Displaying publications 1 - 20 of 251 in total

Abstract:
Sort:
  1. Abd Jalil MA, Shuid AN, Muhammad N
    PMID: 22973405 DOI: 10.1155/2012/714512
    Popularly known as "the silent disease" since early symptoms are usually absent, osteoporosis causes progressive bone loss, which renders the bones susceptible to fractures. Bone fracture healing is a complex process consisting of four overlapping phases-hematoma formation, inflammation, repair, and remodeling. The traditional use of natural products in bone fractures means that phytochemicals can be developed as potential therapy for reducing fracture healing period. Located closely near the equator, Malaysia has one of the world's largest rainforests, which are homes to exotic herbs and medicinal plants. Eurycoma longifolia (Tongkat Ali), Labisia pumila (Kacip Fatimah), and Piper sarmentosum (Kaduk) are some examples of the popular ethnic herbs, which have been used in the Malay traditional medicine. This paper focuses on the use of natural products for treating fracture as a result of osteoporosis and expediting its healing.
    Matched MeSH terms: Bone and Bones
  2. Abdul Halim NA, Hussein MZ, Kandar MK
    Int J Nanomedicine, 2021;16:6477-6496.
    PMID: 34584412 DOI: 10.2147/IJN.S298936
    Hydroxyapatite is a basic mineral that is very important to the human body framework. Recently, synthetic hydroxyapatite (SHA) and its nanocomposites (HANs) are the subject of intense research for bone tissue engineering and drug loading system applications, due to their unique, tailor-made characteristics, as well as their similarities with the bone mineral component in the human body. Although hydroxyapatite has good biocompatibility and osteoconductive characteristics, the poor mechanical strength restricts its use in non-load-bearing applications. Consequently, a rapid increase in reinforcing of other nanomaterials into hydroxyapatite for the formation of HANs could improve the mechanical properties. Most of the research reported on the success of other nanomaterials such as metals, ceramics and natural/synthetic polymers as additions into hydroxyapatite is reviewed. In addition, this review also focuses on the addition of various substances into hydroxyapatite for the formation of various HANs and at the same time to try to minimize the limitations so that various bone tissue engineering and drug loading system applications can be exploited.
    Matched MeSH terms: Bone and Bones
  3. Abdullah AM, Mohamad D, Rahim TNAT, Akil HM, Rajion ZA
    Mater Sci Eng C Mater Biol Appl, 2019 Jun;99:719-725.
    PMID: 30889745 DOI: 10.1016/j.msec.2019.02.007
    This study reports the influence of ZrO2/β-TCP hybridization on the thermal, mechanical, and physical properties of polyamide 12 composites to be suited for bone replacement. Amount of 15 wt% of nano-ZrO2 along with 5,10,15,20 and 25 wt% of micro-β-TCP was compounded with polyamide 12 via a twin-screw extruder. The hybrid ZrO2/β-TCP filled polyamide 12 exhibited higher thermal, mechanical and physical properties in comparison to unfilled polyamide 12 at certain filler loading; which is attributed to the homogenous dispersion of ZrO2/β-TCP fillers particle in polyamide 12 matrix. The hybrid ZrO2/β-TCP filled PA 12 demonstrated an increment of tensile strength by up to 1%, tensile modulus of 38%, flexural strength of 15%, flexural modulus of 45%, and surface roughness value of 93%, as compared to unfilled PA 12. With enhanced thermal, mechanical and physical properties, the newly developed hybrid ZrO2/β-TCP filled PA 12 could be potentially utilized for bone replacement.
    Matched MeSH terms: Bone and Bones/physiology*
  4. Abdullah BJ, Kaur H, Ng KH
    Br J Radiol, 1998 Sep;71(849):930-3.
    PMID: 10195007
    Dried fish bones from eight species of Malaysian fish were placed in an animal cadaver at four sites (tonsil, valleculae, larynx and oesophagus) and radiographed using a double and a single film-screen combination. The use of the single film-screen combination resulted in visibility of all fish bones placed in the larynx, two of which were not visible on the double film-screen combination. There was a 50% increase of the visibility of the fish bones in the oesophagus using the single film-screen combination. The difference in dose and cost between the two different film-screen combinations was not significant.
    Matched MeSH terms: Bone and Bones/radiography*
  5. Adeleke AO, Latiff AAA, Al-Gheethi AA, Daud Z
    Chemosphere, 2017 May;174:232-242.
    PMID: 28171839 DOI: 10.1016/j.chemosphere.2017.01.110
    The present work aimed to develop a novel composite material made up of activated cow bone powder (CBP) as a starting material for reducing chemical oxygen demand (COD) and ammonia-nitrogen (NH3N) from palm oil mill effluent (POME). The optimization of the reduction efficiency was investigated using response surface methodology (RSM). Six independent variables used in the optimization experiments include pH (4-10), speed (0.27-9.66 rcf), contact time (2-24 h), particle size (1-4.35 mm), dilution factor (100-500) and adsorbent dosage (65-125 g/L). The chemical functional groups were determined using Fourier transform irradiation (FTIR). The elemental composition were detected using SEM-EDX, while thermal decomposition was investigated using thermo gravimetric analysis (TGA) in order to determine the effects of carbonization temperature on the adsorbent. The results revealed that the optimal reduction of COD and NH3N from raw POME was observed at pH 10, 50 rpm, within 2 h and 3 mm of particle size as well as at dilution factor of 500 and 125 g L-1 of adsorbent dosage, the observed and predicted reduction were 89.60 vs. 85.01 and 75.61 vs. 74.04%, respectively for COD and NH3N. The main functional groups in the adsorbent were OH, NH, CO, CC, COC, COH, and CH. The SEM-EDX analysis revealed that the CBP-composite has a smooth surface with high contents of carbon. The activated CBP has very stable temperature profile with no significant weight loss (9.85%). In conclusion, the CBP-composite investigated here has characteristics high potential for the remediation of COD and NH3N from raw POME.
    Matched MeSH terms: Bone and Bones/chemistry*
  6. Ahmad NS, Khalid BA, Luke DA, Ima Nirwana S
    Clin Exp Pharmacol Physiol, 2005 Sep;32(9):761-70.
    PMID: 16173934
    1. Free radicals generated by ferric nitrilotriacetate (FeNTA) can activate osteoclastic activity and this is associated with elevation of the bone resorbing cytokines interleukin (IL)-1 and IL-6. In the present study, we investigated the effects of 2 mg/kg FeNTA (2 mg iron/kg) on the levels of serum IL-1 and IL-6 with or without supplementation with a palm oil tocotrienol mixture or alpha-tocopherol acetate in Wistar rats. 2. The FeNTA was found to elevate levels of IL-1 and IL-6. Only the palm oil tocotrienol mixture at doses of 60 and 100 mg/kg was able to prevent FeNTA-induced increases in IL-1 (P < 0.01). Both the palm oil tocotrienol mixture and alpha-tocopherol acetate, at doses of 30, 60 and 100 mg/kg, were able to reduce FeNTA-induced increases in IL-6 (P < 0.05). Therefore, the palm oil tocotrienol mixture was better than pure alpha-tocopherol acetate in protecting bone against FeNTA (free radical)-induced elevation of bone-resorbing cytokines. 3. Supplementation with the palm oil tocotrienol mixture or alpha-tocopherol acetate at 100 mg/kg restored the reduction in serum osteocalcin levels due to ageing, as seen in the saline (control) group (P < 0.05). All doses of the palm oil tocotrienol mixture decreased urine deoxypyridinoline cross-link (DPD) significantly compared with the control group, whereas a trend for decreased urine DPD was only seen for doses of 60 mg/kg onwards of alpha-tocopherol acetate (P < 0.05). 4. Bone histomorphometric analyses have shown that FeNTA injections significantly lowered mean osteoblast number (P < 0.001) and the bone formation rate (P < 0.001), but raised osteoclast number (P < 0.05) and the ratio of eroded surface/bone surface (P < 0.001) compared with the saline (control) group. Supplementation with 100 mg/kg palm oil tocotrienol mixture was able to prevent all these FeNTA-induced changes, but a similar dose of alpha-tocopherol acetate was found to be effective only for mean osteoclast number. Injections of FeNTA were also shown to reduce trabecular bone volume (P < 0.001) and trabecular thickness (P < 0.05), whereas only supplementation with 100 mg/kg palm oil tocotrienol mixture was able to prevent these FeNTA-induced changes.
    Matched MeSH terms: Bone and Bones/anatomy & histology; Bone and Bones/drug effects*; Bone and Bones/metabolism
  7. Ahmad R, Ishlah W, Shaharudin MH, Sathananthar KS, Norie A
    Med J Malaysia, 2008 Jun;63(2):162-3.
    PMID: 18942310 MyJurnal
    Accidental swallowing of fish bone, which arrested in esophagus, is fairly common. However the incidence of esophageal perforation due to fish bone swallowing is low. Delayed posterior mediastinal abscess as a result of the esophageal perforation is a rare manifestation and may lead to fatal outcome. Two cases of delayed formation of posterior mediastinal abscess following esophageal perforation due to accidental fish bone ingestion are described here. In these cases patients presented with interscapular back pain. In one of the cases the patient died because of the presentation was misdiagnosed hence leading to delay in the intervention. Radiological findings and surgical management namely esophagoscopy and neck exploration are briefly described.
    Matched MeSH terms: Bone and Bones
  8. Akhbar MFA, Sulong AW
    Ann Biomed Eng, 2021 Jan;49(1):29-56.
    PMID: 32860111 DOI: 10.1007/s10439-020-02600-2
    As drilling generates substantial bone thermomechanical damage due to inappropriate cutting tool selection, researchers have proposed various approaches to mitigate this problem. Among these, improving the drill bit design is one of the most feasible and economical solutions. The theory and applications in drill design have been progressing, and research has been published in various fields. However, pieces of information on drill design are dispersed, and no comprehensive review paper focusing on this topic. Systemizing this information is crucial and, therefore, the impetus of this review. Here, we review not only the state-of-the-art in drill bit designs-advances in surgical drill bit design-but also the influences of each drill bit geometries on bone damage. Also, this work provides future directions for this topic and guidelines for designing an improved surgical drill bit. The information in this paper would be useful as a one-stop document for clinicians, engineers, and researchers who require information related to the tool design in bone drilling surgery.
    Matched MeSH terms: Bone and Bones/injuries; Bone and Bones/surgery*
  9. Akhbar MFA
    Comput Methods Programs Biomed, 2023 Apr;231:107361.
    PMID: 36736133 DOI: 10.1016/j.cmpb.2023.107361
    BACKGROUND AND OBJECTIVE: Conventional surgical drill bits suffer from several drawbacks, including extreme heat generation, breakage, jam, and undesired breakthrough. Understanding the impacts of drill margin on bone damage can provide insights that lay the foundation for improvement in the existing surgical drill bit. However, research on drill margins in bone drilling is lacking. This work assesses the influences of margin height and width on thermomechanical damage in bone drilling.

    METHODS: Thermomechanical damage-maximum bone temperature, osteonecrosis diameter, osteonecrosis depth, maximum thrust force, and torque-were calculated using the finite element method under various margin heights (0.05-0.25 mm) and widths (0.02-0.26 mm). The simulation results were validated with experimental tests and previous research data.

    RESULTS: The effect of margin height in increasing the maximum bone temperature, osteonecrosis diameter, and depth were at least 19.1%, 41.9%, and 59.6%, respectively. The thrust force and torque are highly sensitive to margin height. A higher margin height (0.21-0.25 mm) reduced the thrust force by 54.0% but increased drilling torque by 142.2%. The bone temperature, osteonecrosis diameter, and depth were 16.5%, 56.5%, and 81.4% lower, respectively, with increasing margin width. The minimum thrust force (11.1 N) and torque (41.9 Nmm) were produced with the highest margin width (0.26 mm). The margin height of 0.05-0.13 mm and a margin width of 0.22-0.26 produced the highest sum of weightage.

    CONCLUSIONS: A surgical drill bit with a margin height of 0.05-0.13 mm and a margin width of 0.22-0.26 mm can produce minimum thermomechanical damage in cortical bone drilling. The insights regarding the suitable ranges for margin height and width from this study could be adopted in future research devoted to optimizing the margin of the existing surgical drill bit.

    Matched MeSH terms: Bone and Bones*
  10. Al-Abdullah KI, Lim CP, Najdovski Z, Yassin W
    Int J Med Robot, 2019 Jun;15(3):e1989.
    PMID: 30721570 DOI: 10.1002/rcs.1989
    BACKGROUND: This paper presents a model-based bone milling state identification method that provides intraoperative bone quality information during robotic bone milling. The method helps surgeons identify bone layer transitions during bone milling.

    METHODS: On the basis of a series of bone milling experiments with commercial artificial bones, an artificial neural network force model is developed to estimate the milling force of different bone densities as a function of the milling feed rate and spindle speed. The model estimations are used to identify the bone density at the cutting zone by comparing the actual milling force with the estimated one.

    RESULTS: The verification experiments indicate the ability of the proposed method to distinguish between one cortical and two cancellous bone densities.

    CONCLUSIONS: The significance of the proposed method is that it can be used to discriminate a set of different bone density layers for a range of the milling feed rate and spindle speed.

    Matched MeSH terms: Bone and Bones
  11. Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Ibrahim OE, Daher AM
    Curr Pharm Des, 2016;22(16):2403-10.
    PMID: 27139374
    OBJECTIVES: -To examine the effect of nicotine (Ni) on bone socket healing treated with Ellagic acid (EA) after tooth extraction in rat.

    MATERIALS AND METHODS: Thirty-Two Sprague Dawley (SD) male rats were divided into four groups. The group 1 was administrated with distilled water intragastrically and injected sterile saline subcutaneously. The group 2 was administrated with EA orally and injected with sterile saline subcutaneously. The groups 3 & 4 were subcutaneously exposed to Ni for 4 weeks twice daily before tooth extraction procedure, and maintained Ni injection until the animals were sacrificed. After one month Ni exposure, the group 4 was fed with EA while continuing Ni injection. All the groups were anesthetized, and the upper left incisor was extracted. Four rats from each group were sacrificed on 14(th) and 28(th) days. Tumour necrosis factor alpha (TNFα), Interleukin-1 beta (IL-1β) and Interleukin-6 (IL-6) were applied to assess in serum rat at 14th and 28(th) days. Superoxide dismutase (SOD) and Thiobarbituric acid reactive substances (TBRAS) levels were assessed to evaluate the antioxidant status and lipid peroxidation accordingly after tooth extraction in homogenized gingival maxilla tissue of rat at 14(th) and 28(th) days. The socket hard tissue was stained by eosin and hematoxylin (H&E); immunohistochemical technique was used to assess the healing process by Osteocalcin (OCN) and Alkaline Phosphatase (ALP) biomarkers.

    RESULTS: Ni-induced rats administered with EA compound (Group 4) dropped the elevated concentration of pro-inflammatory cytokines significantly when compared to Ni-induced rats (Group 3) (p<0.05). Ni-induced rats administrated with EA compound (Group 4) showed significant production of SOD and recession in TBRAS level when compared to Ni-induced rats (Group 3) (p<0.05). The immunohistochemistry analysis has revealed that OCN and ALP have presented stronger expression in Ni-induced rats treated with EA (Group 4), as against Ni-induced rats (Group 3).

    CONCLUSION: We have concluded that, Ni-induced rats, treated with EA have exerted positive effect on the trabecular bone formation after tooth extraction in nicotinic rats could be due to the antioxidant activity of EA which lead to upregulate of OCN and ALP proteins which are responsible for osteogenesis.

    Matched MeSH terms: Bone and Bones/drug effects*; Bone and Bones/surgery
  12. Alam AM, Shuaib IL, Hock LC, Bah EJ
    Nepal Med Coll J, 2005 Dec;7(2):150-1.
    PMID: 16519087
    This report describes a migratory fish bone which was not found during 1st surgery causing perforation to the superior part of the arch of aorta. The patient presented with feeling of something stucked in her throat after eating fish subsequently followed by progressive excruciating pain in the neck. During 2nd surgery the fish bone was found to have migrated from the superior aspect of the arch of aorta to the anterolateral aspect of the arch of aorta after piercing the aortic lumen. We report a case of migratory fish bone which was not found during 1st surgery. The clinical examination of the throat revealed no foreign body. The CT scan of the neck and upper thorax demonstrated a 1cm linear foreign body part of which had perforated into the superior part of the arch of aorta with mediastinal hematoma. The most likely cause was a fish bone. The patient's condition slowly deteriorated, median sternotomy and exploration of mediastinum then followed. Unfortunately no fish bone was found and only mediastinal hematoma was discovered. After the first operation the patient condition did not improve and repeat CT scan of the neck and upper thorax was done 3 days later. A similar foreign body has now moved from the superior aspect of the arch of aorta to the anterolateral aspect of arch of aorta. Exploration was done again and this time the fish bone was found.
    Matched MeSH terms: Bone and Bones*
  13. Alias MA, Buenzli PR
    Biomech Model Mechanobiol, 2018 Oct;17(5):1357-1371.
    PMID: 29846824 DOI: 10.1007/s10237-018-1031-x
    The geometric control of bone tissue growth plays a significant role in bone remodelling, age-related bone loss, and tissue engineering. However, how exactly geometry influences the behaviour of bone-forming cells remains elusive. Geometry modulates cell populations collectively through the evolving space available to the cells, but it may also modulate the individual behaviours of cells. To factor out the collective influence of geometry and gain access to the geometric regulation of individual cell behaviours, we develop a mathematical model of the infilling of cortical bone pores and use it with available experimental data on cortical infilling rates. Testing different possible modes of geometric controls of individual cell behaviours consistent with the experimental data, we find that efficient smoothing of irregular pores only occurs when cell secretory rate is controlled by porosity rather than curvature. This porosity control suggests the convergence of a large scale of intercellular signalling to single bone-forming cells, consistent with that provided by the osteocyte network in response to mechanical stimulus. After validating the mathematical model with the histological record of a real cortical pore infilling, we explore the infilling of a population of randomly generated initial pore shapes. We find that amongst all the geometric regulations considered, the collective influence of curvature on cell crowding is a dominant factor for how fast cortical bone pores infill, and we suggest that the irregularity of cement lines thereby explains some of the variability in double labelling data as well as the overall speed of osteon infilling.
    Matched MeSH terms: Bone and Bones
  14. Almayahi BA, Tajuddin AA, Jaafar MS
    J Environ Radioact, 2014 Mar;129:140-7.
    PMID: 24462923 DOI: 10.1016/j.jenvrad.2014.01.001
    In this study, the radiobiological analysis of natural alpha emitters in extracted human teeth and animal bones from Malaysia was estimated. The microdistributions of alpha particles in tooth and bone samples were measured using CR-39 alpha-particle track detectors. The lowest and highest alpha emission rates in teeth in the Kedah and Perak states were 0.0080 ± 0.0005 mBq cm(-2) and 0.061 ± 0.008 mBq cm(-2), whereas those of bones in the Perlis and Kedah states were 0.0140 ± 0.0001 mBq cm(-2) and 0.7700 ± 0.0282 mBq cm(-2), respectively. The average alpha emission rate in male teeth was 0.0209 ± 0.0008 mBq cm(-2), whereas that of female teeth was 0.0199 ± 0.0010 mBq cm(-2). The alpha emission rate in teeth is higher in smokers (0.0228 ± 0.0008 mBq cm(-2)) than in non-smokers (0.0179 ± 0.0008 mBq cm(-2)). Such difference was found statistically significant (p < 0.01).
    Matched MeSH terms: Bone and Bones/chemistry*
  15. Alyessary AS, Yap AUJ, Othman SA, Rahman MT, Radzi Z
    J Oral Maxillofac Surg, 2018 03;76(3):616-630.
    PMID: 28893543 DOI: 10.1016/j.joms.2017.08.018
    PURPOSE: The present study investigated the effect of piezoelectric sutural ostectomies on accelerated bone-borne sutural expansion.

    MATERIALS AND METHODS: Sixteen male New Zealand white rabbits (20 to 24 weeks old) were randomly divided into 4 experimental groups (n = 4): group 1, conventional rapid sutural expansion; group 2, accelerated sutural expansion; group 3, accelerated sutural expansion with continuous ostectomy; and group 4, accelerated sutural expansion with discontinuous ostectomy. All sutural ostectomies were performed using a piezoelectric instrument (Woodpecker DTE, DS-II, Guangxi, China) before expander application with the rabbits under anesthesia. Modified hyrax expanders were placed across the midsagittal sutures of the rabbits and secured with miniscrew implants located bilaterally in the frontal bone. The hyrax expanders were activated 0.5 mm/day for 12 days (group 1) or with a 2.5-mm initial expansion, followed by 0.5 mm/day for 7 days (groups 2 to 4). After 6 weeks of retention, the bone volume fraction, sutural separation, and new bone formation were evaluated using micro-computed tomography and histomorphometry. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U tests and Spearman's rho correlation (P bone formation were observed in groups 1 (63.63%) and 3 (75.93%), respectively. Spearman's correlation showed a strong, positive, and significant correlation (r = 0.932; P bone formation and amount of sutural separation.

    CONCLUSIONS: Piezoelectric sutural ostectomies increased the rate of sutural separation and promoted new sutural bone formation/osteogenesis. Continuous ostectomy gave better results than discontinuous ostectomy.

    Matched MeSH terms: Bone and Bones
  16. Ambu VK, Narayanan P, Ratnasingam V
    J Laryngol Otol, 2001 Sep;115(9):740-2.
    PMID: 11564306
    Laryngeal foreign bodies, especially in children, mostly present as an acute emergency. Few cases of long-standing laryngeal foreign bodies have been reported in the literature. This case illustrates one of the sequelae of a neglected laryngeal foreign body, resulting in significant granulation tissue formation in the larynx, and its management.
    Matched MeSH terms: Bone and Bones
  17. Amjad M, Badshah S, Rafique AF, Adil Khattak M, Khan RU, Abdullah Harasani WI
    Materials (Basel), 2020 May 16;13(10).
    PMID: 32429420 DOI: 10.3390/ma13102299
    Implants are widely used in the human body for the replacement of affected bones. Fatigue failure is one of the serious concerns for implants. Therefore, understanding of the underlying mechanism leading to fatigue failure is important for the longevity of biomaterial implants. In this paper, the fracture toughness and fatigue crack growth of titanium alloy biomaterial Ti-27Nb has been experimentally investigated. The Ti-27Nb material is tested for fatigue crack growth in different environmental conditions representing the ambient and in vitro environments for 504 hours and 816 hours, respectively. Fractography of the tested specimen is conducted using Scanning Electron Microscope (SEM). The results of the fatigue crack growth propagation of the ambient and in vitro samples are similar in the Paris crack growth region. However, in the threshold region, the crack growth rate is higher for the Simulated Body Fluid (SBF) treated specimen. The fracture surface morphology of in vitro samples shows brittle fracture as compared to ambient specimens with significant plasticity and striations marks. It is proposed that a similar investigation may be conducted with specimens treated in SBF for prolonged periods to further ascertain the findings of this study.
    Matched MeSH terms: Bone and Bones
  18. An X, Chong PL, Zohourkari I, Roy S, Merdji A, Linda Gnanasagaran C, et al.
    Proc Inst Mech Eng H, 2023 Aug;237(8):1008-1016.
    PMID: 37477395 DOI: 10.1177/09544119231187685
    The mechanical properties of tissue scaffolds are essential in providing stability for tissue repair and growth. Thus, the ability of scaffolds to withstand specific loads is crucial for scaffold design. Most research on scaffold pores focuses on grids with pore size and gradient structure, and many research models are based on scaffolding with vertically arranged holes. However, little attention is paid to the influence of the distribution of holes on the mechanical properties of the scaffold. To address this gap, this research investigates the effect of pore distribution on the mechanical properties of tissue scaffolds. The study involves four types of scaffold designs with regular and staggered pore arrangements and porosity ranging from 30% to 80%. Finite element analysis (FEA) was used to compare the mechanical properties of different scaffold designs, with von-Mises stress distribution maps generated for each scaffold. The results show that scaffolds with regular vertical holes exhibit a more uniform stress distribution and better mechanical performance than those with irregular holes. In contrast, the scaffold with a staggered arrangement of holes had a higher probability of stress concentration. The study emphasized the importance of balancing porosity and strength in scaffold design.
    Matched MeSH terms: Bone and Bones
  19. Ang CY, Samsudin AR, Karima AM, Nizam A
    Med J Malaysia, 2004 May;59 Suppl B:149-50.
    PMID: 15468862
    The aim of this study was to evaluate the morphological and biological properties of a locally produced "Bovine Bone Sponge" for use in dentistry. Bovine bone sponge was prepared from local calf bone. Endotoxin level and surface properties were investigated. The pore size and water uptake ability were measured and results were compared with the commercial haemostatic agent. The material was tested for its haemostatic property and its inhibition of alveolar bone resorption in a sheep model following dental extraction. Results revealed a significant difference in haemostatic effect, and a shorter bleeding time and a lower rate of alveolar bone resorption in bovine bone sponge compare to a commercial haemostatic agent.
    Matched MeSH terms: Bone and Bones*
  20. Anita Lett J, Sagadevan S, Léonard E, Fatimah I, Motalib Hossain MA, Mohammad F, et al.
    Artif Organs, 2021 Dec;45(12):1501-1512.
    PMID: 34309044 DOI: 10.1111/aor.14045
    The primary role of bone tissue engineering is to reconcile the damaged bones and facilitate the speedy recovery of the injured bones. However, some of the investigated metallic implants suffer from stress-shielding, palpability, biocompatibility, etc. Consequently, the biodegradable scaffolds fabricated from polymers have gathered much attention from researchers and thus helped the tissue engineering sector by providing many alternative materials whose functionality is similar to that of natural bones. Herein, we present the fabrication and testing of a novel composite, magnesium (Mg)-doped hydroxyapatite (HAp) glazed onto polylactic acid (PLA) scaffolds where polyvinyl alcohol (PVA) used as a binder. For the composite formation, Creality Ender-3 pro High Precision 3D Printer with Shape tool 3D Technology on an FSD machine operated by Catia design software was employed. The composite has been characterized for the crystallinity (XRD), surface functionality (FTIR), morphology (FESEM), biocompatibility (hemolytic and protein absorption), and mechanical properties (stress-strain and maximum compressive strength). The powder XRD analysis confirmed the semicrystalline nature and intact structure of HAp even after doping with Mg, while FTIR studies for the successful formation of Mg-HAp/PVA@PLA composite. The FESEM provided analysis indicated for the 3D porous architecture and well-defined morphology to efficiently transport the nutrients, and the biocompatibility studies are supporting that the composite for blood compatible with the surface being suitable enough for the protein absorption. Finally, the composite's antibacterial activity (against Staphylococcus aureus and Escherichia coli) and the test of mechanical properties supported for the enhanced inhibition of active growth of microorganisms and maximum compressive strength, respectively. Based on the research outcomes of biocompatibility, antibacterial activity, and mechanical resistance, the fabricated Mg-HAp/PVA@PLA composite suits well as a promising biomaterial platform for orthopedic applications by functioning towards the open reduction internal fixation of bone fractures and internal repairs.
    Matched MeSH terms: Bone and Bones*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links