Displaying publications 1 - 20 of 165 in total

Abstract:
Sort:
  1. Zahedifard M, Faraj FL, Paydar M, Looi CY, Hasandarvish P, Hajrezaie M, et al.
    Curr Pharm Des, 2015;21(23):3417-26.
    PMID: 25808938
    The anti-carcinogenic effect of the new quinazolinone compound, named MMD, was tested on MCF-7 human breast cancer cell line. The synthesis of quinazolinone-based compounds attracted strong attention over the past few decades as an alternative mean to produce analogues of natural products. Quinazolinone compounds sharing the main principal core structures are currently introduced in the clinical trials and pharmaceutical markets as anti-cancer agents. Thus, it is of high clinical interest to identify a new drug that could be used to control the growth and expansion of cancer cells. Quinazolinone is a metabolite derivative resulting from the conjugation of 2-aminobenzoyhydrazide and 5-methoxy-2- hydroxybenzaldehyde based on condensation reactions. In the present study, we analysed the influence of MMD on breast cancer adenoma cell morphology, cell cycle arrest, DNA fragmentation, cytochrome c release and caspases activity. MCF-7 is a type of cell line representing the breast cancer adenoma cells that can be expanded and differentiated in culture. Using different in vitro strategies and specific antibodies, we demonstrate a novel role for MMD in the inhibition of cell proliferation and initiation of the programmed cell death. MMD was found to increase cytochrome c release from the mitochondria to the cytosol and this effect was enhanced over time with effective IC50 value of 5.85 ± 0.71 μg/mL detected in a 72-hours treatment. Additionally, MMD induced cell cycle arrest at G0/G1 phase and caused DNA fragmentation with obvious activation of caspase-9 and caspases-3/7. Our results demonstrate a novel role of MMD as an anti-proliferative agent and imply the involvement of mitochondrial intrinsic pathway in the observed apoptosis.
    Matched MeSH terms: Breast Neoplasms/metabolism
  2. Yu F, Bracken CP, Pillman KA, Lawrence DM, Goodall GJ, Callen DF, et al.
    PLoS One, 2015;10(6):e0129190.
    PMID: 26061048 DOI: 10.1371/journal.pone.0129190
    p53 is a master tumour repressor that participates in vast regulatory networks, including feedback loops involving microRNAs (miRNAs) that regulate p53 and that themselves are direct p53 transcriptional targets. We show here that a group of polycistronic miRNA-like non-coding RNAs derived from small nucleolar RNAs (sno-miRNAs) are transcriptionally repressed by p53 through their host gene, SNHG1. The most abundant of these, sno-miR-28, directly targets the p53-stabilizing gene, TAF9B. Collectively, p53, SNHG1, sno-miR-28 and TAF9B form a regulatory loop which affects p53 stability and downstream p53-regulated pathways. In addition, SNHG1, SNORD28 and sno-miR-28 are all significantly upregulated in breast tumours and the overexpression of sno-miR-28 promotes breast epithelial cell proliferation. This research has broadened our knowledge of the crosstalk between small non-coding RNA pathways and roles of sno-miRNAs in p53 regulation.
    Matched MeSH terms: Breast Neoplasms/metabolism
  3. Yip Ch, Bhoo-Pathy N, Daniel J, Foo Y, Mohamed A, Abdullah M, et al.
    Asian Pac J Cancer Prev, 2016;17(3):1077-82.
    PMID: 27039727
    BACKGROUND: The three standard biomarkers used in breast cancer are the estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). The Ki-67 index, a proliferative marker, has been shown to be associated with a poorer outcome, and despite absence of standardization of pathological assessment, is widely used for therapy decision making. We aim to study the role of the Ki-67 index in a group of Asian women with breast cancer.

    MATERIALS AND METHODS: A total of 450 women newly diagnosed with Stage 1 to 3 invasive breast cancer in a single centre from July 2013 to Dec 2014 were included in this study. Univariable and multivariable logistic regression was used to determine the association between Ki-67 (positive defined as 14% and above) and age, ethnicity, grade, mitotic index, ER, PR, HER2, lymph node status and size. All analyses were performed using SPSS Version 22.

    RESULTS: In univariable analysis, Ki -67 index was associated with younger age, higher grade, ER and PR negativity, HER2 positivity, high mitotic index and positive lymph nodes. However on multivariable analysis only tumour size, grade, PR and HER2 remained significant. Out of 102 stage 1 patients who had ER positive/PR positive/HER2 negative tumours and non-grade 3, only 5 (4.9%) had a positive Ki-67 index and may have been offered chemotherapy. However, it is interesting to note that none of these patients received chemotherapy.

    CONCLUSIONS: Information on Ki67 would have potentially changed management in an insignificant proportion of patients with stage 1 breast cancer.

    Matched MeSH terms: Breast Neoplasms/metabolism*
  4. Yip CH, Rhodes A
    Future Oncol, 2014 Nov;10(14):2293-301.
    PMID: 25471040 DOI: 10.2217/fon.14.110
    Breast cancer is the most common cancer in women worldwide. The majority of breast cancers show overexpression of estrogen receptors (ERs) and progesterone receptors (PRs). The development of drugs to target these hormone receptors, such as tamoxifen, has brought about significant improvement in survival for women with hormone receptor-positive breast cancers. Since information about ER and PR is vital for patient management, quality assurance is important to ensure accurate testing. In recent guidelines, the recommended definition of ER and PR positivity is 1% or more of cells that stain positive. Semiquantitative assessment of ER and PR is important for prognosis and, hence, management. Even with the development of genomic tests, hormone receptor status remains the most significant predictive and prognostic biomarker.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  5. Yaacob NS, Nasir R, Norazmi MN
    Asian Pac J Cancer Prev, 2013;14(11):6761-7.
    PMID: 24377602
    The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ), is expressed in various cancer cells including breast, prostate, colorectal and cervical examples. An endogenous ligand of PPARγ, 15-deoxy-Δ12,14 prostaglandin J2 (PGJ2), is emerging as a potent anticancer agent but the exact mechanism has not been fully elucidated, especially in breast cancer. The present study compared the anticancer effects of PGJ2 on estrogen receptor alpha (ERα)-positive (MCF-7) and ERα-negative (MDA-MB-231) human breast cancer cells. Based on the reported signalling cross-talk between PPARγ and ERα, the effect of the ERα ligand, 17β-estradiol (E2) on the anticancer activities of PGJ2 in both types of cells was also explored. Here we report that PGJ2 inhibited proliferation of both MCF-7 and MDA-MB-231 cells by inducing apoptotic cell death with active involvement of mitochondria. The presence of E2 potentiated PGJ2-induced apoptosis in MCF-7, but not in MDA-MB-231 cells. The PPARγ antagonist, GW9662, failed to block PGJ2-induced activities but potentiated its effects in MCF-7 cells, instead. Interestingly, GW9662 also proved capable of inducing apoptotic cell death. It can be concluded that E2 enhances PPARγ-independent anticancer effects of PGJ2 in the presence of its receptor.
    Matched MeSH terms: Breast Neoplasms/metabolism
  6. Yaacob NS, Hamzah N, Nik Mohamed Kamal NN, Zainal Abidin SA, Lai CS, Navaratnam V, et al.
    PMID: 20684795 DOI: 10.1186/1472-6882-10-42
    The leaves of Strobilanthes crispus (S. crispus) which is native to the regions of Madagascar to the Malay Archipelago, are used in folk medicine for their antidiabetic, diuretic, anticancer and blood pressure lowering properties. Crude extracts of this plant have been found to be cytotoxic to human cancer cell lines and protective against chemically-induced hepatocarcinogenesis in rats. In this study, the cytotoxicity of various sub-fractions of dichloromethane extract isolated from the leaves of S. crispus was determined and the anticancer activity of one of the bioactive sub-fractions, SC/D-F9, was further analysed in breast and prostate cancer cell lines.
    Matched MeSH terms: Breast Neoplasms/metabolism
  7. Yaacob NS, Nik Mohamed Kamal NN, Wong KK, Norazmi MN
    Asian Pac J Cancer Prev, 2015;16(18):8135-40.
    PMID: 26745050
    BACKGROUND: Cell cycle regulatory proteins are suitable targets for cancer therapeutic development since genetic alterations in many cancers also affect the functions of these molecules. Strobilanthes crispus (S. crispus) is traditionally known for its potential benefits in treating various ailments. We recently reported that an active sub-fraction of S. crispus leaves (SCS) caused caspase-dependent apoptosis of human breast cancer MCF-7 and MDA-MB-231 cells.

    MATERIALS AND METHODS: Considering the ability of SCS to also promote the activity of the antiestrogen, tamoxifen, we further examined the effect of SCS in modulating cell cycle progression and related proteins in MCF-7 and MDA-MB-231 cells alone and in combination with tamoxifen. Expression of cell cycle- related transcripts was analysed based on a previous microarray dataset.

    RESULTS: SCS significantly caused G1 arrest of both types of cells, similar to tamoxifen and this was associated with modulation of cyclin D1, p21 and p53. In combination with tamoxifen, the anticancer effects involved downregulation of ERα protein in MCF-7 cells but appeared independent of an ER-mediated mechanism in MDA-MB-231 cells. Microarray data analysis confirmed the clinical relevance of the proteins studied.

    CONCLUSIONS: The current data suggest that SCS growth inhibitory effects are similar to that of the antiestrogen, tamoxifen, further supporting the previously demonstrated cytotoxic and apoptotic actions of both agents.

    Matched MeSH terms: Breast Neoplasms/metabolism
  8. Xu Y, Zhang H, Lit LC, Grothey A, Athanasiadou M, Kiritsi M, et al.
    Sci Signal, 2014 Jun 17;7(330):ra58.
    PMID: 24939894 DOI: 10.1126/scisignal.2005170
    Lemur tyrosine kinase 3 (LMTK3) is associated with cell proliferation and endocrine resistance in breast cancer. We found that, in cultured breast cancer cell lines, LMTK3 promotes the development of a metastatic phenotype by inducing the expression of genes encoding integrin subunits. Invasive behavior in various breast cancer cell lines positively correlated with the abundance of LMTK3. Overexpression of LMTK3 in a breast cancer cell line with low endogenous LMTK3 abundance promoted actin cytoskeleton remodeling, focal adhesion formation, and adhesion to collagen and fibronectin in culture. Using SILAC (stable isotope labeling by amino acids in cell culture) proteomic analysis, we found that LMTK3 increased the abundance of integrin subunits α5 and β1, encoded by ITGA5 and ITGB1. This effect depended on the CDC42 Rho family guanosine triphosphatase, which was in turn activated by the interaction between LMTK3 and growth factor receptor-bound protein 2 (GRB2), an adaptor protein that mediates receptor tyrosine kinase-induced activation of RAS and downstream signaling. Knockdown of GRB2 suppressed LMTK3-induced CDC42 activation, blocked ITGA5 and ITGB1 expression promoted by the transcription factor serum response factor (SRF), and reduced invasive activity. Furthermore, abundance of LMTK3 positively correlated with that of the integrin β1 subunit in breast cancer patient's tumors. Our findings suggest a role for LMTK3 in promoting integrin activity during breast cancer progression and metastasis.
    Matched MeSH terms: Breast Neoplasms/metabolism
  9. Wong SW, Tiong KH, Kong WY, Yue YC, Chua CH, Lim JY, et al.
    Breast Cancer Res Treat, 2011 Jul;128(2):301-13.
    PMID: 20686837 DOI: 10.1007/s10549-010-1055-0
    Recent gene expression profiling studies have identified five breast cancer subtypes, of which the basal-like subtype is the most aggressive. Basal-like breast cancer poses serious clinical challenges as there are currently no targeted therapies available to treat it. Although there is increasing evidence that these tumors possess specific sensitivity to cisplatin, its success is often compromised due to its dose-limiting nephrotoxicity and the development of drug resistance. To overcome this limitation, our goal was to maximize the benefits associated with cisplatin therapy through drug combination strategies. Using a validated kinase inhibitor library, we showed that inhibition of the mTOR, TGFβRI, NFκB, PI3K/AKT, and MAPK pathways sensitized basal-like MDA-MB-468 cells to cisplatin treatment. Further analysis demonstrated that the combination of the mTOR inhibitor rapamycin and cisplatin generated significant drug synergism in basal-like MDA-MB-468, MDA-MB-231, and HCC1937 cells but not in luminal-like T47D or MCF-7 cells. We further showed that the synergistic effect of rapamycin plus cisplatin on basal-like breast cancer cells was mediated through the induction of p73. Depletion of endogenous p73 in basal-like cells abolished these synergistic effects. In conclusion, combination therapy with mTOR inhibitors and cisplatin may be a useful therapeutic strategy in the treatment of basal-like breast cancers.
    Matched MeSH terms: Breast Neoplasms/metabolism
  10. Wong SF, Seow HF, Lai LC
    Malays J Pathol, 2003 Dec;25(2):129-34.
    PMID: 16196369
    Transforming growth factor-beta (TGFbeta) is present, predominantly in latent forms, in normal and malignant breast tissue. The mechanisms by which latent TGFbeta is activated physiologically remain largely an enigma. The objective of this study was to assess whether the proteases, cathepsin D and prostate specific antigen (PSA) could activate latent TGFbeta1 and TGFbeta2 in conditioned media of the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 human breast cancer cell lines, newly purchased from ATCC. Both of the cell lines were seeded in 6-well plates 2 days prior to treatment with varying concentrations of cathepsin D and PSA. Active TGFbeta1 and TGFbeta2 in the media were then measured by ELISA after 4, 8, 24 and 72 hours of treatment. TGFbeta1 and TGFbeta2 mRNA expression of both cell lines were measured by RT-PCR to determine whether any increase in level of active TGFbeta1 and TGFbeta2 was due to increased production. There was a significant increase in only active TGFbeta2 levels in the MDA-MB-231 cell line with both treatments. Cathepsin D and PSA did not have any effect on TGFbeta1 and TGFbeta2 mRNA expression. Cathepsin D and PSA were unable to activate latent TGFbeta1 and TGFbeta2 in these two breast cancer cell lines. A constant level of TGFbeta2 mRNA in the control and treated MDA-MB-231 cells suggests that the increase in level of active TGFbeta2 was not a result of increased production but was likely to be due to activation by a mechanism independent of cathepsin D and PSA.
    Matched MeSH terms: Breast Neoplasms/metabolism
  11. Wong RS, Mohamed SM, Nadarajah VD, Tengku IA
    PMID: 20591169 DOI: 10.1186/1756-9966-29-86
    Various strains of Bacillus thuringiensis (Bt) have been found to produce parasporal proteins that are cytotoxic to human cancer cells. This study aims to establish the binding affinity of purified Bt 18 toxin for CEM-SS (T lymphoblastic leukaemia cell line), to determine if competition exists between the toxin and commercial anticancer drugs for the binding site on CEM-SS and to localise the binding site of the toxin on CEM-SS.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  12. Wong FY, Yip CS, Chua ET
    World J Surg, 2012 Feb;36(2):287-94.
    PMID: 22105650 DOI: 10.1007/s00268-011-1353-7
    BACKGROUND: We investigated the implications of HER2 amplification in Asian women with small, node-negative breast cancer in low- and middle-income countries (LMCs).
    METHODS: We reviewed the charts patients treated between 1989 and 2009 with breast conservation therapy for node-negative breast cancers measuring ≤ 2 cm. Disease-free survival (DFS), ipsilateral breast tumor recurrence (IBTR), distant disease-free survival (DDFS), and overall survival (OS) rates were estimated using the Kaplan-Meier method and were compared by the log-rank test. Potential covariates-age, tumor grade, hormone receptor status--were analyzed by multivariate analysis.
    RESULTS: A total of 519 patients were studied including 204 (39%) and 315 (61%) patients diagnosed with pT1ab and pT1c tumors, respectively. Median follow-up was 57 months. HER2 amplification was found in 17.1% of all patients and in 16.7% patients with pT1ab tumors. Among patients with T1ab tumors, 73.0 and 9.3% underwent adjuvant hormonal and chemotherapy, respectively; 3 of 34 T1ab patients with HER2-amplified tumors received trastuzumab. HER2 amplification was associated with poorer 5-year DFS (83.7% vs. 95.5%, P < 0.0001), DDFS (87.5% vs. 97.9%, P < 0.0001), and IBTR (8.6% vs. 2.1%, P < 0.0001) rates in patients with pT1 tumors. Multivariate analysis showed that HER2 amplification remained a significant negative prognostic factor for DFS [hazard ratio (HR) 4.1, 95% confidence interval (CI) 2.1-7.8, P < 0.0001], DDFS (HR 6.3, 95% CI 2.4-17.0, P < 0.0001), and IBTR (HR 4.5, 95% CI 2.0-10.0, P < 0.0001) rates. In the pT1ab subgroup, univariate analysis showed that HER2 amplification prognosticated for DFS (85.1% vs. 95.7%, P = 0.022) and IBTR (14.9% vs. 3.5%, P = 0.004) rates but not for the OS (100% vs. 99.2%, P = 0.487) rate. Similar results were obtained after excluding patients given trastuzumab.
    CONCLUSIONS: The decision to use trastuzumab in HER2-amplified pT1ab tumors must balance their poor outcome against intrinsic financial limitations in LMCs. Patient selection criteria needs fine-tuning, and resource-sensitive regimens must be explored.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  13. Wan Abdul Rahman WF, Fauzi MH, Jaafar H
    Asian Pac J Cancer Prev, 2014;15(19):8441-5.
    PMID: 25339043
    BACKGROUND: Paired-like homeodomain transcription factor 2 (PITX2) is another new marker in breast carcinoma since hypermethylation at P2 promoter of this gene was noted to be associated with poor prognosis. We investigated the expression of PITX2 protein using immunohistochemistry in invasive ductal carcinoma and its association with the established growth receptors such as estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth receptor 2 (HER2).

    METHODS: We conducted a cross sectional study using 100 samples of archived formalin-fixed paraffin embedded tissue blocks of invasive ductal carcinoma and stained them with immunohistochemistry for PITX2, ER, PR and HER2. All HER2 with scoring of 2+ were confirmed with chromogenic in-situ hybridization (CISH).

    RESULTS: PITX2 protein was expressed in 53% of invasive ductal carcinoma and lack of PITX2 expression in 47%. Univariate analysis revealed a significant association between PITX2 expression with PR (p=0.001), ER (p=0.006), gland formation (p=0.044) and marginal association with molecular subtypes of breast carcinoma (p=0.051). Combined ER and PR expression with PITX2 was also significantly associated (p=0.003) especially in double positive cases. Multivariate analysis showed the most significant association between PITX2 and PR (RR 4.105, 95% CI 1.765-9.547, p=0.001).

    CONCLUSION: PITX2 is another potential prognostic marker in breast carcinoma adding significant information to established prognostic factors of ER and PR. The expression of PITX2 together with PR may carry a very good prognosis.

    Matched MeSH terms: Breast Neoplasms/metabolism*
  14. Venil CK, Sathishkumar P, Malathi M, Usha R, Jayakumar R, Yusoff ARM, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:228-234.
    PMID: 26652368 DOI: 10.1016/j.msec.2015.10.019
    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ((1)H NMR and (13)C NMR), UV-Vis, and LC-MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV-Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36μgmL(-1). This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent.
    Matched MeSH terms: Breast Neoplasms/metabolism
  15. Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, et al.
    PMID: 24524627 DOI: 10.1186/1472-6882-14-55
    Breast cancer is one of the most dreading types of cancer among women. Herbal medicine has becoming a potential source of treatment for breast cancer. Herbal plant Dillenia suffruticosa (Griff) Martelli under the family Dilleniaceae has been traditionally used to treat cancerous growth. In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated.
    Matched MeSH terms: Breast Neoplasms/metabolism
  16. Tiong KH, Tan BS, Choo HL, Chung FF, Hii LW, Tan SH, et al.
    Oncotarget, 2016 Sep 06;7(36):57633-57650.
    PMID: 27192118 DOI: 10.18632/oncotarget.9328
    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  17. Teoh PL, Cheng AY, Liau M, Lem FF, Kaling GP, Chua FN, et al.
    Pharm Biol, 2017 Dec;55(1):394-401.
    PMID: 27931178
    CONTEXT: Clinacanthus nutans Lindau (Acanthaceae) is a medicinal plant that has been reported to have anti-inflammatory, antiviral, antimicrobial and antivenom activities. In Malaysia, it has been widely claimed to be effective in various cancer treatments but scientific evidence is lacking.

    OBJECTIVE: This study investigates the chemical constituents, anti-proliferative, and apoptotic properties of C. nutans root extracts.

    MATERIALS AND METHODS: The roots were subjected to solvent extraction using methanol and ethyl acetate. The anti-proliferative effects of root extracts were tested at the concentrations of 10 to 50 μg/mL on MCF-7 and HeLa by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay for 72 h. Morphological changes were observed under light microscope. Pro-apoptotic effects of root extracts were examined using flow cytometric analysis and RT-PCR. The chemical compositions of root extracts were detected using GC-MS.

    RESULTS: The proliferation of MCF-7 cells was inhibited with the IC50 values of 35 and 30 μg/mL, respectively, for methanol and ethyl acetate root extracts. The average inhibition of HeLa cells was ∼25%. Induction of apoptosis in MCF-7 was supported by chromatin condensation, down-regulation of BCL2 and unaltered expression of BAX. However, only ethyl acetate extract caused the loss of mitochondrial membrane potential. GC-MS analysis revealed the roots extracts were rich with terpenoids and phytosterols.

    DISCUSSION AND CONCLUSIONS: The results demonstrated that root extracts promote apoptosis by suppressing BCL2 via mitochondria-dependent or independent manner. The identified compounds might work solely or cooperatively in regulating apoptosis. However, further studies are required to address this.

    Matched MeSH terms: Breast Neoplasms/metabolism
  18. Tee TT, Azimahtol HL
    Anticancer Res, 2005 May-Jun;25(3B):2205-13.
    PMID: 16158965
    Extracts of the plant Eurycoma longifolia have been shown to possess cytotoxic, antimalarial, anti-ulcer, antipyretic and plant growth inhibition activities. The present study investigated the effects of extracts and their chromatographic fractions from the root of E. longifolia on the growth of a human breast cancer cell line, MCF-7. Our data indicated that E. longifolia extracts and fractions exert a direct antiproliferative activity on MCF-7. The bioassay-guided root fractionation resulted in the isolation of three active fractions, F5, F6 and F7, which displayed IC50 values of (6.17+/-0.38) microg/ml, (4.40+/-0.42) microg/ml and (20.00+/-0.08) microg/ml, respectively. The resultant from F7 purification, F16, exhibited a higher cytotoxic activity towards MCF-7, (IC50=15.23+/-0.66 microg/ml) and a certain degree of selectivity against a normal breast cell line, MCF-10A (IC50=66.31-0.47 microg/ml). F16 significantly increased apoptosis in MCF-7 cells, as evaluated by the Tdt-mediated dUTP nick end labelling assay and nuclear morphology. Western blotting revealed down-regulation of the anti-apoptotic Bcl-2 protein expression. F16, however, did not affect the expression of the pro-apoptotic protein, Bax. These results, therefore, suggest that F16 has antiproliferative effects on MCF-7 cells by inducing apoptosis through the modulation of Bcl-2 protein levels.
    Matched MeSH terms: Breast Neoplasms/metabolism
  19. Tan GH, Choo WY, Taib NA, Yip CH
    Asian Pac J Cancer Prev, 2009;10(5):837-40.
    PMID: 20104975
    INTRODUCTION: The HER2 gene is amplified in up to 30% of human breast cancers, leading to overexpression of the HER2 protein on the cell surface. Overexpression of HER2 is associated with a more aggressive cancer and hence a poorer overall survival.

    OBJECTIVE: To evaluate the association between clinico-pathological features and HER2 overexpression in breast cancer.

    METHODS: This is a retrospective study conducted in the Department of Surgery, University Malaya Medical Centre. The association between HER2 overexpression, determined by immunohistochemistry, and other clinicopathological factors was evaluated in 996 patients with newly diagnosed breast cancer treated from 2005 to 2007 using univariate and multivariate logistic regression.

    RESULTS: HER2 overexpression occurred in 30.3% of patients. On bivariate analysis, HER2 overexpression was inversely related to ER expression (p<0.01) and PR expression (p<0.01). This overexpression was associated with a higher tumour grade, lymphovascular positivity and infiltrating ductal carcinoma subtype. On multivariate analysis, HER2 overexpression was significantly associated with higher tumour grade (p= 0.018, CI 1.25-11.04), PR negativity (p= 0.002, CI 0.30-0.77) and lymphovascular positivity (p= 0.042, CI 1.01-2.12).

    CONCLUSIONS: HER2 overexpression was observed in 30.3% of Malaysian female breast cancer patients. This group of patients represents a more aggressive subtype of breast cancer with higher tumour grade, PR negativity and lymphovascular positivity. No significant relationship was established between HER2 overexpression and age, race, lymph node, ER, pathology subtype and stage of disease from this study.

    Matched MeSH terms: Breast Neoplasms/metabolism*
  20. Tan GH, Taib NA, Choo WY, Teo SH, Yip CH
    Asian Pac J Cancer Prev, 2009 Jul-Sep;10(3):395-8.
    PMID: 19640180
    INTRODUCTION: Triple negative (TN) breast cancers are defined by a lack of expression of oestrogen, progesterone, and HER2 receptors. They tend to have a higher grade, with a poorer outcome compared to non-TN breast cancers.
    OBJECTIVE: The aim of this study is to determine the incidence of TN breast cancer in an Asian country consisting of Malays, Chinese and Indians, and to determine the factors associated with this type of breast cancer.
    RESULTS: The incidence of TN breast cancer in the University Malaya Medical Center is 17.6%. There is no significant difference amongst the Malays, Chinese and Indians. In bivariate analysis, TN breast cancer was significantly associated with younger age and Grade 3. However, in multivariate analysis using logistic regression, TN breast cancer was only associated with Grade 3.
    CONCLUSION: The incidence of TN breast cancer in our study is similar to other studies, and associated with a higher grade.
    Study site: University Malaya Medical Centre (UMMC)
    Matched MeSH terms: Breast Neoplasms/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links