Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Shuid AN, Mehat Z, Mohamed N, Muhammad N, Soelaiman IN
    J. Bone Miner. Metab., 2010 Mar;28(2):149-56.
    PMID: 19779668 DOI: 10.1007/s00774-009-0122-2
    Recently, vitamin E has been found to promote the bone structure of nicotine-treated rats well above their baseline values, thus suggesting that vitamin E may have some anabolic action. A bone anabolic agent acts by improving the bone structure leading to stronger bone. To assess the possible anabolic action vitamin E on bone, we supplemented alpha-tocopherol (ATF) or gamma-tocotrienol (GTT) at 60 mg/kg or vehicle [normal control (NC) group] for 4 months to normal male rats and measured their bone structure and biomechanical properties. Histomorphometric analysis revealed that vitamin E-supplemented rats have better trabecular volume, thickness, number, and separation than rats receiving vehicle only. For the first time we reported that GTT improves all the parameters of bone biomechanical strength, while ATF only improved some of the parameters compared to the NC group. Vitamin E supplementation, especially with the gamma isomer, improves bone structure, which contributed to stronger bone. Therefore, vitamin E has the potential to be used as an anabolic agent to treat osteoporosis or as bone supplements for young adults to prevent osteoporosis in later years.
    Matched MeSH terms: Bone and Bones/drug effects
  2. Yeap SS, Othman AZ, Zain AA, Chan SP
    Int J Rheum Dis, 2012 Feb;15(1):17-24.
    PMID: 22324943 DOI: 10.1111/j.1756-185X.2011.01653.x
    AIM: To determine if baseline vitamin D levels would influence the gain in bone mineral density (BMD) in female systemic lupus erythematosus (SLE) patients on corticosteroids (CS) taking bone-active medication.

    METHOD: Premenopausal SLE patients participating in a trial assessing the efficacy of calcium alone, calcitriol and calcium, and alendronate and calcium, on BMD in patients on CS, were studied. Patients were randomly allocated to the treatment groups at the start of the study and followed up for 2 years. Serum 25-hydroxy vitamin D [25(OH)D] was measured at baseline.

    RESULTS:   Thirty-eight patients were studied. One (2%) patient had osteoporosis, nine (24%) had osteopenia and all others had normal BMD. The mean baseline 25(OH)D levels were 21.6 ± 4.6 ng/mL (± 1 SD). Twelve (32%) patients had vitamin D deficiency [25(OH)D < 20 ng/mL]. There was a significant negative correlation between SLEDAI scores and 25(OH)D levels, that is, patients with high SLEDAI scores had significantly lower 25(OH)D levels (P = 0.033). Left femoral neck BMD was significantly lower in the deficient compared to insufficient group (P = 0.042). There was a trend toward better BMD gain at 2 years in the vitamin D insufficient compared to the deficient group, which did not reach statistical significance.

    CONCLUSION: This study showed that in female SLE patients, low vitamin D levels are associated with higher disease activity and suggests that patients who have higher vitamin D levels have a better BMD response during treatment with bone-active agents.
    Matched MeSH terms: Bone and Bones/drug effects*
  3. Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2018;19(5):439-450.
    PMID: 26343111 DOI: 10.2174/1389450116666150907100838
    BACKGROUND: Vitamin C, traditionally associated with scurvy, is an important nutrient for maintaining bone health. It is essential in the production of collagen in bone matrix. It also scavenges free radicals detrimental to bone health.

    OBJECTIVE: This review aims to assess the current evidence of the bone-sparing effects of vitamin C derived from cell, animal and human studies.

    RESULTS: Cell studies showed that vitamin C was able to induce osteoblast and osteoclast formation. However, high-dose vitamin C might increase oxidative stress and subsequently lead to cell death. Vitamin C-deficient animals showed impaired bone health due to increased osteoclast formation and decreased bone formation. Vitamin C supplementation was able to prevent bone loss in several animal models of bone loss. Human studies generally showed a positive relationship between vitamin C and bone health, indicated by bone mineral density, fracture probability and bone turnover markers. Some studies suggested that the relationship between vitamin C and bone health could be U-shaped, more prominent in certain subgroups and different between dietary and supplemental form. However, most of the studies were observational, thus could not confirm causality. One clinical trial was performed, but it was not a randomized controlled trial, thus confounding factors could not be excluded.

    CONCLUSION: vitamin C may exert beneficial effects on bone, but more rigorous studies and clinical trials should be performed to validate this claim.

    Matched MeSH terms: Bone and Bones/drug effects
  4. Ibrahim N', Mohamed N, Shuid AN
    Curr Drug Targets, 2013 Dec;14(13):1524-32.
    PMID: 23876090
    Fracture healing is a process of recovering injured bone tissue forms and functions. Osteoporosis can delay the healing process, which contributes to personal suffering and loss of activities. Osteoporosis patients tend to lose bone mass at the metaphyseal region which require treatment to increase bone mass. Postmenopausal osteoporosis is the most common osteoporosis that occurs in women which subsequently resulted in fractures even under slight trauma. Estrogen Replacement Therapy (ERT), the recommended therapy for postmenopausal osteoporosis, is associated with higher risk of breast cancer, ovarian cancer and cardiovascular diseases. As osteoporotic fractures are becoming a public health issue, alternative treatment is now being thoroughly explored. The potential agent is statins, the HMG-CoA reductase inhibitor which is widely used for hypercholesterolemia treatment. Statins have been found to increase bone mass by stimulation of Bone morphogenetic protein-2 (BMP-2) expression and Vascular Endothelial Growth Factor (VEGF) production. However, these bone forming effects were achieved at very high systemic doses. Therefore, studies on locally applied statins are required to further explore the ability of statins to stimulate bone formation at acceptable doses for better fracture healing. This review highlights the animal and clinical studies on fracture healing promotions by statins and the mechanisms involved.
    Matched MeSH terms: Bone and Bones/drug effects
  5. Shen CL, Klein A, Chin KY, Mo H, Tsai P, Yang RS, et al.
    Ann N Y Acad Sci, 2017 Aug;1401(1):150-165.
    PMID: 28891093 DOI: 10.1111/nyas.13449
    Osteoporosis, a degenerative bone disease, is characterized by low bone mass and microstructural deterioration of bone tissue resulting in aggravated bone fragility and susceptibility to fractures. The trend of extended life expectancy is accompanied by a rise in the prevalence of osteoporosis and concomitant complications in the elderly population. Epidemiological evidence has shown an association between vitamin E consumption and the prevention of age-related bone loss in elderly women and men. Animal studies show that ingestion of vitamin E, especially tocotrienols, may benefit bone health in terms of maintaining higher bone mineral density and improving bone microstructure and quality. The beneficial effects of tocotrienols on bone health appear to be mediated via antioxidant/anti-inflammatory pathways and/or 3-hydroxy-3-methylglutaryl coenzyme A mechanisms. We discuss (1) an overview of the prevalence and etiology of osteoporosis, (2) types of vitamin E (tocopherols versus tocotrienols), (3) findings of tocotrienols and bone health from published in vitro and animal studies, (4) possible mechanisms involved in bone protection, and (5) challenges and future direction for research.
    Matched MeSH terms: Bone and Bones/drug effects
  6. Radzi NFM, Ismail NAS, Alias E
    Curr Drug Targets, 2018;19(9):1095-1107.
    PMID: 29412105 DOI: 10.2174/1389450119666180207092539
    BACKGROUND: There are accumulating studies reporting that vitamin E in general exhibits bone protective effects. This systematic review, however discusses the effects of a group of vitamin E isomers, tocotrienols in preventing bone loss through osteoclast differentiation and activity suppression.

    OBJECTIVE: This review is aimed to discuss the literature reporting the effects of tocotrienols on osteoclasts, the cells specialized for resorbing bone.

    RESULTS: Out of the total 22 studies from the literature search, only 11 of them were identified as relevant, which comprised of eight animal studies, two in vitro studies and only one combination of both. The in vivo studies indicated that tocotrienols improve the bone health and reduce bone loss via inhibition of osteoclast formation and resorption activity, which could be through regulation of RANKL and OPG expression as seen from their levels in the sera. This is well supported by data from the in vitro studies demonstrating the suppression of osteoclast formation and resorption activity following treatment with tocotrienol isomers.

    CONCLUSION: Thus, tocotrienols are suggested to be potential antioxidants for prevention and treatment of bone-related diseases characterized by increased bone loss.

    Matched MeSH terms: Bone and Bones/drug effects*
  7. Ahmad NS, Khalid BA, Luke DA, Ima Nirwana S
    Clin Exp Pharmacol Physiol, 2005 Sep;32(9):761-70.
    PMID: 16173934
    1. Free radicals generated by ferric nitrilotriacetate (FeNTA) can activate osteoclastic activity and this is associated with elevation of the bone resorbing cytokines interleukin (IL)-1 and IL-6. In the present study, we investigated the effects of 2 mg/kg FeNTA (2 mg iron/kg) on the levels of serum IL-1 and IL-6 with or without supplementation with a palm oil tocotrienol mixture or alpha-tocopherol acetate in Wistar rats. 2. The FeNTA was found to elevate levels of IL-1 and IL-6. Only the palm oil tocotrienol mixture at doses of 60 and 100 mg/kg was able to prevent FeNTA-induced increases in IL-1 (P < 0.01). Both the palm oil tocotrienol mixture and alpha-tocopherol acetate, at doses of 30, 60 and 100 mg/kg, were able to reduce FeNTA-induced increases in IL-6 (P < 0.05). Therefore, the palm oil tocotrienol mixture was better than pure alpha-tocopherol acetate in protecting bone against FeNTA (free radical)-induced elevation of bone-resorbing cytokines. 3. Supplementation with the palm oil tocotrienol mixture or alpha-tocopherol acetate at 100 mg/kg restored the reduction in serum osteocalcin levels due to ageing, as seen in the saline (control) group (P < 0.05). All doses of the palm oil tocotrienol mixture decreased urine deoxypyridinoline cross-link (DPD) significantly compared with the control group, whereas a trend for decreased urine DPD was only seen for doses of 60 mg/kg onwards of alpha-tocopherol acetate (P < 0.05). 4. Bone histomorphometric analyses have shown that FeNTA injections significantly lowered mean osteoblast number (P < 0.001) and the bone formation rate (P < 0.001), but raised osteoclast number (P < 0.05) and the ratio of eroded surface/bone surface (P < 0.001) compared with the saline (control) group. Supplementation with 100 mg/kg palm oil tocotrienol mixture was able to prevent all these FeNTA-induced changes, but a similar dose of alpha-tocopherol acetate was found to be effective only for mean osteoclast number. Injections of FeNTA were also shown to reduce trabecular bone volume (P < 0.001) and trabecular thickness (P < 0.05), whereas only supplementation with 100 mg/kg palm oil tocotrienol mixture was able to prevent these FeNTA-induced changes.
    Matched MeSH terms: Bone and Bones/drug effects*
  8. Effendy NM, Shuid AN
    Nutrients, 2014 Aug;6(8):3288-302.
    PMID: 25195641 DOI: 10.3390/nu6083288
    Postmenopausal osteoporosis can be associated with oxidative stress and deterioration of antioxidant enzymes. It is mainly treated with estrogen replacement therapy (ERT). Although effective, ERT may cause adverse effects such as breast cancer and pulmonary embolism. Labisia pumila var. alata (LP), a herb used traditionally for women's health was found to protect against estrogen-deficient osteoporosis. An extensive study was conducted in a postmenopausal osteoporosis rat model using several LP doses and duration of treatments to determine if anti-oxidative mechanisms were involved in its bone protective effects. Ninety-six female Sprague-Dawley rats were randomly divided into six groups; baseline group (BL), sham-operated (Sham), ovariectomised control (OVXC), ovariectomised (OVX) and given 64.5 μg/kg of Premarin (ERT), ovariectomised and given 20 mg/kg of LP (LP20) and ovariectomised and given 100 mg/kg of LP (LP100). The groups were further subdivided to receive their respective treatments via daily oral gavages for three, six or nine weeks of treatment periods. Following euthanization, the femora were dissected out for bone oxidative measurements which include superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA) levels.
    Matched MeSH terms: Bone and Bones/drug effects*
  9. Mohamad NV, Ima-Nirwana S, Chin KY
    Biomed Pharmacother, 2021 May;137:111368.
    PMID: 33582449 DOI: 10.1016/j.biopha.2021.111368
    Tocotrienol has been shown to prevent bone loss in animal models of postmenopausal osteoporosis, but the low oral bioavailability might limit its use. A self-emulsifying drug delivery system (SEDDS) could increase the bioavailability of tocotrienol. However, evidence of this system in improving the skeletal effects of tocotrienol is scanty. This study aims to evaluate the therapeutic efficacy of annatto tocotrienol with SEDDS in a rat model of postmenopausal bone loss. Ten-month-old female Sprague Dawley rats were randomized into six groups. The baseline group was euthanatized at the onset of the study. Four other groups underwent ovariectomy to induce estrogen deficiency. The sham underwent similar surgery procedure, but their ovaries were retained. Eight weeks after surgery, the ovariectomized rats received one of the four different regimens orally daily: (a) SEDDS, (b) annatto tocotrienol [60 mg/kg body weight (b.w.)] without SEDDS, (c) annatto-tocotrienol (60 mg/kg b.w.) with SEDDS, (d) raloxifene (1 mg/kg b.w.). After eight weeks of treatment, blood was collected for the measurement of delta-tocotrienol level and oxidative stress markers. The rats were euthanized and their bones were harvested for the evaluation of the bone microstructure, calcium content and strength. Circulating delta-tocotrienol level was significantly higher in rats receiving annatto tocotrienol with SEDDS compared to the group receiving unformulated annatto-tocotrienol (p bone thickness, preserved bone calcium content, increased bone biomechanical strength and increased antioxidant enzyme activities compared with the ovariectomized group (p bone stiffness and lowered malondialdehyde level (p bone loss. This formulation should be tested in a human clinical trial to validate its efficacy.
    Matched MeSH terms: Bone and Bones/drug effects
  10. Wong SK, Mohamad NV, Jayusman PA, Shuid AN, Ima-Nirwana S, Chin KY
    Aging Male, 2019 Jun;22(2):89-101.
    PMID: 29508640 DOI: 10.1080/13685538.2018.1448058
    Selective estrogen receptor modulators (SERMs) represent a class of drugs that act as agonist or antagonist for estrogen receptor in a tissue-specific manner. The SERMs drugs are initially used for the prevention and treatment of osteoporosis in postmenopausal women. Bone health in prostate cancer patients has become a significant concern, whereby patients undergo androgen deprivation therapy is often associated with deleterious effects on bone. Previous preclinical and epidemiological findings showed that estrogens play a dominant role in improving bone health as compared to testosterone in men. Therefore, this evidence-based review aims to assess the available evidence derived from animal and human studies on the effects of SERMs on the male skeletal system. The effects of SERMs on bone mineral density (BMD)/content (BMC), bone histomorphometry, bone turnover, bone strength and fracture risk have been summarized in this review.
    Matched MeSH terms: Bone and Bones/drug effects*
  11. Hor YY, Ooi CH, Lew LC, Jaafar MH, Lau AS, Lee BK, et al.
    J Appl Microbiol, 2021 Apr;130(4):1307-1322.
    PMID: 32638482 DOI: 10.1111/jam.14776
    AIM: The aim of this study was to evaluate the molecular mechanisms of Lactobacillus strains in improving ageing of the musculoskeletal system.

    METHODS AND RESULTS: The anti-ageing mechanism of three probiotics strains Lactobacillus fermentum DR9, Lactobacillus paracasei OFS 0291 and L. helveticus OFS 1515 were evaluated on gastrocnemius muscle and tibia of d-galactose-induced ageing rats. Upon senescence induction, aged rats demonstrated reduced antioxidative genes CAT and SOD expression in both bone and muscle compared to the young rats (P bone and muscle compared to the aged rats (P bone.

    CONCLUSIONS: Lactobacillus fermentum DR9 appeared to be the strongest strain in modulation of musculoskeletal health during ageing.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study demonstrated the protective effects of the bacteria on muscle and bone through antioxidative and anti-inflammatory actions. Therefore, L. fermentum DR9 may serve as a promising targeted anti-ageing therapy.

    Matched MeSH terms: Bone and Bones/drug effects*
  12. Chin KY, Ima-Nirwana S
    Nutrients, 2014 Apr;6(4):1424-41.
    PMID: 24727433 DOI: 10.3390/nu6041424
    Recent studies have found conflicting evidence on the role of α-tocopherol (αTF) on bone health. This nonsystematic review aimed to summarize the current evidence on the effects of αTF on bone health from cell culture, animal, and human studies in order to clarify the role of αTF on bone health. Our review found that αTF exerted beneficial, harmful or null effects on bone formation cells. Animal studies generally showed positive effects of αTF supplementation on bone in various models of osteoporosis. However, high-dose αTF was possibly detrimental to bone in normal animals. Human studies mostly demonstrated a positive relationship between αTF, as assessed using high performance liquid chromatography and/or dietary questionnaire, and bone health, as assessed using bone mineral density and/or fracture incidence. Three possible reasons high dosage of αTF can be detrimental to bone include its interference with Vitamin K function on bone, the blocking of the entry of other Vitamin E isomers beneficial to bone, and the role of αTF as a prooxidant. However, these adverse effects have not been shown in human studies. In conclusion, αTF may have a dual role in bone health, whereby in the appropriate doses it is beneficial but in high doses it may be harmful to bone.
    Matched MeSH terms: Bone and Bones/drug effects*
  13. Sakthiswary R, Das S
    Curr Drug Targets, 2013 Dec;14(13):1552-7.
    PMID: 23848441
    Osteoporosis is a common complication observed in rheumatoid arthritis (RA). Accelerated bone loss is always a matter of concern. The pathogenesis of RA may be important for better understanding of the bone loss. The mechanism involved in the bone loss in RA is not well understood although cytokines such as interleukin 1 and tumour necrosis factor α (TNF α) have been strongly implicated. TNF α antagonists have revolutionised the treatment of RA in the recent years. Beyond the control of disease activity in RA, accumulating evidence suggests that this form of therapy may provide beneficial effects to the bone metabolism and remodeling. An extensive search of the literature was performed in the Medline, Scopus and EBSCO databases to evaluate the documented research on the effects of TNF α antagonists in RA on bone mineral density and bone turnover markers. The available data based on our systematic review, depict a significant association between TNF α antagonists treatment and suppression of bone resorption.
    Matched MeSH terms: Bone and Bones/drug effects
  14. Shuid AN, Ping LL, Muhammad N, Mohamed N, Soelaiman IN
    J Ethnopharmacol, 2011 Jan 27;133(2):538-42.
    PMID: 20971181 DOI: 10.1016/j.jep.2010.10.033
    AIM OF THE STUDY: Postmenopausal osteoporosis is mainly treated with estrogen replacement therapy (ERT). However, ERT causes side effects, mainly breast cancer, uterine cancer and thromboembolic problems. Labisia pumila var. arata (LPva), a herb with phytoestrogenic effects has the potential to be used as an alternative agent to ERT. This study was conducted to determine the effects of LPva on bone biochemical markers and bone calcium content in ovariectomised rats.
    MATERIALS AND METHODS: Thirty two Wistar rats were divided into 4 groups, with 8 rats in each group. The first group was sham operated (Sham), the second group was ovariectomised (OVX), the third (LPva) and fourth group (ERT) were also ovariectomised and given LPva 17.5 mg/kg and Premarin(®) 64.5 μg/kg, respectively. Blood samples were taken before and after treatment to measure osteocalcin and C-terminal telopeptide of type 1 collagen levels using ELISA while the fifth lumbar bone samples were taken to measure bone calcium content using the Atomic Absorption Spectrophotometer (AAS).
    RESULTS: The osteocalcin levels were significantly higher in both the LPva and ERT groups compared to the OVX group. The CTX levels were significantly lower in both the LPva and ERT groups compared to the OVX group. However, only the ERT group had significantly higher bone calcium level compared to the OVX group.
    CONCLUSION: The supplementation of 17.5 mg/kg of LPva to ovariectomised rats for 8 weeks was able to prevent the changes in bone biochemical markers but failed to prevent the bone calcium loss induced by ovariectomy.
    Matched MeSH terms: Bone and Bones/drug effects
  15. Mohamed N, Yin CM, Shuid AN, Muhammad N, Babji AS, Soelaiman IN
    Pak J Pharm Sci, 2013 Sep;26(5):1027-31.
    PMID: 24035963
    Cosmos caudatus (ulam raja) contains high mineral content and possesses high antioxidant activity which may be beneficial in bone disorder such as postmenopausal osteoporosis. The effects of C. caudatus on bone metabolism biomarkers in ovariectomized rats were studied. 48 Sprague-Dawley rats aged three months were divided into 6 groups. One group of rats was sham-operated while the remaining rats were ovariectomized. The ovariectomized rats were further divided into 5 groups: the control, three groups force-fed with C. caudatus at the doses of 100mg/kg, 200mg/kg or 300mg/kg and another group supplemented with calcium 1% ad libitum. Treatments were given 6 days per week for a period of eight weeks. Blood samples were collected twice; before and after treatment. Parameters measured were bone resorbing cytokine; interleukin-1 and the bone biomarkers; osteocalcin and pyridinoline. Serum IL-1 and pyridinoline levels were significantly increased in ovariectomized rats. Supplementation of C. caudatus was able to prevent the increase of IL-1 and pyridinoline in ovariectomized rats. Besides that, C. caudatus showed the same effect as calcium 1% on biochemical parameters of bone metabolism in ovariectomized rats. In conclusion, Cosmos caudatus was as effective as calcium in preventing the increase in bone resorption in ovariectomized rats.
    Matched MeSH terms: Bone and Bones/drug effects*
  16. Ekeuku SO, Thong BKS, Quraisiah A, Annuar F, Hanafiah A, Nur Azlina MF, et al.
    Drug Des Devel Ther, 2020;14:5359-5366.
    PMID: 33324037 DOI: 10.2147/DDDT.S287239
    Purpose: Triple therapy is the standard therapy to eradicate Helicobacter pylori (H.pylori) infection. Chronic use of proton pump inhibitors (PPIs), a component of triple therapy, is associated with osteoporosis. However, the skeletal effects of short-term triple therapy containing PPI remain elusive. This study aims to determine the skeletal effect of short-term triple therapy in a rat model of gastric ulcer induced by H. pylori.

    Methods: Three-month-old male Sprague Dawley rats were assigned to normal control, H. pylori-inoculated group (negative control) and H. pylori-inoculated group receiving triple therapy consisting of omeprazole [2.035 mg/kg body weight (b.w)], amoxicillin (102.80 mg/kg b.w) and clarithromycin (51.37 mg/kg b.w) (n=6/group). H. pylori infection developed for four weeks after inoculation, followed by two-week triple therapy. At the end of the treatment period, femoral bones of the rats were harvested for analysis. Bone mineral density and content of the femurs were determined using dual-energy X-ray absorptiometry, while bone strength was measured with a universal mechanical tester.

    Results: Bone mineral content was significantly lower in the negative control group compared to the triple therapy group (p=0.014). Triple therapy decreased strain (vs negative control, p=0.002) and displacement of the femur (vs normal control, p=0.004; vs untreated control, p=0.005). No significant difference was observed in other parameters among the study groups (p>0.05).

    Conclusion: Short-term triple therapy increases bone mineral content but decreases bone strength of rats. Skeletal prophylaxis should be considered for patients on short-term triple therapy containing PPI.

    Matched MeSH terms: Bone and Bones/drug effects*
  17. Mohamad Asri SF, Soelaiman IN, Mohd Moklas MA, Mohd Nor NH, Mohamad Zainal NH, Mohd Ramli ES
    Int J Mol Sci, 2020 Oct 19;21(20).
    PMID: 33086468 DOI: 10.3390/ijms21207715
    Glucocorticoids are one of the causes of secondary osteoporosis. The aqueous extract of Piper sarmentosum contains flavonoids that possess antioxidant effects. In this study, we determined the effects of aqueous Piper sarmentosum leaf extract on structural, dynamic and static histomorphometric changes from osteoporotic bones of rats induced with glucocorticoids. Thirty-two Sprague-Dawley rats were divided equally into four groups-Sham control group given vehicles (intramuscular (IM) olive oil and oral normal saline); AC: Adrenalectomised (Adrx) control group given IM dexamethasone (DEX) (120 μg/kg/day) and vehicle (oral normal saline); AP: Adrx group administered IM DEX (120 μg/kg/day) and aqueous Piper sarmentosum leaf extract (125 mg/kg/day) orally; and AG: Adrx group administered IM DEX (120 μg/kg/day) and oral glycyrrhizic acid (GCA) (120 mg/kg/day). Histomorphometric measurements showed that the bone volume, trabecular thickness, trabecular number, osteoid and osteoblast surfaces, double-labelled trabecular surface, mineralizing surface and bone formation rate of rats given aqueous Piper sarmentosum leaf extract were significantly increased (p < 0.05), whereas the trabecular separation and osteoclast surface were significantly reduced (p < 0.05). This study suggests that aqueous Piper sarmentosum leaf extract was able to prevent bone loss in prolonged glucocorticoid therapy. Thus, Piper sarmentosum has the potential to be used as an alternative medicine against osteoporosis and osteoporotic fractures in patients undergoing long-term glucocorticoid therapy.
    Matched MeSH terms: Bone and Bones/drug effects
  18. Wong SK, Mohamad NV, Ibrahim N', Chin KY, Shuid AN, Ima-Nirwana S
    Int J Mol Sci, 2019 Mar 22;20(6).
    PMID: 30909398 DOI: 10.3390/ijms20061453
    Bone remodelling is a tightly-coordinated and lifelong process of replacing old damaged bone with newly-synthesized healthy bone. In the bone remodelling cycle, bone resorption is coupled with bone formation to maintain the bone volume and microarchitecture. This process is a result of communication between bone cells (osteoclasts, osteoblasts, and osteocytes) with paracrine and endocrine regulators, such as cytokines, reactive oxygen species, growth factors, and hormones. The essential signalling pathways responsible for osteoclastic bone resorption and osteoblastic bone formation include the receptor activator of nuclear factor kappa-B (RANK)/receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG), Wnt/β-catenin, and oxidative stress signalling. The imbalance between bone formation and degradation, in favour of resorption, leads to the occurrence of osteoporosis. Intriguingly, vitamin E has been extensively reported for its anti-osteoporotic properties using various male and female animal models. Thus, understanding the underlying cellular and molecular mechanisms contributing to the skeletal action of vitamin E is vital to promote its use as a potential bone-protecting agent. This review aims to summarize the current evidence elucidating the molecular actions of vitamin E in regulating the bone remodelling cycle.
    Matched MeSH terms: Bone and Bones/drug effects*
  19. Chin KY, Gengatharan D, Mohd Nasru FS, Khairussam RA, Ern SL, Aminuddin SA, et al.
    Nutrients, 2016 Dec 14;8(12).
    PMID: 27983628
    Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content (p < 0.05) but it did not affect femoral biomechanical strength (p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength.
    Matched MeSH terms: Bone and Bones/drug effects*
  20. Bukhari SNA, Hussain F, Thu HE, Hussain Z
    J Integr Med, 2019 Jan;17(1):38-45.
    PMID: 30139656 DOI: 10.1016/j.joim.2018.08.003
    OBJECTIVE: The present study explored the effects of the combined herbal therapy consisting of curcumin (CUR) and Fructus Ligustri Lucidi (FLL) on aspects of bone regeneration.

    METHODS: Prior to analyzing the ability of this novel combined herbal therapy to promote aspects of bone regeneration, its cytotoxicity was determined using MC3T3-E1 cells (pre-osteoblast model). Cell proliferation was evaluated using phase-contrast microscopy and cell differentiation was estimated using alkaline phosphatase activity. The effect of the combined herbal therapy (CUR + FLL) was also assessed in terms of mineralization in the extracellular matrix (ECM) of cultured cells. Further, to explore the molecular mechanisms of bone formation, time-dependent expression of bone-regulating protein biomarkers was also evaluated.

    RESULTS: Combined herbal therapy (CUR + FLL) significantly upregulated the viability, proliferation and differentiation of MC3T3-E1 cells compared to the monotherapy of CUR or FLL. The magnitude of ECM mineralization (calcium deposition) was also higher in MC3T3-E1 cells treated with combined therapy. The time-dependent expression of bone-forming protein biomarkers revealed that the tendency of expression of these bone-regulating proteins was remarkably higher in cells treated with combined therapy.

    CONCLUSION: The co-administration of CUR and FLL had superior promotion of elements of bone regeneration in cultured cells, thus could be a promising alternative herbal therapy for the management of bone erosive disorders such as osteoporosis.

    Matched MeSH terms: Bone and Bones/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links