incubation period, HA showed 123% viable cells, NC was 99.43% and PHB was 176.75%. In this study, cytotoxicity test dealt mainly with the substances that leached out from the biomaterial. The results obtained showed that the materials were not toxic and also promoted cells growth in the sense of biofunctionality.
    Matched MeSH terms: Bone Substitutes/toxicity*
  20. Rajab NF, Yaakob TA, Ong BY, Hamid M, Ali AM, Annuar BO, et al.
    Med J Malaysia, 2004 May;59 Suppl B:170-1.
    PMID: 15468872
    Hydroxyapatite is the main component of the bone which is a potential biomaterial substance that can be applied in orthopaedics. In this study, the biocompatibility of this biomaterial was assessed using an in vitro technique. The cytotoxicity and genotoxicity effect of HA2 and HA3 against L929 fibroblast cell was evaluated using the MTT Assay and Alkaline Comet Assay respectively. Both HA2 and HA3 compound showed low cytotoxicity effect as determined using MTT Assay. Cells viability following 72 hours incubation at maximum concentration of both HA2 and HA3 (200 mg/ml) were 75.3 +/- 8.8% and 86.7 +/- 13.1% respectively. However, the cytotoxicity effect of ZnSO4.7H2O as a positive control showed an IC50 values of 46 mg/ml (160 microM). On the other hand, both HA2 and HA3 compound showed a slight genotoxicity effect as determined using the Alkaline Comet Assay following incubation at the concentration 200 mg/ml for 72 hours. This assay has been widely used in genetic toxicology to detect DNA strand breaks and alkali-labile site. The percentage of the cells with DNA damage for both substance was 27.7 +/- 1.3% and 15.6 +/- 1.0% for HA2 and HA3 respectively. Incubation of the cells for 24 hours with 38 microg/ml (IC25) of positive control showed an increase in percentage of cells with DNA damage (67.5 +/- 0.7%). In conclusion, our study indicated that both hydroxyapatite compounds showed a good biocompatibility in fibroblast cells.
    Matched MeSH terms: Bone Substitutes/toxicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links