Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Vadivelu J, Puthucheary SD, Mifsud A, Drasar BS, Dance DA, Pitt TI
    Trans R Soc Trop Med Hyg, 1997 5 1;91(3):358-60.
    PMID: 9231217
    Forty-nine isolates of Burkholderia pseudomallei from sporadic cases of melioidosis in Malaysia over the past 18 years were examined by BamHI ribotyping and pulsed-field gel electrophoresis (PFGE) of XbaI digests of total deoxyribonucleic acid (DNA). Twenty-four patients had septicaemic melioidosis with a mortality of 70%; mortality in the non-septicaemic disease was 16%. Five ribotype patterns were identified, 2 of which accounted for 90% of all isolates. PFGE revealed a number of different strains within these ribotypes, but some pairs of isolates from unrelated cases gave closely similar DNA profiles. These results are in agreement with Australian studies which showed a high prevalence of a few ribotypes of B. pseudomallei which are further divisible by genotyping, in areas where melioidosis is endemic.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  2. Vadivelu J, Puthucheary SD, Drasar BS, Dance DA, Pitt TL
    Trop Med Int Health, 1998 Jul;3(7):518-21.
    PMID: 9705184
    The constancy of strain genotypes of multiple isolates of Burkholderia pseudomallei from 13 patients with melioidosis was examined by BamHI ribotyping and pulsed-field gel electrophoresis (PFGE) of XbaI digests of DNA. Seven of 8 patients with single episodes of melioidosis each yielded genetically identical isolates and only one of five patients with recurrent episodes was infected with a new strain clearly distinct from the original primary strain. Variation was observed in PFGE patterns of primary and relapse isolates of another patient but this was insufficient to define genetically distinct strains. We conclude that most patients with single or multiple episodes of melioidosis retain a single strain.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  3. Radu S, Lihan S, Idris A, Ling OW, Al-Haddawi MH, Rusul G
    PMID: 10928372
    Seven isolates of Burkholderia pseudomallei from cases of melioidosis in human (2 isolates) and animal (2 isolates), cat (one isolate) and from soil samples (2 isolates) were examined for in vitro sensitivity to 14 antimicrobial agents and for presence of plasmid DNA. Randomly amplified polymorphic DNA (RAPD) analysis was used to type the isolates, using two arbitrary primers. All isolates were sensitive to chloramphenicol, kanamycin, carbenicillin, rifampicin, enrofloxacin, tetracycline and sulfamethoxazole-trimethoprim. No plasmid was detected in all the isolates tested. RADP fingerprinting demonstrated genomic relationship between isolates, which provides an effective method to study the epidemiology of the isolates examined.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  4. Radua S, Ling OW, Srimontree S, Lulitanond A, Hin WF, Yuherman, et al.
    Diagn Microbiol Infect Dis, 2000 Nov;38(3):141-5.
    PMID: 11109011
    A total of 35 Burkholderia pseudomallei isolates from Thailand (16 clinical and eight soil isolates) and Malaysia (seven animal, two isolate each from clinical and soil) were investigated by their antimicrobial resistance, plasmid profiles and were typed by randomly amplified polymorphic DNA analysis. All isolates were found to be resistant to six or more of the 12 antimicrobial agents tested. Only two small plasmids of 1.8 and 2.4 megadalton were detected in two clinical isolates from Thailand. RAPD analysis with primer GEN2-60-09 resulted in the identification of 35 RAPD-types among the 35 isolates. The constructed dendrogram differentiated the 35 isolates into two main clusters and a single isolate. The wide genetic biodiversity among the 35 isolates indicate that RAPD-PCR can be a useful method to differentiate unrelated B. pseudomallei in epidemiological investigation.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  5. McCombie RL, Finkelstein RA, Woods DE
    J Clin Microbiol, 2006 Aug;44(8):2951-62.
    PMID: 16891516
    A collection of 207 historically relevant Burkholderia pseudomallei isolates was analyzed by multilocus sequence typing (MLST). The strain collection contains environmental isolates obtained from a geographical distribution survey of B. pseudomallei isolates in Thailand (1964 to 1967), as well as stock cultures and colony variants from the U.S. Army Medical Research Unit (Malaysia), the Walter Reed Army Institute for Research, and the Pasteur Institute (Vietnam). The 207 isolates of the collection were resolved into 80 sequence types (STs); 56 of these were novel. eBURST diagrams predict that the historical-collection STs segregate into three complexes when analyzed separately. When added to the 760 isolates and 365 STs of the B. pseudomallei MLST database, the historical-collection STs cluster significantly within the main complex of the eBURST diagram in an ancestral pattern and alter the B. pseudomallei "population snapshot." Differences in colony morphology among reference isolates were found not to affect the STs assigned, which were consistent with the original isolates. Australian ST84 is likely characteristic of B. pseudomallei isolates of Southeast Asia rather than Australia, since multiple environmental isolates from Thailand and Malaysia share this ST with the single Australian clinical isolate in the MLST database. Phylogenetic evidence is also provided suggesting that Australian isolates may not be distinct from those of Thailand, since ST60 is common to environmental isolates from both countries. MLST and eBURST are useful tools for the study of population biology and epidemiology, since they provide methods to elucidate new genetic relationships among bacterial isolates.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  6. Chong CE, Lim BS, Nathan S, Mohamed R
    In Silico Biol. (Gedrukt), 2006;6(4):341-6.
    PMID: 16922696
    Recent advances in DNA sequencing technology have enabled elucidation of whole genome information from a plethora of organisms. In parallel with this technology, various bioinformatics tools have driven the comparative analysis of the genome sequences between species and within isolates. While drawing meaningful conclusions from a large amount of raw material, computer-aided identification of suitable targets for further experimental analysis and characterization, has also led to the prediction of non-human homologous essential genes in bacteria as promising candidates for novel drug discovery. Here, we present a comparative genomic analysis to identify essential genes in Burkholderia pseudomallei. Our in silico prediction has identified 312 essential genes which could also be potential drug candidates. These genes encode essential proteins to support the survival of B. pseudomallei including outer-inner membrane and surface structures, regulators, proteins involved in pathogenenicity, adaptation, chaperones as well as degradation of small and macromolecules, energy metabolism, information transfer, central/intermediate/miscellaneous metabolism pathways and some conserved hypothetical proteins of unknown function. Therefore, our in silico approach has enabled rapid screening and identification of potential drug targets for further characterization in the laboratory.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  7. Lee SH, Chong CE, Lim BS, Chai SJ, Sam KK, Mohamed R, et al.
    Diagn Microbiol Infect Dis, 2007 Jul;58(3):263-70.
    PMID: 17350202
    Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium, which is the etiologic agent of melioidosis, a severe and fatal infectious disease occurring in human and animals. Distinct clinical and animal isolates have been shown to exhibit differences in phenotypic trait such as growth rate, colony morphology, antimicrobial resistance, and virulence. This study was carried out to gain insight into the intrinsic differences between 4 clinical and 6 animal B. pseudomallei isolates from Malaysia. The 16S rRNA-encoding genes from these 10 isolates of B. pseudomallei were sequenced to confirm the identity of these isolates along with the avirulent Burkholderia thailandensis. The nucleotide sequences indicated that the 16S rRNA-encoding genes among the 10 B. pseudomallei isolates were identical to each other. However, the nucleotide sequence differences in the 16S rRNA-encoding genes appeared to be B. pseudomallei and B. thailandensis specific. The growth rate of all B. pseudomallei isolates was determined by generating growth curves at 37 degrees C for 72 h. The isolates were found to differ in growth rates with doubling time varying from 1.5 to 2.3 h. In addition, the B. pseudomallei isolates exhibited considerable variation in colony morphology when grown on Ashdown media, brain-heart infusion agar, and Luria-Bertani agar over 9 days of observation. Antimicrobial susceptibility tests indicated that 80% of the isolates examined were Amp(R) Cb(R) Kn(R) Gm(R) Chl(S) Te(S). Virulence of the B. pseudomallei clinical and animal isolates was evaluated in B. pseudomallei-susceptible BALB/c mice. Most of the clinical isolates were highly virulent. However, virulence did not correlate with isolate origin since 2 of the animal isolates were also highly virulent.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  8. Lim BS, Chong CE, Zamrod Z, Nathan S, Mohamed R
    In Silico Biol. (Gedrukt), 2007;7(4-5):389-97.
    PMID: 18391231
    Many members of the AraC/XylS family transcription regulator have been proven to play a critical role in regulating bacterial virulence factors in response to environmental stress. By using the Hidden Markov Model (HMM) profile built from the alignment of a 99 amino acid conserved domain sequence of 273 AraC/XylS family transcription regulators, we detected a total of 45 AraC/XylS family transcription regulators in the genome of the Gram-negative pathogen, Burkholderia pseudomallei. Further in silico analysis of each detected AraC/XylS family transcription regulatory protein and its neighboring genes allowed us to make a first-order guess on the role of some of these transcription regulators in regulating important virulence factors such as those involved in three type III secretion systems and biosynthesis of pyochelin, exopolysaccharide (EPS) and phospholipase C. This paper has demonstrated an efficient and systematic genome-wide scale prediction of the AraC/XylS family that can be applied to other protein families.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  9. Su YC, Wan KL, Mohamed R, Nathan S
    Microbes Infect., 2008 Oct;10(12-13):1335-45.
    PMID: 18761419 DOI: 10.1016/j.micinf.2008.07.034
    Burkholderia pseudomallei is the etiological agent of melioidosis, a severe infectious disease of humans and animals. The role of the bacterium's proteins expressed in vivo during human melioidosis continues to remain an enigma. This study's aim was to identify B. pseudomallei target proteins that elicit the humoral immune response in infected humans. A small insert genomic expression library was constructed and immunoscreened to identify peptides that reacted exclusively with melioidosis patients' sera. Sero-positive clones expressing immunogenic peptides were sequenced and annotated, and shown to represent 109 proteins involved in bacterial cell envelope biogenesis, cell motility and secretion, transcription, amino acid, ion and protein metabolism, energy production, DNA repair and unknown hypothetical proteins. Western blot analysis of three randomly selected full-length immunogenic polypeptides with patients' sera verified the findings of the immunome screening. The patients' humoral immune response to the 109 proteins suggests the induction or significant upregulation of these proteins in vivo during human infection and thus may play a role in the pathogenesis of B. pseudomallei. Identification of B. pseudomallei immunogens has shed new light on the elucidation of the bacterium's pathogenesis mechanism and disease severity. These immunogens can be further evaluated as prophylactic and serodiagnostic candidates as well as drug targets.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  10. Hara Y, Mohamed R, Nathan S
    PLoS One, 2009 Aug 05;4(8):e6496.
    PMID: 19654871 DOI: 10.1371/journal.pone.0006496
    BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. There is no vaccine towards the bacterium available in the market, and the efficacy of many of the bacterium's surface and secreted proteins are currently being evaluated as vaccine candidates.

    METHODOLOGY/PRINCIPAL FINDINGS: With the availability of the B. pseudomallei whole genome sequence, we undertook to identify genes encoding the known immunogenic outer membrane protein A (OmpA). Twelve OmpA domains were identified and ORFs containing these domains were fully annotated. Of the 12 ORFs, two of these OmpAs, Omp3 and Omp7, were successfully cloned, expressed as soluble protein and purified. Both proteins were recognised by antibodies in melioidosis patients' sera by Western blot analysis. Purified soluble fractions of Omp3 and Omp7 were assessed for their ability to protect BALB/c mice against B. pseudomallei infection. Mice were immunised with either Omp3 or Omp7, subsequently challenged with 1x10(6) colony forming units (cfu) of B. pseudomallei via the intraperitoneal route, and examined daily for 21 days post-challenge. This pilot study has demonstrated that whilst all control unimmunised mice died by day 9 post-challenge, two mice (out of 4) from both immunised groups survived beyond 21 days post-infection.

    CONCLUSIONS/SIGNIFICANCE: We have demonstrated that B. pseudomallei OmpA proteins are immunogenic in mice as well as melioidosis patients and should be further assessed as potential vaccine candidates against B. pseudomallei infection.

    Matched MeSH terms: Burkholderia pseudomallei/genetics
  11. Vellasamy KM, Vasu C, Puthucheary SD, Vadivelu J
    Microb Pathog, 2009 Sep;47(3):111-7.
    PMID: 19524661 DOI: 10.1016/j.micpath.2009.06.003
    To evaluate the potential role of extracellular proteins in the pathogenicity and virulence of Burkholderia pseudomallei, the activities of several enzymes in the culture filtrates of nine clinical and six environmental isolates were investigated in vitro and in vivo in ICR strain of mice. The production of protease, phosphatase, phospholipase C, superoxide dismutase, catalase and peroxidase were detected in the culture filtrates of all the 15 isolates at different time points of growth 4-24h. Over time, activity of each enzyme at each time point varied. Profile of secretion was similar among the 15 isolates irrespective of source, that is clinical or environmental. Catalase, phosphatase and phospholipase C were found to be increased in 60-100% of the isolates post-passage in mice. In vivo inoculation studies in ICR mice demonstrated a wide difference in their ability to cause bacteraemia, splenic or external abscesses and mortality rate ranged from few days to several weeks.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  12. Tay ST, Cheah PC, Puthucheary SD
    J Clin Microbiol, 2010 Apr;48(4):1465-7.
    PMID: 20089759 DOI: 10.1128/JCM.01131-09
    Four flagellin allelic types (I to IV) of Burkholderia pseudomallei were identified based on their sequence variation and restriction fragment length polymorphism (RFLP) analysis of the amplified flagellin gene. Flagellin allelic type I was the most predominantly (75.0%) found among the 100 clinical isolates of B. pseudomallei investigated in this study.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  13. Chua KH, See KH, Thong KL, Puthucheary SD
    Trop Biomed, 2010 Dec;27(3):517-24.
    PMID: 21399594 MyJurnal
    Melioidosis is an infectious disease caused by Burkholderia pseudomallei and endemic in Southeast Asia. One hundred and forty six clinical isolates of B. pseudomallei from different states in Malaysia were obtained and molecular typing was carried out using pulsed-field gel electrophoresis (PFGE). Overall, nine clusters were successfully identified. Burkholderia pseudomallei isolates used in this study were found to be genetically diverse and there were differences in the clusters of isolates from peninsular and east Malaysia. BS9 cluster was the most common cluster and found in all the states while BS2 cluster only existed in a particular state. Based on the PFGE analysis, the distribution of different B. pseudomallei clinical isolates in Malaysia was mapped.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  14. Azura MN, Norazah A, Kamel AG, Zorin SA
    PMID: 21323173
    We have analysed DNA fingerprinting patterns by pulsed-field gel electrophoresis (PFGE) of 52 unrelated Burkholderia pseudomallei strains isolated from septicemic and localized infections from Malaysian subjects. A total of 38 PFGE types were observed among 36 septicemic and 16 localized strains with no predominant pattern. Type 25 was seen in 2 epidemiologically related strains, suggesting human to human transmission. Twelve PFGE types were shared among 26 strains (21 septicemic and 5 localized) showing close genetic relatedness with coefficient of similarity of 0.81 to 1.0. The other 26 strains (15 septicemic and 11 localized) were unrelated as shown by the similarity coefficient of < 0.8. This study showed that our B. pseudomallei strains in Malaysia were mainly heterogenous with no predominant type both in septicemic or localized strains.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  15. Engelthaler DM, Bowers J, Schupp JA, Pearson T, Ginther J, Hornstra HM, et al.
    PLoS Negl Trop Dis, 2011 Oct;5(10):e1347.
    PMID: 22028940 DOI: 10.1371/journal.pntd.0001347
    Melioidosis is caused by Burkholderia pseudomallei, a Gram-negative bacillus, primarily found in soils in Southeast Asia and northern Australia. A recent case of melioidosis in non-endemic Arizona was determined to be the result of locally acquired infection, as the patient had no travel history to endemic regions and no previous history of disease. Diagnosis of the case was confirmed through multiple microbiologic and molecular techniques. To enhance the epidemiological analysis, we conducted several molecular genotyping procedures, including multi-locus sequence typing, SNP-profiling, and whole genome sequence typing. Each technique has different molecular epidemiologic advantages, all of which provided evidence that the infecting strain was most similar to those found in Southeast Asia, possibly originating in, or around, Malaysia. Advancements in new typing technologies provide genotyping resolution not previously available to public health investigators, allowing for more accurate source identification.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  16. Al-Marzooq F, Imad MA, How SH, Kuan YC
    Trop Biomed, 2011 Dec;28(3):545-56.
    PMID: 22433883 MyJurnal
    Establishing a microbial diagnosis for patients with community-acquired pneumonia (CAP) is still challenging and is often achieved in only 30-50% of cases. Polymerase chain reaction (PCR) has been shown to be more sensitive than conventional microbiological methods and it could help to increase the microbial yield for CAP patients. This study was designed to develop, optimize and evaluate multiplex real-time PCR as a method for rapid differential detection of five bacterial causes of CAP namely Streptococcus pneumoniae, Burkholderia pseudomallei and atypical bacterial pathogens, Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella pneumophila. Duplex and triplex real-time PCR assays were developed using five sets of primers and probes that were designed based on an appropriate specific gene for each of the above CAP pathogens. The performance of primers for each organism was tested using SYBR Green melt curve analysis following monoplex realtime PCR amplification. Monoplex real-time PCR assays were also used to optimize each primers-probe set before combining them in multiplex assays. Two multiplex real-time PCR assays were then optimized; duplex assay for the differential detection of S. pneumoniae and B. pseudomallei, and triplex assay for the atypical bacterial pathogens. Both duplex and triplex real-time PCR assays were tested for specificity by using DNA extracted from 26 related microorganisms and sensitivity by running serial dilutions of positive control DNAs. The developed multiplex real-time PCR assays shall be used later for directly identifying CAP causative agents in clinical samples.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
  17. Chua KH, See KH, Thong KL, Puthucheary SD
    Jpn J Infect Dis, 2011;64(3):228-33.
    PMID: 21617308
    Restriction enzymes SpeI and XbaI were used in a pulsed-field gel electrophoresis (PFGE) study for molecular characterization of 146 clinical Burkholderia pseudomallei isolates. The PFGE parameters were optimized to enable comparable, reproducible, and robust results. The optimized parameters for both SpeI and XbaI restriction enzymes used in this study were 200 V and a pulse time of 5 to 65 s for a 28-h runtime. Using SpeI, 9 different clusters were identified, whereas 6 clusters were identified by XbaI digestion, which exhibited 85% similarity to SpeI. SpeI (discrimination index [D]=0.854) showed higher discriminatory power than XbaI did (D=0.464).
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  18. Yam H, Abdul Rahim A, Gim Luan O, Samian R, Abdul Manaf U, Mohamad S, et al.
    Protein J, 2012 Mar;31(3):246-9.
    PMID: 22354666 DOI: 10.1007/s10930-012-9398-5
    In this post genomic era, there are a great number of in silico annotated hypothetical genes. However, experimental validation of the functionality of these genes remains tentative. Two of the major challenges faced by researcher are whether these hypothetical genes are protein-coding genes and whether their corresponding predicted translational start codons are correct. In this report, we demonstrate a convenient procedure to validate the presence of a hypothetical gene product of BPSS1356 from Burkholderia pseudomallei as well as its start codon. It was done by integration of a His-Tag coding sequence into C-terminal end of BPSS1356 gene via homologous recombination. We then purified the native protein using affinity chromatography. The genuine start codon of BPSS1356 was then determined by protein N-terminal sequencing.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  19. Koh SF, Tay ST, Sermswan R, Wongratanacheewin S, Chua KH, Puthucheary SD
    J Microbiol Methods, 2012 Sep;90(3):305-8.
    PMID: 22705921 DOI: 10.1016/j.mimet.2012.06.002
    We have developed a multiplex PCR assay for rapid identification and differentiation of cultures for Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex. The assay is valuable for use in clinical and veterinary laboratories, and in a deployable laboratory during outbreaks.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*
  20. Yuen CW, Ong EB, Mohamad S, Manaf UA, Najimudin N
    J Microbiol Biotechnol, 2012 Oct;22(10):1336-42.
    PMID: 23075783
    In Burkholderia pseudomallei, the pathogen that causes melioidosis, the gene cluster encoding the capsular polysaccharide, is located on chromosome 1. Among the 19 capsular genes in this cluster, wzm has not been thoroughly studied. To study the function of wzm, we generated a deletion mutant and compared it with the wild-type strain. The mutant produced less biofilm in minimal media and was more sensitive to desiccation and oxidative stress compared with the wild-type strain, indicating that wzm is involved in biofilm formation and membrane integrity. Scanning electron microscopy showed that the bacterial cells of the mutant strain have more defined surfaces with indentations, whereas cells of the wild-type strain do not.
    Matched MeSH terms: Burkholderia pseudomallei/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links