Displaying publications 1 - 20 of 109 in total

Abstract:
Sort:
  1. Mehrali M, Moghaddam E, Shirazi SF, Baradaran S, Mehrali M, Latibari ST, et al.
    ACS Appl Mater Interfaces, 2014 Mar 26;6(6):3947-62.
    PMID: 24588873 DOI: 10.1021/am500845x
    Calcium silicate (CaSiO3, CS) ceramics are promising bioactive materials for bone tissue engineering, particularly for bone repair. However, the low toughness of CS limits its application in load-bearing conditions. Recent findings indicating the promising biocompatibility of graphene imply that graphene can be used as an additive to improve the mechanical properties of composites. Here, we report a simple method for the synthesis of calcium silicate/reduced graphene oxide (CS/rGO) composites using a hydrothermal approach followed by hot isostatic pressing (HIP). Adding rGO to pure CS increased the hardness of the material by ∼40%, the elastic modulus by ∼52%, and the fracture toughness by ∼123%. Different toughening mechanisms were observed including crack bridging, crack branching, crack deflection, and rGO pull-out, thus increasing the resistance to crack propagation and leading to a considerable improvement in the fracture toughness of the composites. The formation of bone-like apatite on a range of CS/rGO composites with rGO weight percentages ranging from 0 to 1.5 has been investigated in simulated body fluid (SBF). The presence of a bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The biocompatibility of the CS/rGO composites was characterized using methyl thiazole tetrazolium (MTT) assays in vitro. The cell adhesion results showed that human osteoblast cells (hFOB) can adhere to and develop on the CS/rGO composites. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of cells on the CS/rGO composites were improved compared with the pure CS ceramics. These results suggest that calcium silicate/reduced graphene oxide composites are promising materials for biomedical applications.
    Matched MeSH terms: Calcium Compounds/chemistry*
  2. Wang D, Wong SI, Sunarso J, Xu M, Wang W, Ran R, et al.
    ACS Appl Mater Interfaces, 2021 May 05;13(17):20105-20113.
    PMID: 33886260 DOI: 10.1021/acsami.1c02502
    Hydrocarbon-fueled solid oxide fuel cells (SOFCs) that can operate in the intermediate temperature range of 500-700 °C represent an attractive SOFC device for combined heat and power applications in the industrial market. One of the ways to realize such a device relies upon exploiting an in situ steam reforming process in the anode catalyzed by an anti-carbon coking catalyst. Here, we report a new Ni and Ru bimetal-doped perovskite catalyst, Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.9Ni0.05Ru0.05O3-δ (BZCYYbNRu), with enhanced catalytic hydrogen production activity on n-butane (C4H10), which can resist carbon coking over extended operation durations. Ru in the perovskite lattice inhibits Ni precipitation from perovskite, and the high water adsorption capacity of proton conducting perovskite improves the coking resistance of BZCYYbNRu. When BZCYYbNRu is used as a steam reforming catalyst layer on a Ni-YSZ-supported anode, the single fuel cell not only achieves a higher power density of 1113 mW cm-2 at 700 °C under a 10 mL min-1 C4H10 continuous feed stream at a steam to carbon (H2O/C) ratio of 0.5 but also shows a much better operational stability for 100 h at 600 °C compared with those reported in the literature.
    Matched MeSH terms: Calcium Compounds
  3. Alias N, Ali Umar A, Malek NAA, Liu K, Li X, Abdullah NA, et al.
    ACS Appl Mater Interfaces, 2021 Jan 20;13(2):3051-3061.
    PMID: 33410652 DOI: 10.1021/acsami.0c20137
    A deficiency in the photoelectrical dynamics at the interface due to the surface traps of the TiO2 electron transport layer (ETL) has been the critical factor for the inferiority of the power conversion efficiency (PCE) in the perovskite solar cells. Despite its excellent energy level alignment with most perovskite materials, its large density of surface defect as a result of sub lattice vacancies has been the critical hurdle for an efficient photovoltaic process in the device. Here, we report that atoms thick 2D TiS2 layer grown on the surface of a (001) faceted and single-crystalline TiO2 nanograss (NG) ETL have effectively passivated the defects, boosting the charge extractability, carrier mobility, external quantum efficiency, and the device stability. These properties allow the perovskite solar cells (PSCs) to produce a PCE as high as 18.73% with short-circuit current density (Jsc), open-circuit voltage (Voc), and fill-factor (FF) values as high as 22.04 mA/cm2, 1.13 V, and 0.752, respectively, a 3.3% improvement from the pristine TiO2-NG-based PSCs. The present approach should find an extensive application for controlling the photoelectrical dynamic deficiency in perovskite solar cells.
    Matched MeSH terms: Calcium Compounds
  4. Kashim MZ, Tsegab H, Rahmani O, Abu Bakar ZA, Aminpour SM
    ACS Omega, 2020 Nov 17;5(45):28942-28954.
    PMID: 33225124 DOI: 10.1021/acsomega.0c02358
    The research presented here investigates the reaction mechanism of wollastonite in situ mineral carbonation for carbon dioxide (CO2) sequestration. Because wollastonite contains high calcium (Ca) content, it was considered as a suitable feedstock in the mineral carbonation process. To evaluate the reaction mechanism of wollastonite for geological CO2 sequestration (GCS), a series of carbonation experiments were performed at a range of temperatures from 35 to 90 °C, pressures from 1500 to 4000 psi, and salinities from 0 to 90,000 mg/L NaCl. The kinetics batch modeling results were validated with carbonation experiments at the specific pressure and temperature of 1500 psi and 65 °C, respectively. The results showed that the dissolution of calcium increases with increment in pressure and salinity from 1500 to 4000 psi and 0 to 90000 mg/L NaCl, respectively. However, the calcium concentration decreases by 49%, as the reaction temperature increases from 35 to 90 °C. Besides, it is clear from the findings that the carbonation efficiency only shows a small difference (i.e., ±2%) for changing the pressure and salinity, whereas the carbonation efficiency was shown to be enhanced by 62% with increment in the reaction temperature. These findings can provide information about CO2 mineralization of calcium silicate at the GCS condition, which may enable us to predict the fate of the injected CO2, and its subsurface geochemical evolution during the CO2-fluid-rock interaction.
    Matched MeSH terms: Calcium Compounds
  5. Koh TM, Shanmugam V, Schlipf J, Oesinghaus L, Müller-Buschbaum P, Ramakrishnan N, et al.
    Adv Mater, 2016 May;28(19):3653-61.
    PMID: 26990287 DOI: 10.1002/adma.201506141
    2D perovskites is one of the proposed strategies to enhance the moisture resistance, since the larger organic cations can act as a natural barrier. Nevertheless, 2D perovskites hinder the charge transport in certain directions, reducing the solar cell power conversion efficiency. A nanostructured mixed-dimensionality approach is presented to overcome the charge transport limitation, obtaining power conversion efficiencies over 9%.
    Matched MeSH terms: Calcium Compounds
  6. Zhang Y, Knibbe R, Sunarso J, Zhong Y, Zhou W, Shao Z, et al.
    Adv Mater, 2017 Dec;29(48).
    PMID: 28628239 DOI: 10.1002/adma.201700132
    Solid-oxide fuel cells (SOFCs) are electricity generators that can convert the chemical energy in various fuels directly to the electric power with high efficiency. Recent advances in materials and related key components for SOFCs operating at ≈500 °C are summarized here, with a focus on the materials, structures, and techniques development for low-temperature SOFCs, including the analysis of most of the critical parameters affecting the electrochemical performance of the electrolyte, anode, and cathode. New strategies, such as thin-film deposition, exsolution of nanoparticles from perovskites, microwave plasma heating, and finger-like channeled electrodes, are discussed. These recent developments highlight the need for electrodes with higher activity and electrolytes with greater conductivity to generate a high electrochemical performance at lower temperatures.
    Matched MeSH terms: Calcium Compounds
  7. Tan, B.S., Rosman, A., Ng, K.H., Ahmad, N.
    Ann Dent, 2000;7(1):-.
    MyJurnal
    The aim of the study was to determine the characteristics and pattern of the betel/tobacco quid chewing habit in the estate Indian community. The study was conducted in 6 randomly selected estates. It involved oral mucosal examination and an interview to solicit personal data as well as history and details of oral habits. Of a total of 618 subjects studied, 19.3 % (n= 119; 89 females and 30 males) were betel !tobacco quid chewers. The youngest age of onset of betel quid chewing is 10 years. The mean frequency of chewing quid is 4.3 times/day and the mean duration of chewing is 8.1 minutes. Initiation to the habit occur at a young age and a major role is played by family and friends in initiation to the habit. Practises of adding tobacco and lime appear to have adverse effects and are associated with higher occurrences of precancer lesions in this study (p
    Matched MeSH terms: Calcium Compounds
  8. Rajan, S., Awang, H., Pooi, A.H., Hassan, H., Devi, S.
    Ann Dent, 2008;15(1):5-10.
    MyJurnal
    Objective: An in vitro assessment of MG-63 human osteosarcoma cells' alkaline phosphatase (ALP) activity when in contact with calcium hydroxide powder (CH), paste (CHP) and grey mineral trioxide aggregate (MTA). Methods: MG-63 cells were seeded to the three selected materials for durations of 0.25, 0.5, 1, 24, 48 and 72 hours. BCIP-NBT assay was used and ALP activity quantified using ELISA reader at 410 nm. Results: The overall analysis for ALP activity indicated significant interaction between test materials and control (maintenance medium). Subsequently, the test materials were paired and analysed for initial (0.25, 0.5, 1 hour) and delayed response (24, 48 and 72 hours). During the initial response, CH exhibited an increased ALP activity compared to MTA. This interaction was not dependant on duration. The delayed response exhibited elevated ALP activity with CHP when compared to MTA and CH. The interaction of CHP was dependant on duration. Conclusion: All three materials exhibited increased ALP activity.
    Matched MeSH terms: Calcium Compounds
  9. Tengku Yasmin Tengku Azam, Quah, Xin Ying, Ismail Ab Rahman, Sam’an Malik Masudi, Norhayati Luddin, Rashita Abd Rashid
    MyJurnal
    Glass ionomer cement (GIC) has theunique fluoride release property and able to formionic bond with tooth structure. However, the brittleness of the material results in low hardness. In the present study, a new approach in utilization of local waste materials as fillers for improvement of hardness of GIC is reported.The synthesized wollastonite and mine-silica by-product were individually incorporated into commercial GIC and the Vickers hardness were evaluated. The results shown that the incorporation of 1 % wollastonite into GIC gave ~ 6% increment in hardness compared to the control GIC (66.53H ±7.37 versus 62.66HV±2.98)but not for themine-silica. Thus, wollastonite could be a potential material to be utilized as fillersin dental restorative composite
    Matched MeSH terms: Calcium Compounds
  10. Saini, D., Nadig, G., Saini, R.
    MyJurnal
    The main objective of a root end filling material is to provide an apical seal that prevents the movement of bacteria and the diffusion of bacterial products from the root canal system into periapical tissues. The aim of this study was to compare the microleakage of three root end filling materials Mineral trioxide aggregate (MTA), Glass ionomer cement (GIC) and Silver GIC (Miracle Mix) using dye penetration technique under stereomicroscope. Forty-five extracted human maxillary central incisors were instrumented and obturated with gutta percha using lateral compaction technique. Following this, the teeth were stored in saline. After one week, teeth were apically resected at an angle of 90ï° to the long axis of the root and root end cavities were prepared. The teeth were divided into three groups of fifteen specimens each and were filled with Group I -MTA, Group II - GIC and Group III - Miracle Mix. The samples were coated with varnish and after drying, they were immersed in 1% methylene blue dye for 72 hours. The teeth were then rinsed, sectioned longitudinally and observed under stereomicroscope. The depth of dye penetration was measured in millimeters. Microleakage was found to be significantly less in MTA (0.83 mm) when compared to GIC (1.32 mm) (p < 0.001) and with Miracle Mix (1.39 mm) (p < 0.001) No significant difference was found when microleakage in Miracle Mix was compared to that of GIC (p = 0.752). Thus we concluded that MTA is a better material as root end filling material to prevent microleakage, in comparison to GIC and Miracle Mix.
    Matched MeSH terms: Calcium Compounds
  11. Tang SN, Fakhru'l-Razi A, Hassan MA, Karim MI
    PMID: 10595441
    Rubber latex effluent is a polluting source that has a high biochemical oxygen demand (BOD). It is estimated that about 100 million liters of effluent are discharged daily from rubber processing factories. Utilization of this effluent such as the use of a coupled system not only can reduce the cost of treatment but also yield a fermentation feedstock for the production of bioplastic. This study initially was carried out to increase the production of organic acids by anaerobic treatment of rubber latex effluent. It was found that through anaerobic treatment the concentration of organic acids did not increase. Consequently, separation of organic acids from rubber latex effluent by anion exchange resin was examined as a preliminary study of recovering acetic and propionic acids. However, the suspended solids (SS) content in the raw effluent was rather high which partially blocked the ion-exchange columns. Lime was used to remove the SS in the rubber latex effluent. After the lime precipitation process, organic acids were found to adsorb strongly onto the anion exchange resin. Less adsorption of organic acids onto the resin was observed before the lime precipitation. This was probably due to more sites being occupied by colloidal particles on the resin thus inhibiting the adsorption of organic acids. The initial concentration of organic acids in the raw effluent was 3.9 g/L. After ion exchange, the concentration of the organic acids increased to 27 g/L, which could be utilized for production of polyhydroxyalkanoates (PHA). For PHA accumulation stage, concentrated rubber latex effluent obtained from ion exchange resins and synthetic acetic acid were used as the carbon source. Quantitative analyses from fed batch culture via HPLC showed that the accumulation of PHA in Alcaligenes eutrophus was maximum with a concentration of 1.182 g/L when cultivated on synthetic acetic acid, corresponding to a yield of 87% based on its cell dry weight. The dry cell weight increased from 0.71 to 1.67 g/L. On the other hand, using concentrated rubber latex effluent containing acetic and propionic acids resulted in reduced PHA content by dry weight (14%) but the dry cell weight increased from 0.49 to 1.30 g/L. The results clearly indicated that the cells grow well in rubber latex effluent but no PHA was accumulated. This could be due to the high concentration of propionic acid in culture broth or other factors such as heavy metals. Thus further work is required before rubber latex effluent can be utilized as a substrate for PHA production industrially.
    Matched MeSH terms: Calcium Compounds
  12. Smran A, Abdullah M, Ahmad NA, Alrahlah A, Al-Maflehi N, Samran A
    BMC Oral Health, 2023 Sep 18;23(1):673.
    PMID: 37723511 DOI: 10.1186/s12903-023-03377-1
    BACKGROUND: The aim of this study was to evaluate the effect of thermal and mechanical cyclic aging using a mastication simulator on push-out bond strength of mandibular premolars obturated with AH Plus and BioRoot RCS root canal sealers.

    METHODS: With REVO-S files up to SU/0.06 taper, 48 single-rooted premolar teeth were instrumented. The teeth were randomly divided into two main groups (n = 24) based on the two root canal sealers used (AH Plus and BioRoot RCS). All teeth were obturated with h matched-taper single-cone. Each main group was then subdivided into three subgroups (A, B, and C) (n = 8). Group A served as the negative control group (no-thermocycling aging). While groups B and C were subjected to thermal changes in a thermocycler machine (15,000 and 30,000 thermal cycles, respectively), followed by two different dynamic loading periods, 3 × 105 and 6 × 105 in a masticatory simulator with a nominal load of 5 kg at 1.2 Hz which represent roughly 1½ and 3 years of clinical function respectively. 2 mm slice at 3 levels, apical, middle, and coronal, to obtain 3 sections were prepared and subjected to push-out test using a universal testing machine. Statistical analysis was performed using analysis of variance (ANOVA) followed by a Tukey post hoc comparisons test and an independent T-test. A significance level of 5% was used.

    RESULTS: After thermal-mechanical cyclic aging, the two root canal sealers showed a significantly decreased in push-out bond strength (p 

    Matched MeSH terms: Calcium Compounds
  13. Mallikarjuna K, Nasif O, Ali Alharbi S, Chinni SV, Reddy LV, Reddy MRV, et al.
    Biomolecules, 2021 01 29;11(2).
    PMID: 33572968 DOI: 10.3390/biom11020190
    Continuously increasing energy demand and growing concern about energy resources has attracted much research in the field of clean and sustainable energy sources. In this context, zero-emission fuels are required for energy production to reduce the usage of fossil fuel resources. Here, we present the synthesis of Pd-Ag-decorated reduced graphene oxide (rGO) nanostructures using a green chemical approach with stevia extract for hydrogen production and antibacterial studies under light irradiation. Moreover, bimetallic nanostructures are potentially lime lighted due to their synergetic effect in both scientific and technical aspects. Structural characteristics such as crystal structure and morphological features of the synthesized nanostructures were analyzed using X-ray diffraction and transmission electron microscopy. Analysis of elemental composition and oxidation states was carried out by X-ray photoelectron spectroscopy. Optical characteristics of the biosynthesized nanostructures were obtained by UV-Vis absorption spectroscopy, and Fourier transform infrared spectroscopy was used to investigate possible functional groups that act as reducing and capping agents. The antimicrobial activity of the biosynthesized Pd-Ag-decorated rGO nanostructures was excellent, inactivating 96% of Escherichia coli cells during experiments over 150 min under visible light irradiation. Hence, these biosynthesized Pd-Ag-decorated rGO nanostructures can be utilized for alternative nanomaterial-based drug development in the future.
    Matched MeSH terms: Calcium Compounds
  14. Wan Z, Hameed BH
    Bioresour Technol, 2011 Feb;102(3):2659-64.
    PMID: 21109428 DOI: 10.1016/j.biortech.2010.10.119
    In this study, methyl ester (ME) was produced by transesterification of palm oil (CPO) (cooking grade) using activated carbon supported calcium oxide as a solid base catalyst (CaO/AC). Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effect of reaction time, molar ratio of methanol to oil, reaction temperature and catalyst amount on the transesterification process. The optimum condition for CPO transesterification to methyl ester was obtained at 5.5 wt.% catalyst amount, 190°C temperature, 15:1 methanol to oil molar ratio and 1 h 21 min reaction time. At the optimum condition, the ME content was 80.98%, which is well within the predicted value of the model. Catalyst regeneration studies indicate that the catalyst performance is sustained after two cycles.
    Matched MeSH terms: Calcium Compounds/chemistry*
  15. Boey PL, Maniam GP, Hamid SA
    Bioresour Technol, 2009 Dec;100(24):6362-8.
    PMID: 19666218 DOI: 10.1016/j.biortech.2009.07.036
    A recent rise in crab aquaculture activities has intensified the generation of waste shells. In the present study, the waste shells were utilized as a source of calcium oxide to transesterify palm olein into methyl esters (biodiesel). Characterization results revealed that the main component of the shell is calcium carbonate which transformed into calcium oxide when activated above 700 degrees C for 2 h. Parametric studies have been investigated and optimal conditions were found to be methanol/oil mass ratio, 0.5:1; catalyst amount, 5 wt.%; reaction temperature, 65 degrees C; and a stirring rate of 500 rpm. The waste catalyst performs equally well as laboratory CaO, thus creating another low-cost catalyst source for producing biodiesel. Reusability results confirmed that the prepared catalyst is able to be reemployed up to 11 times. Statistical analysis has been performed using a Central Composite Design to evaluate the contribution and performance of the parameters on biodiesel purity.
    Matched MeSH terms: Calcium Compounds/chemistry
  16. Gan DKW, Loy ACM, Chin BLF, Yusup S, Unrean P, Rianawati E, et al.
    Bioresour Technol, 2018 Oct;265:180-190.
    PMID: 29894912 DOI: 10.1016/j.biortech.2018.06.003
    Thermodynamic and kinetic parameters of catalytic pyrolysis of rice hull (RH) pyrolysis using two different types of renewable catalysts namely natural limestone (LS) and eggshells (ES) using thermogravimetric analysis (TG) approach at different heating rates of 10-100 K min-1 in temperature range of 323-1173 K are investigated. Catalytic pyrolysis mechanism of both catalysts had shown significant effect on the degradation of RH. Model free kinetic of iso-conversional method (Flynn-Wall-Ozawa) and multi-step reaction model (Distributed Activation Energy Model) were employed into present study. The average activation energy was found in the range of 175.4-177.7 kJ mol-1 (RH), 123.3-132.5 kJ mol-1 (RH-LS), and 96.1-100.4 kJ mol-1 (RH-ES) respectively. The syngas composition had increased from 60.05 wt% to 63.1 wt% (RH-LS) and 63.4 wt% (RH-ES). However, the CO2 content had decreased from 24.1 wt% (RH) to 20.8 wt% (RH-LS) and 19.9 wt% (RH-ES).
    Matched MeSH terms: Calcium Compounds/chemistry*
  17. Wang W, Zhou F, Chang Y, Cui J, He D, Du J, et al.
    Bull Environ Contam Toxicol, 2020 Mar;104(3):380-385.
    PMID: 31932904 DOI: 10.1007/s00128-020-02786-0
    In this study, three soil amendments (inorganic, liming, or organic-inorganic materials) were used in a Cd-contaminated purple field soil to investigate their impacts on soil Cd availability, enzyme (urease, catalase, sucrase, and acid phosphatase) activities, microbial biomass (carbon/nitrogen) and type (bacteria, fungi, and actinomycetes) in mustard and corn trials. Results showed that soil amendments generally decreased soil exchangeable Cd, fungi and bacterial populations while increasing the activities of all the four soil enzymes tested, microbial biomass carbon and populations of actinomycetes (p  0.05) whereas stronger effects appeared in soil organic matter and available nutrients (nitrogen, phosphorous and potassium; p 
    Matched MeSH terms: Calcium Compounds
  18. Lee KT, Bhatia S, Mohamed AR, Chu KH
    Chemosphere, 2006 Jan;62(1):89-96.
    PMID: 15996711
    High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.
    Matched MeSH terms: Calcium Compounds/chemistry*
  19. Ullah S, Al-Sehemi AG, Mubashir M, Mukhtar A, Saqib S, Bustam MA, et al.
    Chemosphere, 2021 May;271:129504.
    PMID: 33445018 DOI: 10.1016/j.chemosphere.2020.129504
    This study reports the application of hydrated lime for the effective adsorption of the heavy mercury metal from the aqueous phase solutions. Initially, hydrated lime was subjected to structural characterization and thermal stability analysis. The FT-IR spectrum analysis revealed that the existence of the O-H bonds as a confirmation of hydrated lime formation. Subsequently, the XRD powder-based analysis demonstrated that most of the hydrated lime is pure crystalline material known as Portlandite while a small amount of calcite is also present in the structure of the hydrated lime. The thermal stability analysis revealed that the hydrated lime is highly thermally stable under harsh conditions without decomposing at higher temperatures up to 500 °C. Furthermore, the hydrated lime was subjected to the selective adsorption of heavy metal mercury to investigate the potential influence of the adsorbent particle size and loading on adsorption capacity. The results demonstrated that the decrease in the adsorbent particle size leads to the improvement in the mercury adsorption attributing to the rise in specific surface area. The enhancement in the loading of the adsorbent resulted in a reduction in mercury adsorption directing to the fact that already adsorbed metal ions onto the adsorbent surface lead to hindrance for the adsorption of other ions of heavy metal. These results lead to a significant impact on modern in inventing different adsorbents with promising water treatment efficiency for more industrial applications and the related recovery of mercury.
    Matched MeSH terms: Calcium Compounds
  20. Nabgan W, Nabgan B, Ikram M, Jadhav AH, Ali MW, Ul-Hamid A, et al.
    Chemosphere, 2022 Mar;290:133296.
    PMID: 34914962 DOI: 10.1016/j.chemosphere.2021.133296
    The fatty acid methyl ester (FAME) production from dairy effluent scum as a sustainable energy source using CaO obtained from organic ash over titanium dioxide nanoparticles (TNPs) as the transesterification nano-catalyst has been studied. The physical and chemical properties of the synthesized catalysts were characterized, and the effect of different experimental factors on the biodiesel yield was studied. It was revealed that the CaO-TiO2 nano-catalyst displayed bifunctional properties, has both basic and acid phases, and leads to various effects on the catalyst activity in the transesterification process. These bifunctional properties are critical for achieving simultaneous transesterification of dairy scum oil feedstock. According to the reaction results, the catalyst without and with a low ratio of TNPs showed a low catalytic activity. In contrast, the 3Ca-3Ti nano-catalyst had the highest catalytic activity and a strong potential for reusability, producing a maximum biodiesel yield of 97.2% for a 3 wt% catalyst, 1:20 oil to methanol molar ratio for the dairy scum, and a reaction temperature of 70 °C for a period of 120 min under a 300 kPa pressure. The physical properties of the produced biodiesel are within the EN14214 standards.
    Matched MeSH terms: Calcium Compounds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links