Displaying publications 1 - 20 of 70 in total

Abstract:
Sort:
  1. Bakhsh A, Mustapha NM, Mohamed S
    Nutrition, 2013 Apr;29(4):667-72.
    PMID: 23290096 DOI: 10.1016/j.nut.2012.09.005
    Postmenopausal estrogen deficiency often causes bone density loss and osteoporosis. This study evaluated the effects of an oral administration of oil palm leaf extract (OPL) on bone calcium content and structure, bone density, ash weights, and serum total alkaline phosphatase (T-ALP) of estrogen-deficient ovariectomized (OVX) rats.
    Matched MeSH terms: Calcium/metabolism
  2. Dongworth RK, Mukherjee UA, Hall AR, Astin R, Ong SB, Yao Z, et al.
    Cell Death Dis, 2014 Feb 27;5:e1082.
    PMID: 24577080 DOI: 10.1038/cddis.2014.41
    Novel therapeutic targets are required to protect the heart against cell death from acute ischemia-reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson's disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia-reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1(L166P) and DJ-1(Cys106A) mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection.
    Matched MeSH terms: Calcium/metabolism
  3. Khan AU, Mustafa MR, Khan AU, Murugan DD
    PMID: 22883710 DOI: 10.1186/1472-6882-12-121
    Gentiana floribunda was investigated for the possible hypotensive and vasodilator activities in an attempt to rationalize its traditional use in hypertension.
    Matched MeSH terms: Calcium/metabolism*
  4. Agarwal R, Iezhitsa I, Awaludin NA, Ahmad Fisol NF, Bakar NS, Agarwal P, et al.
    Exp Eye Res, 2013 May;110:35-43.
    PMID: 23428743 DOI: 10.1016/j.exer.2013.02.011
    Cataract, a leading cause of blindness, is characterized by lenticular opacities resulting from denaturation of lens proteins due to activation of calcium-dependent enzyme, calpain. Magnesium (Mg(2+)) plays an important role not only in maintaining a low lenticular calcium (Ca(2+)) and sodium concentration but also in preserving the lens redox status. Taurine has also been shown to reduce lenticular oxidative stress. Present study evaluated the anticataract effects of magnesium taurate in vivo and in vitro. Among the five groups of 9 Sprague Dawley rats each, two groups received 30% galactose diet with topical (GDMT) or oral treatment (GDMO) with magnesium taurate. Two groups received 30% galactose diet with topical (GDT) or oral vehicle (GDO). Remaining 1 group received normal diet (ND). Weekly slit lamp examination was done during 21 days experimental period and then all rats were sacrificed; Ca/Mg ratio and antioxidant parameters including reduced glutathione (GSH), catalase and superoxide dismutase (SOD) activities were measured in the isolated lenses using ELISA. In the in vitro study, 2 groups of 10 normal rat lenses were incubated in Dulbecco's Modified Eagle's Medium (DMEM) with galactose while 1 similar group was incubated in DMEM without galactose. In one of the groups, galactose containing medium was supplemented with magnesium taurate. After 48 h of incubation, lenses were photographed and Ca(2+)/Mg(2+) ratio and antioxidant parameters were measured as for in vivo study. The in vivo study, at the end of experimental period, demonstrated delay in the development of cataract with a mean opacity index of 0.53 ± 0.04 and 0.51 ± 0.03 in GDMO (p < 0.05 versus GDO) and GDMT (p < 0.01 versus GDT) respectively. Histopathological grading showed a lower mean value in treated groups, however, the differences from corresponding controls were not significant. Lenticular Ca(2+)/Mg(2+) ratio with a mean value of 1.20 ± 0.26 and 1.05 ± 0.26 in GDMO and GDMT was significantly lower than corresponding controls (p < 0.05) and in GDMT no significant difference was observed from ND. Lenticular GSH and catalase activities were significantly lower and SOD activity was significantly higher in all galactose fed groups. However, in GDMT, GSH and catalase were significantly higher than corresponding control with mean values of 0.96 ± 0.30 μmol/gm lens weight and 56.98 ± 9.86 μmol/g lens protein respectively (p < 0.05 for GSH and p < 0.01 for catalase). SOD activity with mean values of 13.05 ± 6.35 and 13.27 ± 7.61 units/mg lens protein in GDMO and GDMT respectively was significantly lower compared to corresponding controls (p < 0.05) signifying lesser upregulation of SOD due to lesser oxidative stress in treated groups. In the in vitro study, lenses incubated in magnesium taurate containing medium showed less opacity and a lower mean Ca(2+)/Mg(2+) ratio of 1.64 ± 0.03, which was not significantly different from lenses incubated in DMEM without galactose. Lens GSH and catalase activities were restored to normal in lenses incubated in magnesium taurate containing medium. Both in vivo and in vitro studies demonstrated that treatment with magnesium taurate delays the onset and progression of cataract in galactose fed rats by restoring the lens Ca(2+)/Mg(2+) ratio and lens redox status.
    Matched MeSH terms: Calcium/metabolism
  5. Sharma AK, Thanikachalam PV, Rajput SK
    Biomed Pharmacother, 2016 Feb;77:120-8.
    PMID: 26796275 DOI: 10.1016/j.biopha.2015.12.015
    Type-2 diabetes mellitus (T2DM) is the chronic metabolic disorder which provokes several pitfall signalling. Though, a series of anti-diabetic drugs are available in the market but T2DM is still a huge burden on the developed and developing countries. Numerous studies and survey predict the associated baleful circumstances in near future due to incessant increase in this insidious disorder. The novelty of recent explored anti-diabetic drugs including glitazone, glitazaar and gliflozines seems to be vanished due to their associated toxic side effects. Brown and Dryburgh (1970) isolated an intestinal amino acid known as gastric inhibitory peptide (GIP) which had insulinotropic activity. Subsequently in 1985, another incretin glucagon likes peptide 1 (GLP-1) having potent insulinotropic properties was discovered by Schmidt and his co-workers. On the basis of results' obtained by Phase III Harmony program FDA approved (14 April, 2014) new GLP-1 agonist 'Albiglutide (ALB)', in addition to exiting components Exenatide (Eli Lilly, 2005) and Liraglutide (Novo Nordisk, 2010). ALB stimulates the release of protein kinase A (PKA) via different mechanisms which ultimately leads to increase in intracellular Ca(2+) levels. This increased intracellular Ca(2+) releases insulin vesicle from β-cells. In-addition, ALB being resistant to degradation by dipeptidyl peptidase-4 (DPP-4) and has longer half life. DPP-4 can significantly degrade the level of GLP-1 agonist by hydrolysis. In spite of potent anti-hypergycemic activity, ALB has pleiotropic action of improving cardiovascular physiology. In light of these viewpoints we reveal the individual pharmacological profile of ALB and the critical analyse about its future perspective in present review.
    Matched MeSH terms: Calcium/metabolism
  6. Valli H, Ahmad S, Sriharan S, Dean LD, Grace AA, Jeevaratnam K, et al.
    Clin Exp Pharmacol Physiol, 2018 03;45(3):278-292.
    PMID: 29027245 DOI: 10.1111/1440-1681.12870
    Acute RyR2 activation by exchange protein directly activated by cAMP (Epac) reversibly perturbs myocyte Ca2+ homeostasis, slows myocardial action potential conduction, and exerts pro-arrhythmic effects. Loose patch-clamp studies, preserving in vivo extracellular and intracellular conditions, investigated Na+ current in intact cardiomyocytes in murine atrial and ventricular preparations following Epac activation. Depolarising steps to varying test voltages activated typical voltage-dependent Na+ currents. Plots of peak current against depolarisation from resting potential gave pretreatment maximum atrial and ventricular currents of -20.23 ± 1.48 (17) and -29.8 ± 2.4 (10) pA/μm2 (mean ± SEM [n]). Challenge by 8-CPT (1 μmol/L) reduced these currents to -11.21 ± 0.91 (12) (P  .05). Assessment of the inactivation that followed by applying subsequent steps to a fixed voltage 100 mV positive to resting potential gave concordant results. Half-maximal inactivation voltages and steepness factors, and time constants for Na+ current recovery from inactivation in double-pulse experiments, were similar through all the pharmacological conditions. Intracellular sharp microelectrode membrane potential recordings in intact Langendorff-perfused preparations demonstrated concordant variations in maximum rates of atrial and ventricular action potential upstroke, (dV/dt)max . We thus demonstrate an acute, reversible, Na+ channel inhibition offering a possible mechanism for previously reported pro-arrhythmic slowing of AP propagation following modifications of Ca2+ homeostasis, complementing earlier findings from chronic alterations in Ca2+ homeostasis in genetically-modified RyR2-P2328S hearts.
    Matched MeSH terms: Calcium/metabolism
  7. Mohamad NV, Ima-Nirwana S, Chin KY
    Biomed Pharmacother, 2021 May;137:111368.
    PMID: 33582449 DOI: 10.1016/j.biopha.2021.111368
    Tocotrienol has been shown to prevent bone loss in animal models of postmenopausal osteoporosis, but the low oral bioavailability might limit its use. A self-emulsifying drug delivery system (SEDDS) could increase the bioavailability of tocotrienol. However, evidence of this system in improving the skeletal effects of tocotrienol is scanty. This study aims to evaluate the therapeutic efficacy of annatto tocotrienol with SEDDS in a rat model of postmenopausal bone loss. Ten-month-old female Sprague Dawley rats were randomized into six groups. The baseline group was euthanatized at the onset of the study. Four other groups underwent ovariectomy to induce estrogen deficiency. The sham underwent similar surgery procedure, but their ovaries were retained. Eight weeks after surgery, the ovariectomized rats received one of the four different regimens orally daily: (a) SEDDS, (b) annatto tocotrienol [60 mg/kg body weight (b.w.)] without SEDDS, (c) annatto-tocotrienol (60 mg/kg b.w.) with SEDDS, (d) raloxifene (1 mg/kg b.w.). After eight weeks of treatment, blood was collected for the measurement of delta-tocotrienol level and oxidative stress markers. The rats were euthanized and their bones were harvested for the evaluation of the bone microstructure, calcium content and strength. Circulating delta-tocotrienol level was significantly higher in rats receiving annatto tocotrienol with SEDDS compared to the group receiving unformulated annatto-tocotrienol (p calcium content, increased bone biomechanical strength and increased antioxidant enzyme activities compared with the ovariectomized group (p 
    Matched MeSH terms: Calcium/metabolism
  8. Mohamad NV, Ima-Nirwana S, Chin KY
    Drug Des Devel Ther, 2018;12:555-564.
    PMID: 29588572 DOI: 10.2147/DDDT.S158410
    Background: Patients receiving androgen deprivation therapy experience secondary hypogonadism, associated bone loss, and increased fracture risk. It has been shown that tocotrienol from Bixa orellana (annatto) prevents skeletal microstructural changes in rats experiencing primary hypogonadism. However, its potential in preventing bone loss due to androgen deprivation therapy has not been tested. This study aimed to evaluate the skeletal protective effects of annatto tocotrienol using a buserelin-induced osteoporotic rat model.

    Methods: Forty-six male Sprague Dawley rats aged 3 months were randomized into six groups. The baseline control (n=6) was sacrificed at the onset of the study. The normal control (n=8) received corn oil (the vehicle of tocotrienol) orally daily and normal saline (the vehicle of buserelin) subcutaneously daily. The buserelin control (n=8) received corn oil orally daily and subcutaneous buserelin injection (75 µg/kg) daily. The calcium control (n=8) was supplemented with 1% calcium in drinking water and daily subcutaneous buserelin injection (75 µg/kg). The remaining rats were given daily oral annatto tocotrienol at 60 mg/kg (n=8) or 100 mg/kg (n=8) plus daily subcutaneous buserelin injection (75 µg/kg) (n=8). At the end of the experiment, the rats were euthanized and their blood, tibia, and femur were harvested. Structural changes of the tibial trabecular and cortical bone were examined using X-ray micro-computed tomography. Femoral bone calcium content and biomechanical strength were also evaluated.

    Results: Annatto tocotrienol at 60 and 100 mg/kg significantly prevented the deterioration of trabecular bone and cortical thickness in buserelin-treated rats (P<0.05). Both doses of annatto tocotrienol also improved femoral biomechanical strength and bone calcium content in buserelin-treated rats (P<0.05). The effects of annatto tocotrienol were comparable to calcium supplementation.

    Conclusion: Annatto tocotrienol supplementation is effective in preventing degeneration of the bone induced by buserelin. Therefore, it is a potential antiosteoporotic agent for men receiving androgen deprivation therapy.

    Matched MeSH terms: Calcium/metabolism
  9. Han H, Chou CC, Li R, Liu J, Zhang L, Zhu W, et al.
    Sci Rep, 2018 06 22;8(1):9566.
    PMID: 29934599 DOI: 10.1038/s41598-018-27724-3
    Chalocomoracin (CMR), one of the major secondary metabolites found in fungus-infected mulberry leaves, is a potent anticancer agent. However, its anticancer mechanism remains elusive. Here, we demonstrated the potent anti-tumor activity and molecular mechanism of CMR both in vitro and in vivo. We showed for the first time that CMR treatment markedly promoted paraptosis along with extensive cytoplasmic vacuolation derived from the endoplasmic reticulum, rather than apoptosis, in PC-3 and MDA-MB-231cell lines. Additional studies revealed that ectopic expression of Myc-PINK1 (PTEN-induced kinase 1), a key regulator of mitophagy, rendered LNCap cells susceptible to CMR-induced paraptosis, suggesting that the mitophagy-dependent pathway plays a crucial role in inducing paraptosis by activating PINK1. CMR treatment directly upregulated PINK1 and downregulated Alix genes in MDA-MB-231 and PC-3 cell lines. Furthermore, mitophagy signaling and paraptosis with cytoplasmic vacuolation could be blocked by antioxidant N-acetylcysteine (NAC), indicating the novel pathway was triggered by reactive oxygen species (ROS) production. An in vivo MDA-MB-231 xenograft tumor model revealed that CMR suppressed tumor growth by inducing vacuolation production through the same signal changes as those observed in vitro. These data suggest that CMR is a potential therapeutic entity for cancer treatment through a non-apoptotic pathway.
    Matched MeSH terms: Calcium/metabolism
  10. Bukhari SNA, Hussain F, Thu HE, Hussain Z
    J Integr Med, 2019 Jan;17(1):38-45.
    PMID: 30139656 DOI: 10.1016/j.joim.2018.08.003
    OBJECTIVE: The present study explored the effects of the combined herbal therapy consisting of curcumin (CUR) and Fructus Ligustri Lucidi (FLL) on aspects of bone regeneration.

    METHODS: Prior to analyzing the ability of this novel combined herbal therapy to promote aspects of bone regeneration, its cytotoxicity was determined using MC3T3-E1 cells (pre-osteoblast model). Cell proliferation was evaluated using phase-contrast microscopy and cell differentiation was estimated using alkaline phosphatase activity. The effect of the combined herbal therapy (CUR + FLL) was also assessed in terms of mineralization in the extracellular matrix (ECM) of cultured cells. Further, to explore the molecular mechanisms of bone formation, time-dependent expression of bone-regulating protein biomarkers was also evaluated.

    RESULTS: Combined herbal therapy (CUR + FLL) significantly upregulated the viability, proliferation and differentiation of MC3T3-E1 cells compared to the monotherapy of CUR or FLL. The magnitude of ECM mineralization (calcium deposition) was also higher in MC3T3-E1 cells treated with combined therapy. The time-dependent expression of bone-forming protein biomarkers revealed that the tendency of expression of these bone-regulating proteins was remarkably higher in cells treated with combined therapy.

    CONCLUSION: The co-administration of CUR and FLL had superior promotion of elements of bone regeneration in cultured cells, thus could be a promising alternative herbal therapy for the management of bone erosive disorders such as osteoporosis.

    Matched MeSH terms: Calcium/metabolism
  11. Fong CY, Kong AN, Noordin M, Poh BK, Ong LC, Ng CC
    Eur. J. Paediatr. Neurol., 2018 Jan;22(1):155-163.
    PMID: 29122496 DOI: 10.1016/j.ejpn.2017.10.007
    INTRODUCTION: Children with epilepsy on long-term antiepileptic drugs (AEDs) are at risk of low bone mineral density (BMD). The aims of our study were to evaluate the prevalence and determinants of low BMD among Malaysian children with epilepsy.

    METHOD: Cross-sectional study of ambulant children with epilepsy on long-term AEDs for >1 year seen in a tertiary hospital in Malaysia from 2014 to 2015. Detailed assessment of anthropometric measurements; environmental lifestyle risk factors; serum vitamin D, calcium and parathyroid hormone levels; genotyping of single nucleotide polymorphisms of genes in vitamin D and calcium metabolism; and lumbar spine BMD were obtained. Low BMD was defined as BMD Z-score ≤ -2.0 SD.

    RESULTS: Eighty-seven children with mean age of 11.9 years (56 males) participated in the study. The prevalence of low lumbar BMD was 21.8% (19 patients). Multivariate logistic regression analysis identified polytherapy >2 AEDs (OR: 7.86; 95% CI 1.03-59.96), small frame size with wrist breadth of <15th centile (OR 14.73; 95% CI 2.21-98.40), and body mass index Z-score 2 AEDs, underweight or with small frame size as they are at higher risk of having low BMD.

    Matched MeSH terms: Calcium/metabolism
  12. Alawieyah Syed Mortadza S, Sim JA, Neubrand VE, Jiang LH
    Glia, 2018 03;66(3):562-575.
    PMID: 29143372 DOI: 10.1002/glia.23265
    Amyloid β (Aβ)-induced neuroinflammation plays an important part in Alzheimer's disease (AD). Emerging evidence supports a role for the transient receptor potential melastatin-related 2 (TRPM2) channel in Aβ-induced neuroinflammation, but how Aβ induces TRPM2 channel activation and this relates to neuroinflammation remained poorly understood. We investigated the mechanisms by which Aβ42 activates the TRPM2 channel in microglial cells and the relationships to microglial activation and generation of tumor necrosis factor-α (TNF-α), a key cytokine implicated in AD. Exposure to 10-300 nM Aβ42 induced concentration-dependent microglial activation and generation of TNF-α that were ablated by genetically deleting (TRPM2 knockout ;TRPM2-KO) or pharmacologically inhibiting the TRPM2 channel, revealing a critical role of this channel in Aβ42 -induced microglial activation and generation of TNF-α. Mechanistically, Aβ42 activated the TRPM2 channel via stimulating generation of reactive oxygen species (ROS) and activation of poly(ADPR) polymerase-1 (PARP-1). Aβ42 -induced generation of ROS and activation of PARP-1 and TRPM2 channel were suppressed by inhibiting protein kinase C (PKC) and NADPH oxidases (NOX). Aβ42 -induced activation of PARP-1 and TRPM2 channel was also reduced by inhibiting PYK2 and MEK/ERK. Aβ42 -induced activation of PARP-1 was attenuated by TRPM2-KO and moreover, the remaining PARP-1 activity was eliminated by inhibiting PKC and NOX, but not PYK2 and MEK/ERK. Collectively, our results suggest that PKC/NOX-mediated generation of ROS and subsequent activation of PARP-1 play a role in Aβ42 -induced TRPM2 channel activation and TRPM2-dependent activation of the PYK2/MEK/ERK signalling pathway acts as a positive feedback to further facilitate activation of PARP-1 and TRPM2 channel. These findings provide novel insights into the mechanisms underlying Aβ-induced AD-related neuroinflammation.
    Matched MeSH terms: Calcium/metabolism
  13. Graham NS, Hammond JP, Lysenko A, Mayes S, O Lochlainn S, Blasco B, et al.
    Plant Cell, 2014 Jul;26(7):2818-30.
    PMID: 25082855 DOI: 10.1105/tpc.114.128603
    Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca(2+) transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca(2+) transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization.
    Matched MeSH terms: Calcium/metabolism*
  14. Salleh N, Ahmad VN
    PMID: 24330515 DOI: 10.1186/1472-6882-13-359
    Ficus deltoidea, is a perennial herb that is used to assist labor, firm the uterus post-delivery and to prevent postpartum bleeding. In view of its claimed uterotonic action, the mechanisms underlying plant's effect on uterine contraction were investigated.
    Matched MeSH terms: Calcium/metabolism*
  15. Puvaneswary S, Balaji Raghavendran HR, Ibrahim NS, Murali MR, Merican AM, Kamarul T
    Int J Med Sci, 2013;10(12):1608-14.
    PMID: 24151432 DOI: 10.7150/ijms.6496
    The objective of this study was to compare the morphological and chemical composition of bone graft (BG) and coral graft (CG) as well as their osteogenic differentiation potential using rabbit mesenchymal stem cells (rMSCs) in vitro. SEM analysis of BG and CG revealed that the pores in these grafts were interconnected, and their micro-CT confirmed pore sizes in the range of 107-315 µm and 103-514 µm with a total porosity of 92% and 94%, respectively. EDS analysis indicated that the level of calcium in CG was relatively higher than that in BG. FTIR of BG and CG confirmed the presence of functional groups corresponding to carbonyl, aromatic, alkyl, and alkane groups. XRD results revealed that the phase content of the inorganic layer comprised highly crystalline form of calcium carbonate and carbon. Atomic force microscopy analysis showed CG had better surface roughness compared to BG. In addition, significantly higher levels of osteogenic differentiation markers, namely, alkaline phosphatase (ALP), Osteocalcin (OC) levels, and Osteonectin and Runx2, Integrin gene expression were detected in the CG cultures, when compared with those in the BG cultures. In conclusion, our results demonstrate that the osteogenic differentiation of rMSCs is relatively superior in coral graft than in bone graft culture system.
    Matched MeSH terms: Calcium/metabolism
  16. Shuid AN, Abu Bakar MF, Abdul Shukor TA, Muhammad N, Mohamed N, Soelaiman IN
    Aging Male, 2011 Sep;14(3):150-4.
    PMID: 20874437 DOI: 10.3109/13685538.2010.511327
    Osteoporosis in elderly men is becoming an important health issue with the aging society. Elderly men with androgen deficiency are exposed to osteoporosis and can be treated with testosterone replacement. In this study, Eurycoma longifolia (EL), a plant with androgenic effects, was supplemented to an androgen-deficient osteoporotic aged rat as alternative to testosterone. Aged 12 months old Sprague-Dawley rats were divided into groups of normal control (NC), sham-operated (SO), orchidectomised-control (OrxC), orchidectomised and supplemented with EL (Orx + El) and orchidectomised and given testosterone (Orx + T). After 6 weeks of treatment, serum osteocalcin, serum terminal C-telopeptide Type 1 collagen (CTX) and the fourth lumbar bone calcium were measured. There were no significant differences in the osteocalcin levels before and after treatment in all the groups. The CTX levels were also similar for all the groups before treatment. However, after treatment, orchidectomy had caused significant elevation of CTX compared to normal control rats. Testosterone replacements in orchidectomised rats were able to prevent the rise of CTX. Orchidectomy had also reduced the bone calcium level compared to normal control rats. Both testosterone replacement and EL supplementation to orchidectomised rats were able to maintain the bone calcium level, with the former showing better effects. As a conclusion, EL prevented bone calcium loss in orchidectomised rats and therefore has the potential to be used as an alternative treatment for androgen deficient osteoporosis.
    Matched MeSH terms: Calcium/metabolism*
  17. Poznanski RR
    J Integr Neurosci, 2010 Sep;9(3):283-97.
    PMID: 21064219
    A reaction-diffusion model is presented to encapsulate calcium-induced calcium release (CICR) as a potential mechanism for somatofugal bias of dendritic calcium movement in starburst amacrine cells. Calcium dynamics involves a simple calcium extrusion (pump) and a buffering mechanism of calcium binding proteins homogeneously distributed over the plasma membrane of the endoplasmic reticulum within starburst amacrine cells. The system of reaction-diffusion equations in the excess buffer (or low calcium concentration) approximation are reformulated as a nonlinear Volterra integral equation which is solved analytically via a regular perturbation series expansion in response to calcium feedback from a continuously and uniformly distributed calcium sources. Calculation of luminal calcium diffusion in the absence of buffering enables a wave to travel at distances of 120 μm from the soma to distal tips of a starburst amacrine cell dendrite in 100 msec, yet in the presence of discretely distributed calcium-binding proteins it is unknown whether the propagating calcium wave-front in the somatofugal direction is further impeded by endogenous buffers. If so, this would indicate CICR to be an unlikely mechanism of retinal direction selectivity in starburst amacrine cells.
    Matched MeSH terms: Calcium/metabolism*
  18. Sabri S, Rahman RN, Leow TC, Basri M, Salleh AB
    Protein Expr. Purif., 2009 Dec;68(2):161-6.
    PMID: 19679187 DOI: 10.1016/j.pep.2009.08.002
    Thermostable lipases are important biocatalysts, showing many interesting properties with industrial applications. Previously, a thermophilic Bacillus sp. strain L2 that produces a thermostable lipase was isolated. In this study, the gene encoding for mature thermostable L2 lipase was cloned into a Pichia pastoris expression vector. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter, the recombinant L2 lipase was secreted into the culture medium driven by the Saccharomyces cerevisiae alpha-factor signal sequence. After optimization the maximum recombinant lipase activity achieved in shake flasks was 125 U/ml. The recombinant 44.5 kDa L2 lipase was purified 1.8-fold using affinity chromatography with 63.2% yield and a specific activity of 458.1 U/mg. Its activity was maximal at 70 degrees C and pH 8.0. Lipase activity increased 5-fold in the presence of Ca2+. L2 lipase showed a preference for medium to long chain triacylglycerols (C(10)-C(16)), corn oil, olive oil, soybean oil, and palm oil. Stabilization at high temperature and alkaline pH as well as its broad substrate specificity offer great potential for application in various industries that require high temperature operations.
    Matched MeSH terms: Calcium/metabolism*
  19. Norazlina M, Chua CW, Ima-Nirwana S
    Med J Malaysia, 2004 Dec;59(5):623-30.
    PMID: 15889565
    Vitamin E deficiency has been found to impair bone calcification. This study was done to determine the effects of vitamin E deficiency and supplementation on parathyroid hormone, i.e. the hormone involved in bone regulation. Female Sprague-Dawley rats were divided into 4 groups: 1) normal rat chow (RC), 2) vitamin E deficiency (VED), vitamin E deficient rats supplemented with 3) 60 mg/kg alpha-tocotrienol (ATT) and 4) 60 mg/kg (alpha-tocopherol (ATF). Treatment was carried out for 3 months. Vitamin E deficiency caused hypocalcaemia during the first month of the treatment period, increased the parathyroid hormone level in the second month and decreased the bone calcium content in the 4th lumbar bone at the end of the treatment. Vitamin E supplementation (ATT and ATF) failed to improve these conditions. The bone formation marker, osteocalcin, and the bone resorption marker, deoxypyridinoline did not change throughout the study period. In conclusion vitamin E deficiency impaired bone calcium homeostasis with subsequent secondary hyperparathyroidism and vertebral bone loss. Replacing the vitamin E with pure ATF or pure ATT alone failed to correct the changes seen.
    Matched MeSH terms: Calcium/metabolism*
  20. Masomian M, Rahman RN, Salleh AB, Basri M
    PLoS One, 2016;11(3):e0149851.
    PMID: 26934700 DOI: 10.1371/journal.pone.0149851
    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca(2+)-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65 °C and retained ≥ 97% activity after incubation at 50 °C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.
    Matched MeSH terms: Calcium/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links