Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Ahmad L, Hung TL, Mat Akhir NA, Mohamed R, Nathan S, Firdaus-Raih M
    BMC Microbiol, 2015;15:270.
    PMID: 26597807 DOI: 10.1186/s12866-015-0604-4
    There are still numerous protein subfamilies within families and superfamilies that do not yet have conclusive empirical experimental evidence providing a specific function. These proteins persist in databases with the annotation of a specific 'putative' function made by association with discernible features in the protein sequence.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  2. Al-Maleki AR, Vellasamy KM, Mariappan V, Venkatraman G, Tay ST, Vadivelu J
    Genomics, 2020 01;112(1):501-512.
    PMID: 30980902 DOI: 10.1016/j.ygeno.2019.04.002
    Differences in expression of potential virulence and survival genes were associated with B. pseudomallei colony morphology variants. Microarray was used to investigate B. pseudomallei transcriptome alterations among the wild type and small colony variant (SCV) pre- and post-exposed to A549 cells. SCV pre- and post-exposed have lower metabolic requirements and consume lesser energy than the wild type pre- and post-exposed to A549. However, both the wild type and SCV limit their metabolic activities post- infection of A549 cells and this is indicated by the down-regulation of genes implicated in the metabolism of amino acids, carbohydrate, lipid, and other amino acids. Many well-known virulence and survival factors, including T3SS, fimbriae, capsular polysaccharides and stress response were up-regulated in both the wild type and SCV pre- and post-exposed to A549 cells. Microarray analysis demonstrated essential differences in bacterial response associated with virulence and survival pre- and post-exposed to A549 cells.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  3. Al-Marzooq F, Imad MA, How SH, Kuan YC
    Trop Biomed, 2011 Dec;28(3):545-56.
    PMID: 22433883 MyJurnal
    Establishing a microbial diagnosis for patients with community-acquired pneumonia (CAP) is still challenging and is often achieved in only 30-50% of cases. Polymerase chain reaction (PCR) has been shown to be more sensitive than conventional microbiological methods and it could help to increase the microbial yield for CAP patients. This study was designed to develop, optimize and evaluate multiplex real-time PCR as a method for rapid differential detection of five bacterial causes of CAP namely Streptococcus pneumoniae, Burkholderia pseudomallei and atypical bacterial pathogens, Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella pneumophila. Duplex and triplex real-time PCR assays were developed using five sets of primers and probes that were designed based on an appropriate specific gene for each of the above CAP pathogens. The performance of primers for each organism was tested using SYBR Green melt curve analysis following monoplex realtime PCR amplification. Monoplex real-time PCR assays were also used to optimize each primers-probe set before combining them in multiplex assays. Two multiplex real-time PCR assays were then optimized; duplex assay for the differential detection of S. pneumoniae and B. pseudomallei, and triplex assay for the atypical bacterial pathogens. Both duplex and triplex real-time PCR assays were tested for specificity by using DNA extracted from 26 related microorganisms and sensitivity by running serial dilutions of positive control DNAs. The developed multiplex real-time PCR assays shall be used later for directly identifying CAP causative agents in clinical samples.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  4. Arushothy R, Amran F, Samsuddin N, Ahmad N, Nathan S
    PLoS Negl Trop Dis, 2020 12;14(12):e0008979.
    PMID: 33370273 DOI: 10.1371/journal.pntd.0008979
    BACKGROUND: Melioidosis is a neglected tropical disease with rising global public health and clinical importance. Melioidosis is endemic in Southeast Asia and Northern Australia and is of increasing concern in Malaysia. Despite a number of reported studies from Malaysia, these reports are limited to certain parts of the country and do not provide a cohesive link between epidemiology of melioidosis cases and the nation-wide distribution of the causative agent Burkholderia pseudomallei.

    METHODOLOGY/PRINCIPLE FINDINGS: Here we report on the distribution of B. pseudomallei sequence types (STs) in Malaysia and how the STs are related to STs globally. We obtained 84 culture-confirmed B. pseudomallei from confirmed septicaemic melioidosis patients from all over Malaysia. Prior to performing Multi Locus Sequence Typing, the isolates were subjected to antimicrobial susceptibility testing and detection of the YLF/BTFC genes and BimA allele. Up to 90.5% of the isolates were sensitive to all antimicrobials tested while resistance was observed for antimicrobials typically administered during the eradication stage of treatment. YLF gene cluster and bimABp allele variant were detected in all the isolates. The epidemiological distribution patterns of the Malaysian B. pseudomallei isolates were analysed in silico using phylogenetic tools and compared to Southeast Asian and world-wide isolates. Genotyping of the 84 Malaysian B. pseudomallei isolates revealed 29 different STs of which 6 (7.1%) were novel. ST50 was identified as the group founder followed by subgroup founders ST376, ST211 and ST84. A low-level diversity is noted for the B. pseudomallei isolates described in this study while phylogenetic analysis associated the Malaysian STs to Southeast Asian isolates especially isolates from Thailand. Further analysis also showed a strong association that implicates agriculture and domestication activities as high-risk routes of infection.

    CONCLUSIONS/SIGNIFICANCE: In conclusion, MLST analysis of B. pseudomallei clinical isolates from all states in Malaysia revealed low diversity and a close association to Southeast Asian isolates.

    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  5. Azura MN, Norazah A, Kamel AG, Zorin SA
    PMID: 21323173
    We have analysed DNA fingerprinting patterns by pulsed-field gel electrophoresis (PFGE) of 52 unrelated Burkholderia pseudomallei strains isolated from septicemic and localized infections from Malaysian subjects. A total of 38 PFGE types were observed among 36 septicemic and 16 localized strains with no predominant pattern. Type 25 was seen in 2 epidemiologically related strains, suggesting human to human transmission. Twelve PFGE types were shared among 26 strains (21 septicemic and 5 localized) showing close genetic relatedness with coefficient of similarity of 0.81 to 1.0. The other 26 strains (15 septicemic and 11 localized) were unrelated as shown by the similarity coefficient of < 0.8. This study showed that our B. pseudomallei strains in Malaysia were mainly heterogenous with no predominant type both in septicemic or localized strains.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  6. Chewapreecha C, Holden MT, Vehkala M, Välimäki N, Yang Z, Harris SR, et al.
    Nat Microbiol, 2017 Jan 23;2:16263.
    PMID: 28112723 DOI: 10.1038/nmicrobiol.2016.263
    The environmental bacterium Burkholderia pseudomallei causes an estimated 165,000 cases of human melioidosis per year worldwide and is also classified as a biothreat agent. We used whole genome sequences of 469 B. pseudomallei isolates from 30 countries collected over 79 years to explore its geographic transmission. Our data point to Australia as an early reservoir, with transmission to Southeast Asia followed by onward transmission to South Asia and East Asia. Repeated reintroductions were observed within the Malay Peninsula and between countries bordered by the Mekong River. Our data support an African origin of the Central and South American isolates with introduction of B. pseudomallei into the Americas between 1650 and 1850, providing a temporal link with the slave trade. We also identified geographically distinct genes/variants in Australasian or Southeast Asian isolates alone, with virulence-associated genes being among those over-represented. This provides a potential explanation for clinical manifestations of melioidosis that are geographically restricted.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  7. Chieng S, Mohamed R, Nathan S
    Microb Pathog, 2015 Feb;79:47-56.
    PMID: 25616255 DOI: 10.1016/j.micpath.2015.01.006
    Burkholderia pseudomallei, the causative agent of melioidosis, is able to survive extreme environments and utilizes various virulence factors for survival and pathogenicity. To compete and survive within these different ecological niches, B. pseudomallei has evolved specialized pathways, including the Type VI secretion systems (T6SSs), that have a role in pathogenesis as well as interbacterial interactions. We examined the expression profile of B. pseudomallei T6SS six gene clusters during infection of U937 macrophage cells. T6SS-5 was robustly transcribed while the other five clusters were not significantly regulated proposing the utility of T6SS-5 as a potential biomarker of exposure to B. pseudomallei. Transcription of T6SS regulators VirAG and BprB was also not significant during infection when compared to bacteria grown in culture. Guided by these findings, three highly expressed T6SS genes, tssJ-4, hcp1 and tssE-5, were expressed as recombinant proteins and screened against melioidosis patient sera by western analysis and ELISA. Only Hcp1 was reactive by both types of analysis. The recombinant Hcp1 protein was further evaluated against a cohort of melioidosis patients (n = 32) and non-melioidosis individuals (n = 20) sera and the data clearly indicates a higher sensitivity (93.7%) and specificity (100%) for Hcp1 compared to bacterial lysate. The detection of anti-Hcp1 antibodies in patients' sera indicating the presence of B. pseudomallei highlights the potential of Hcp1 to be further developed as a serodiagnostic marker for melioidosis.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  8. Chieng S, Carreto L, Nathan S
    BMC Genomics, 2012;13:328.
    PMID: 22823543 DOI: 10.1186/1471-2164-13-328
    Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  9. Chin CY, Tan SC, Nathan S
    PMID: 22919676 DOI: 10.3389/fcimb.2012.00085
    Burkholderia pseudomallei is resistant to a diverse group of antimicrobials including third generation cephalosporins whilst quinolones and aminoglycosides have no reliable effect. As therapeutic options are limited, development of more effective forms of immunotherapy is vital to avoid a fatal outcome. In an earlier study, we reported on the B. pseudomallei serine MprA protease, which is relatively stable over a wide pH and temperature range and digests physiological proteins. The present study was carried out to evaluate the immunogenicity and protective efficacy of the MprA as a potential vaccine candidate. In BALB/c mice immunized with recombinant MprA protease (smBpF4), a significantly high IgG titer was detectable. Isotyping studies revealed that the smBpF4-specific antibodies produced were predominantly IgG(1), proposing that immunization with smBpF4 triggered a Th2 immune response. Mice were immunized with smBpF4 and subsequently challenged with B. pseudomallei via the intraperitoneal route. Whilst control mice succumbed to the infection by day 9, smBpF4-immunized mice were protected against the lethal challenge and survived beyond 25 days post-infection. In conclusion, MprA is immunogenic in melioidosis patients whilst also eliciting a strong immune response upon bacterial challenge in mice and presents itself as a potential vaccine candidate for the treatment of melioidosis.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  10. Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C, Wong YC, et al.
    BMC Genomics, 2015;16:471.
    PMID: 26092034 DOI: 10.1186/s12864-015-1692-0
    Chronic bacterial infections occur as a result of the infecting pathogen's ability to live within a biofilm, hence escaping the detrimental effects of antibiotics and the immune defense system. Burkholderia pseudomallei, a gram-negative facultative pathogen, is distinctive in its ability to survive within phagocytic and non-phagocytic cells, to persist in vivo for many years and subsequently leading to relapse as well as the development of chronic disease. The capacity to persist has been attributed to the pathogen's ability to form biofilm. However, the underlying biology of B. pseudomallei biofilm development remains unresolved.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  11. Chong CE, Lim BS, Nathan S, Mohamed R
    In Silico Biol. (Gedrukt), 2006;6(4):341-6.
    PMID: 16922696
    Recent advances in DNA sequencing technology have enabled elucidation of whole genome information from a plethora of organisms. In parallel with this technology, various bioinformatics tools have driven the comparative analysis of the genome sequences between species and within isolates. While drawing meaningful conclusions from a large amount of raw material, computer-aided identification of suitable targets for further experimental analysis and characterization, has also led to the prediction of non-human homologous essential genes in bacteria as promising candidates for novel drug discovery. Here, we present a comparative genomic analysis to identify essential genes in Burkholderia pseudomallei. Our in silico prediction has identified 312 essential genes which could also be potential drug candidates. These genes encode essential proteins to support the survival of B. pseudomallei including outer-inner membrane and surface structures, regulators, proteins involved in pathogenenicity, adaptation, chaperones as well as degradation of small and macromolecules, energy metabolism, information transfer, central/intermediate/miscellaneous metabolism pathways and some conserved hypothetical proteins of unknown function. Therefore, our in silico approach has enabled rapid screening and identification of potential drug targets for further characterization in the laboratory.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  12. Chua KH, See KH, Thong KL, Puthucheary SD
    Jpn J Infect Dis, 2011;64(3):228-33.
    PMID: 21617308
    Restriction enzymes SpeI and XbaI were used in a pulsed-field gel electrophoresis (PFGE) study for molecular characterization of 146 clinical Burkholderia pseudomallei isolates. The PFGE parameters were optimized to enable comparable, reproducible, and robust results. The optimized parameters for both SpeI and XbaI restriction enzymes used in this study were 200 V and a pulse time of 5 to 65 s for a 28-h runtime. Using SpeI, 9 different clusters were identified, whereas 6 clusters were identified by XbaI digestion, which exhibited 85% similarity to SpeI. SpeI (discrimination index [D]=0.854) showed higher discriminatory power than XbaI did (D=0.464).
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  13. Chua KH, See KH, Thong KL, Puthucheary SD
    Trop Biomed, 2010 Dec;27(3):517-24.
    PMID: 21399594 MyJurnal
    Melioidosis is an infectious disease caused by Burkholderia pseudomallei and endemic in Southeast Asia. One hundred and forty six clinical isolates of B. pseudomallei from different states in Malaysia were obtained and molecular typing was carried out using pulsed-field gel electrophoresis (PFGE). Overall, nine clusters were successfully identified. Burkholderia pseudomallei isolates used in this study were found to be genetically diverse and there were differences in the clusters of isolates from peninsular and east Malaysia. BS9 cluster was the most common cluster and found in all the states while BS2 cluster only existed in a particular state. Based on the PFGE analysis, the distribution of different B. pseudomallei clinical isolates in Malaysia was mapped.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  14. Engelthaler DM, Bowers J, Schupp JA, Pearson T, Ginther J, Hornstra HM, et al.
    PLoS Negl Trop Dis, 2011 Oct;5(10):e1347.
    PMID: 22028940 DOI: 10.1371/journal.pntd.0001347
    Melioidosis is caused by Burkholderia pseudomallei, a Gram-negative bacillus, primarily found in soils in Southeast Asia and northern Australia. A recent case of melioidosis in non-endemic Arizona was determined to be the result of locally acquired infection, as the patient had no travel history to endemic regions and no previous history of disease. Diagnosis of the case was confirmed through multiple microbiologic and molecular techniques. To enhance the epidemiological analysis, we conducted several molecular genotyping procedures, including multi-locus sequence typing, SNP-profiling, and whole genome sequence typing. Each technique has different molecular epidemiologic advantages, all of which provided evidence that the infecting strain was most similar to those found in Southeast Asia, possibly originating in, or around, Malaysia. Advancements in new typing technologies provide genotyping resolution not previously available to public health investigators, allowing for more accurate source identification.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  15. Ghazali AK, Eng SA, Khoo JS, Teoh S, Hoh CC, Nathan S
    Microb Genom, 2021 02;7(2).
    PMID: 33565959 DOI: 10.1099/mgen.0.000527
    Burkholderia pseudomallei, a soil-dwelling Gram-negative bacterium, is the causative agent of the endemic tropical disease melioidosis. Clinical manifestations of B. pseudomallei infection range from acute or chronic localized infection in a single organ to fulminant septicaemia in multiple organs. The diverse clinical manifestations are attributed to various factors, including the genome plasticity across B. pseudomallei strains. We previously characterized B. pseudomallei strains isolated in Malaysia and noted different levels of virulence in model hosts. We hypothesized that the difference in virulence might be a result of variance at the genome level. In this study, we sequenced and assembled four Malaysian clinical B. pseudomallei isolates, UKMR15, UKMPMC2000, UKMD286 and UKMH10. Phylogenomic analysis showed that Malaysian subclades emerged from the Asian subclade, suggesting that the Malaysian strains originated from the Asian region. Interestingly, the low-virulence strain, UKMH10, was the most distantly related compared to the other Malaysian isolates. Genomic island (GI) prediction analysis identified a new island of 23 kb, GI9c, which is present in B. pseudomallei and Burkholderia mallei, but not Burkholderia thailandensis. Genes encoding known B. pseudomallei virulence factors were present across all four genomes, but comparative analysis of the total gene content across the Malaysian strains identified 104 genes that are absent in UKMH10. We propose that these genes may encode novel virulence factors, which may explain the reduced virulence of this strain. Further investigation on the identity and role of these 104 proteins may aid in understanding B. pseudomallei pathogenicity to guide the design of new therapeutics for treating melioidosis.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  16. Hara Y, Mohamed R, Nathan S
    PLoS One, 2009 Aug 05;4(8):e6496.
    PMID: 19654871 DOI: 10.1371/journal.pone.0006496
    BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. There is no vaccine towards the bacterium available in the market, and the efficacy of many of the bacterium's surface and secreted proteins are currently being evaluated as vaccine candidates.

    METHODOLOGY/PRINCIPAL FINDINGS: With the availability of the B. pseudomallei whole genome sequence, we undertook to identify genes encoding the known immunogenic outer membrane protein A (OmpA). Twelve OmpA domains were identified and ORFs containing these domains were fully annotated. Of the 12 ORFs, two of these OmpAs, Omp3 and Omp7, were successfully cloned, expressed as soluble protein and purified. Both proteins were recognised by antibodies in melioidosis patients' sera by Western blot analysis. Purified soluble fractions of Omp3 and Omp7 were assessed for their ability to protect BALB/c mice against B. pseudomallei infection. Mice were immunised with either Omp3 or Omp7, subsequently challenged with 1x10(6) colony forming units (cfu) of B. pseudomallei via the intraperitoneal route, and examined daily for 21 days post-challenge. This pilot study has demonstrated that whilst all control unimmunised mice died by day 9 post-challenge, two mice (out of 4) from both immunised groups survived beyond 21 days post-infection.

    CONCLUSIONS/SIGNIFICANCE: We have demonstrated that B. pseudomallei OmpA proteins are immunogenic in mice as well as melioidosis patients and should be further assessed as potential vaccine candidates against B. pseudomallei infection.

    Matched MeSH terms: Burkholderia pseudomallei/genetics
  17. Kang WT, Vellasamy KM, Chua EG, Vadivelu J
    J Infect Dis, 2015 Mar 1;211(5):827-34.
    PMID: 25165162 DOI: 10.1093/infdis/jiu492
    OBJECTIVES: The bsa locus of Burkholderia pseudomallei encodes several proteins that are components of the type III secretion system (TTSS). BipC was postulated as one of the TTSS-3 effector proteins, but its role in the pathogenesis of B. pseudomallei infection is not well understood. Thus, the aim of this study was to determine its role(s) in the virulence of B. pseudomallei pathogenesis.
    METHODS: A bipC TTSS-3-deficient strain of B. pseudomallei and complemented strains were generated to assess the role of BipC as a type III translocation apparatus. Human cell lines and a mouse model of melioidosis were used for in vitro and in vivo assays, respectively.
    RESULTS: A significant 2-fold reduction was demonstrated in the percentage of adherence, invasion, intracellular survival, and phagosomal escape of the bipC mutant. Interestingly, microscopic studies have shown that BipC was capable of delayed B. pseudomallei actin-based motility. The virulence of the mutant strain in a murine model of melioidosis demonstrated that the bipC mutant was less virulent, compared with the wild type.
    CONCLUSION: The results suggested that BipC possesses virulence determinants that play significant roles in host cell invasion and immune evasion.
    KEYWORDS: BipC; Burkholderia pseudomallei; host cell invasion; type III secretion system; type III translocation apparatus; virulence
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  18. Khoo JS, Chai SF, Mohamed R, Nathan S, Firdaus-Raih M
    BMC Genomics, 2012;13 Suppl 7:S13.
    PMID: 23282220 DOI: 10.1186/1471-2164-13-S7-S13
    The sRNAs of bacterial pathogens are known to be involved in various cellular roles including environmental adaptation as well as regulation of virulence and pathogenicity. It is expected that sRNAs may also have similar functions for Burkholderia pseudomallei, a soil bacterium that can adapt to diverse environmental conditions, which causes the disease melioidosis and is also able to infect a wide variety of hosts.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  19. Khosravi Y, Vellasamy KM, Mariappan V, Ng SL, Vadivelu J
    ScientificWorldJournal, 2014;2014:132971.
    PMID: 25379514 DOI: 10.1155/2014/132971
    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ), the synthetic β-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s) in a timely manner. In this study, susceptibilities of 81 B. pseudomallei isolates to nine different antimicrobial agents were determined using the disk diffusion method, broth microdilution test and Etest. Highest percentage of susceptibility was demonstrated to CAZ, amoxicillin/clavulanic acid, meropenem, imipenem, and trimethoprim/sulfamethoxazole. Although these drugs demonstrated the highest percentage of susceptibility in B. pseudomallei, the overall results underline the importance of the emergence of resistance in this organism. PCR results showed that, of the 81 B. pseudomallei, six multidrug resistant (MDR) isolates carried bpeB, amrB, and BPSS1119 and penA genes. Genotyping of the isolates using random amplified polymorphic DNA analysis showed six different PCR fingerprinting patterns generated from the six MDR isolates clusters (A) and eight PCR fingerprinting patterns generated for the remaining 75 non-MDR isolates clusters (B).
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  20. Khosravi Y, Dieye Y, Poh BH, Ng CG, Loke MF, Goh KL, et al.
    ScientificWorldJournal, 2014;2014:610421.
    PMID: 25105162 DOI: 10.1155/2014/610421
    Human stomach is the only known natural habitat of Helicobacter pylori (Hp), a major bacterial pathogen that causes different gastroduodenal diseases. Despite this, the impact of Hp on the diversity and the composition of the gastric microbiota has been poorly studied. In this study, we have analyzed the culturable gastric microbiota of 215 Malaysian patients, including 131 Hp positive and 84 Hp negative individuals that were affected by different gastric diseases. Non-Hp bacteria isolated from biopsy samples were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry based biotyping and 16SrRNA sequencing. The presence of Hp did not significantly modify the diversity of the gastric microbiota. However, correlation was observed between the isolation of Streptococci and peptic ulcer disease. In addition, as a first report, Burkholderia pseudomallei was also isolated from the gastric samples of the local population. This study suggested that there may be geographical variations in the diversity of the human gastric microbiome. Geographically linked diversity in the gastric microbiome and possible interactions between Hp and other bacterial species from stomach microbiota in pathogenesis are proposed for further investigations.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links