Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Udenni Gunathilake TMS, Ching YC, Ching KY, Chuah CH, Abdullah LC
    Polymers (Basel), 2017 Apr 29;9(5).
    PMID: 30970839 DOI: 10.3390/polym9050160
    Extensive employment of biomaterials in the areas of biomedical and microbiological applications is considered to be of prime importance. As expected, oil based polymer materials were gradually replaced by natural or synthetic biopolymers due to their well-known intrinsic characteristics such as biodegradability, non-toxicity and biocompatibility. Literature on this subject was found to be expanding, especially in the areas of biomedical and microbiological applications. Introduction of porosity into a biomaterial broadens the scope of applications. In addition, increased porosity can have a beneficial effect for the applications which exploit their exceptional ability of loading, retaining and releasing of fluids. Different applications require a unique set of pore characteristics in the biopolymer matrix. Various pore morphologies have different characteristics and contribute different performances to the biopolymer matrix. Fabrication methods for bio-based porous materials more related to the choice of material. By choosing the appropriate combination of fabrication technique and biomaterial employment, one can obtain tunable pore characteristic to fulfill the requirements of desired application. In our previous review, we described the literature related to biopolymers and fabrication techniques of porous materials. This paper we will focus on the biomedical and microbiological applications of bio-based porous materials.
    Matched MeSH terms: Calcium Phosphates
  2. Che Nor Zarida Che Seman, Zamzuri Zakaria, Zunariah Buyong, Mohd Shukrimi Awang, Ahmad Razali Md Ralib @ Md Raghib
    MyJurnal
    A novel injectable calcium phosphate bone cement (osteopaste) has been
    developed. Its potential application in orthopaedics as a filler of bone defects has been
    studied. The biomaterial was composed of tetra-calcium phosphate (TTCP) and tricalcium
    phosphate (TCP) powder. The aim of the present study was to evaluate the
    healing process of osteopaste in rabbit tibia.(Copied from article).
    Matched MeSH terms: Calcium Phosphates
  3. Tariq U, Hussain R, Tufail K, Haider Z, Tariq R, Ali J
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109863.
    PMID: 31349467 DOI: 10.1016/j.msec.2019.109863
    Quick setting and poor injectability due to liquid-solid phase separation have limited the clinical use of brushite and monetite cements. The presence of certain ions in the cement during the setting reaction moderate the setting time and properties of the cement. This study reports the preparation of injectable bone cement by using biphasic calcium phosphate (BCP) extracted from femur lamb bone by calcination at 1450 °C. EDX analysis infers the presence of Mg and Na ions as trace elements in BCP. X-ray diffraction patterns of the prepared cement confirmed the formation of brushite (DCPD) along with monetite (DCPA) as a minor phase. DCPA phase diminished gradually with a decrease in powder to liquid ratio (PLR). Initial and final setting time of 5.3 ± 0.5 and 14.67 ± 0.5 min respectively are obtained and within the acceptable recommended range for orthopedic applications. Exceptional injectability of ≈90% is achieved for all prepared bone cement samples. A decrease in compressive strength was observed with increase in the liquid phase of the cement, which is attributed to the higher degree of porosity in the set cement. Immersion of bone cement in simulated body fluid (SBF) for up to 7 days resulted in the formation of apatite layer on the surface of cement with Ca/P ratio 1.71, which enhanced the compressive strength from 2.88 to 9.15 MPa. The results demonstrate that bone cement produced from BCP extracted from femur lamb bone can be considered as potential bone substitute for regeneration and repair of bone defects.
    Matched MeSH terms: Calcium Phosphates/chemistry*
  4. Baradaran S, Moghaddam E, Nasiri-Tabrizi B, Basirun WJ, Mehrali M, Sookhakian M, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:656-668.
    PMID: 25686995 DOI: 10.1016/j.msec.2015.01.050
    The effect of the addition of an ionic dopant to calcium phosphates for biomedical applications requires specific research due to the essential roles played in such processes. In the present study, the mechanical and biological properties of Ni-doped hydroxyapatite (HA) and Ni-doped HA mixed with graphene nanoplatelets (GNPs) were evaluated. Ni (3wt.% and 6wt.%)-doped HA was synthesized using a continuous precipitation method and calcined at 900°C for 1h. The GNP (0.5-2wt.%)-reinforced 6% Ni-doped HA (Ni6) composite was prepared using rotary ball milling for 15h. The sintering process was performed using hot isostatic pressing at processing conditions of 1150°C and 160MPa with a 1-h holding time. The results indicated that the phase compositions and structural features of the products were noticeably affected by the Ni and GNPs. The mechanical properties of Ni6 and 1.5Ni6 were increased by 55% and 75% in hardness, 59% and 163% in fracture toughness and 120% and 85% in elastic modulus compared with monolithic HA, respectively. The in-vitro biological behavior was investigated using h-FOB osteoblast cells in 1, 3 and 5days of culture. Based on the osteoblast results, the cytotoxicity of the products was indeed affected by the Ni doping. In addition, the effect of GNPs on the growth and proliferation of osteoblast cells was investigated in Ni6 composites containing different ratios of GNPs, where 1.5wt.% was the optimum value.
    Matched MeSH terms: Calcium Phosphates/pharmacology; Calcium Phosphates/chemistry*
  5. Nemati M, Kamilah H, Huda N, Ariffin F
    Int J Food Sci Nutr, 2015 Aug;67(5):535-40.
    PMID: 27144766 DOI: 10.1080/09637486.2016.1179269
    Avoidance of dairy products due to lactose intolerance can lead to insufficiency of calcium (Ca) in the body. In an approach to address this problem, tuna bone powder (TBP) was formulated as a calcium supplement to fortify bakery products. In a study, TBP recovered by alkaline treatment contained 38.16 g/100 g of calcium and 23.31 g/100 g of phosphorus. The ratio of Ca:P that was close to 2:1 was hence comparable to that in human bones. The availability of calcium in TBP was 53.93%, which was significantly higher than most calcium salts, tricalcium phosphate (TCP) being the exception. In vitro availability of calcium in TBP-fortified cookies or TCP-fortified cookies were comparable at 38.9% and 39.5%, respectively. These values were higher than the readings from TBP-fortified bread (36.7%) or TCP-fortified bread (37.4%). Sensory evaluation of bakery products containing TBP or TCP elicited comparable scores for the two additives from test panels. Hence, TBP could be used in the production of high calcium bakery products that would enjoy consumer acceptance.
    Matched MeSH terms: Calcium Phosphates/analysis
  6. Sadeghinezhad E, Kazi SN, Dahari M, Safaei MR, Sadri R, Badarudin A
    Crit Rev Food Sci Nutr, 2015;55(12):1724-43.
    PMID: 24731003 DOI: 10.1080/10408398.2012.752343
    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.
    Matched MeSH terms: Calcium Phosphates/chemistry
  7. Chew KK, Low KL, Sharif Zein SH, McPhail DS, Gerhardt LC, Roether JA, et al.
    J Mech Behav Biomed Mater, 2011 Apr;4(3):331-9.
    PMID: 21316621 DOI: 10.1016/j.jmbbm.2010.10.013
    This paper presents the development of novel alternative injectable calcium phosphate cement (CPC) composites for orthopaedic applications. The new CPC composites comprise β-tri-calcium phosphate (β-TCP) and di-calcium phosphate anhydrous (DCPA) mixed with bovine serum albumin (BSA) and incorporated with multi-walled carbon nanotubes (MWCNTs) or functionalized MWCNTs (MWCNTs-OH and MWCNTs-COOH). Scanning electron microscopy (SEM), compressive strength tests, injectability tests, Fourier transform infrared spectroscopy and X-ray diffraction were used to evaluate the properties of the final products. Compressive strength tests and SEM observations demonstrated particularly that the concomitant admixture of BSA and MWCNT improved the mechanical properties, resulting in stronger CPC composites. The presence of MWCNTs and BSA influenced the morphology of the hydroxyapatite (HA) crystals in the CPC matrix. BSA was found to act as a promoter of HA growth when bounded to the surface of CPC grains. MWCNT-OH-containing composites exhibited the highest compressive strengths (16.3 MPa), being in the range of values for trabecular bone (2-12 MPa).
    Matched MeSH terms: Calcium Phosphates/chemistry*
  8. Low KL, Tan SH, Zein SH, Roether JA, Mouriño V, Boccaccini AR
    J Biomed Mater Res B Appl Biomater, 2010 Jul;94(1):273-86.
    PMID: 20336722 DOI: 10.1002/jbm.b.31619
    A major weakness of current orthopedic implant materials, for instance sintered hydroxyapatite (HA), is that they exist as a hardened form, requiring the surgeon to fit the surgical site around an implant to the desired shape. This can cause an increase in bone loss, trauma to the surrounding tissue, and longer surgical time. A convenient alternative to harden bone filling materials are injectable bone substitutes (IBS). In this article, recent progress in the development and application of calcium phosphate (CP)-based composites use as IBS is reviewed. CP materials have been used widely for bone replacement because of their similarity to the mineral component of bone. The main limitation of bulk CP materials is their brittle nature and poor mechanical properties. There is significant effort to reinforce or improve the mechanical properties and injectability of calcium phosphate cement (CPC) and this review resumes different alternatives presented in this specialized literature.
    Matched MeSH terms: Calcium Phosphates/metabolism; Calcium Phosphates/chemistry*
  9. Md Ramli SH, Wong TW, Naharudin I, Bose A
    Carbohydr Polym, 2016 Nov 05;152:370-381.
    PMID: 27516284 DOI: 10.1016/j.carbpol.2016.07.021
    Conventional alginate pellets underwent rapid drug dissolution and failed to exert colon targeting unless subjected to complex coating. This study designed coatless delayed-release oral colon-specific alginate pellets for ulcerative colitis treatment. Alginate pellets, formulated with water-insoluble ethylcellulose and various calcium salts, were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed reaction to initiate only in dissolution. Combination of acid-soluble calcium carbonate and highly water-soluble calcium acetate did not impart colon-specific characteristics to pellets due to pore formation in fragmented matrices. Combination of moderately water-soluble calcium phosphate and calcium acetate delayed drug release due to rapid alginate crosslinking by soluble calcium from acetate salt followed by sustaining alginate crosslinking by calcium phosphate. The use of 1:3 ethylcellulose-to-alginate enhanced the sustained drug release attribute. The ethylcellulose was able to maintain the pellet integrity without calcium acetate. Using hydrophobic prednisolone as therapeutic, hydrophilic alginate pellets formulated with hydrophobic ethylcellulose and moderately polar calcium phosphate exhibited colon-specific in vitro drug release and in vivo anti-inflammatory action. Coatless oral colon-specific alginate pellets can be designed through optimal formulation with melt pelletization as the processing technology.
    Matched MeSH terms: Calcium Phosphates/pharmacokinetics; Calcium Phosphates/chemistry
  10. Rafieerad AR, Ashra MR, Mahmoodian R, Bushroa AR
    Mater Sci Eng C Mater Biol Appl, 2015 Dec 1;57:397-413.
    PMID: 26354281 DOI: 10.1016/j.msec.2015.07.058
    In recent years, calcium phosphate-base composites, such as hydroxyapatite (HA) and carbonate apatite (CA) have been considered desirable and biocompatible coating layers in clinical and biomedical applications such as implants because of the high resistance of the composites. This review focuses on the effects of voltage, time and electrolytes on a calcium phosphate-base composite layer in case of pure titanium and other biomedical grade titanium alloys via the plasma electrolytic oxidation (PEO) method. Remarkably, these parameters changed the structure, morphology, pH, thickness and crystallinity of the obtained coating for various engineering and biomedical applications. Hence, the structured layer caused improvement of the biocompatibility, corrosion resistance and assignment of extra benefits for Osseo integration. The fabricated layer with a thickness range of 10 to 20 μm was evaluated for physical, chemical, mechanical and tribological characteristics via XRD, FESEM, EDS, EIS and corrosion analysis respectively, to determine the effects of the applied parameters and various electrolytes on morphology and phase transition. Moreover, it was observed that during PEO, the concentration of calcium, phosphor and titanium shifts upward, which leads to an enhanced bioactivity by altering the thickness. The results confirm that the crystallinity, thickness and contents of composite layer can be changed by applying thermal treatments. The corrosion behavior was investigated via the potentiodynamic polarization test in a body-simulated environment. Here, the optimum corrosion resistance was obtained for the coating process condition at 500 V for 15 min in Ringer solution. This review has been summarized, aiming at the further development of PEO by producing more adequate titanium-base implants along with desired mechanical and biomedical features.
    Matched MeSH terms: Calcium Phosphates/chemistry*
  11. Haque ST, Islam RA, Gan SH, Chowdhury EH
    Int J Mol Sci, 2020 Sep 14;21(18).
    PMID: 32937817 DOI: 10.3390/ijms21186721
    Background: The limitations of conventional treatment modalities in cancer, especially in breast cancer, facilitated the necessity for developing a safer drug delivery system (DDS). Inorganic nano-carriers based on calcium phosphates such as hydroxyapatite (HA) and carbonate apatite (CA) have gained attention due to their biocompatibility, reduced toxicity, and improved therapeutic efficacy. Methods: In this study, the potential of goose bone ash (GBA), a natural derivative of HA or CA, was exploited as a pH-responsive carrier to successfully deliver doxorubicin (DOX), an anthracycline drug into breast cancer cells (e.g., MCF-7 and MDA-MB-231 cells). GBA in either pristine form or in suspension was characterized in terms of size, morphology, functional groups, cellular internalization, cytotoxicity, pH-responsive drug (DOX) release, and protein corona analysis. Results: The pH-responsive drug release study demonstrated the prompt release of DOX from GBA through its disintegration in acidic pH (5.5-6.5), which mimics the pH of the endosomal and lysosomal compartments as well as the stability of GBA in physiological pH (pH 7.5). The result of DOX binding with GBA indicated an increment in binding affinity with increasing concentrations of DOX. Cell viability and cytotoxicity analysis showed no innate toxicity of GBA particles. Both qualitative and quantitative cellular uptake analysis in both cell lines displayed an enhanced cellular internalization of DOX-loaded GBA compared to free DOX molecules. The protein corona spontaneously formed on the surface of GBA particles exhibited its affinity toward transport proteins, structural proteins, and a few other selective proteins. The adsorption of transport proteins could extend the circulation half-life in biological environment and increase the accumulation of the drug-loaded NPs through the enhanced permeability and retention (EPR) effect at the tumor site. Conclusion: These findings highlight the potential of GBA as a DDS to successfully deliver therapeutics into breast cancer cells.
    Matched MeSH terms: Calcium Phosphates/chemistry
  12. Nor Hazliana Harun, Rabiatul Basria S.M.N. Mydin, Khairul Anuar Shariff, Nur Adila Rosdi, Davamunisvari Rames
    MyJurnal
    Introduction: This study aims to investigate different residue sizes of β-tricalcium phosphate (β-TCP) micro-granules as carriers to assess antibacterial activity and drug-control release behavior of ampicillin (AMP-) and antimycotic (AMC-). Incorporation of antibiotic into the β-TCP micro-granules and it sustain release behavior could be used as alternative solution to reduce the risk of osteomyelitis and bone infections risks. Methods: Three different residue sizes (less than 300 µm, 300 µm and 600 µm) were prepared and coated with antibiotics solution (20 µg/µl of ampi- cillin and 100X antimycotic solution) by using two methods; dip and stream coating. After 72 h, 1.5 mL of distilled water was added to the treated (β-TCP) micro-granules at two different pH value (5.0 and 7.4). The extracted solution was further analyzed by Kirby Bauer disc diffusion test and spectrophotometer assay. Results: The solution con- taining AMC-(β-TCP) micro-granules with the size of 300 µm residue produced the largest inhibition zones against Escherichia coli (E. coli). All residue sizes coated with AMP- showed no antibacterial activity against both strains; Staphylococcus aureus (S. aureus) and E.coli. Additionally, the release behavior of AMC-(β-TCP) micro-granules was found not depending on the pH, but on the size of residue. Complete drug release was rapidly observed within 48
    h. Conclusion: Based on this findings, it showed AMC-(β-TCP) micro-granules had an antibacterial activity against Gram-negative strain. Specifically, it can reduced the growth rate of E. coli and the rapid release behavior of AMC- (β-TCP) micro-granules help in minimizing the risk-infections in early stage of implantation.
    Matched MeSH terms: Calcium Phosphates
  13. Cik Rohaida CH, Idris B, Mohd Reusmaazran Y, Rusnah M, Fadzley Izwan AM
    Med J Malaysia, 2004 May;59 Suppl B:156-7.
    PMID: 15468865
    A mixture with different compositions of HA and TCP were synthesize in this work by precipitation method using Ca(NO3)2 4H2 and (NH4)2HPO4 as the starting materials. A mixture with HA and TCP phases in different ratios were produced. The powders were sintered from 1000 degrees C to 1250 degrees C. The phase compositions of the mixtures were then studied via XRD. This work shows that the pH value determines the different phase compositions of the HA-TCP mixture. Chemical analyses were carried out by FTIR. The microstructure was observed under SEM.
    Matched MeSH terms: Calcium Phosphates/analysis; Calcium Phosphates/chemical synthesis*
  14. Phang MY, Ng MH, Tan KK, Aminuddin BS, Ruszymah BH, Fauziah O
    Med J Malaysia, 2004 May;59 Suppl B:198-9.
    PMID: 15468886
    Tricalcium phosphate/hydroxyapatite (TCP/HA), hydroxyapatite (HA), chitosan and calcium sulphate (CaSO4) were studied and evaluated for possible bone tissue engineered construct acting as good support for osteogenic cells to proliferate, differentiate, and eventually spread and integrate into the scaffold. Surface morphology visualized by SEM showed that scaffold materials with additional fibrin had more cell densities attached than those without, depicting that the presence of fibrin and collagen fibers were truly a favourite choice of cells to attach. In comparison of various biomaterials used incorporated with fibrin, TCP/HA had the most cluster of cells attached.
    Matched MeSH terms: Calcium Phosphates
  15. Muslim, Y.S., Knowles, J., Howlett, J.
    Ann Dent, 2005;12(1):-.
    MyJurnal
    Hydroxyapatite (HA) has been increasingly used in biomedical applications due to its biocompatibility with living tissues. However, its use is limited to low load bearing areas due to the poor mechanical properties compared to bone. The aim of this project is to improve the mechanical properties of synthetic HA by optimising the processing method and also by using a phosphate based glass as a sintering aid to develop Glass Reinforced Hydroxyapatite (GR-HA). A phosphate based glass containing CaO, P2O5 and CaF2 was incorporated into HA at 2.5wt% and 5wt% additions during the milling process prior to sintering at 1300°C. The flexural strength mean values for GR-HA ranged from 80MPa to 110MPa. Pure HA exhibited a much lower flexural strength mean value ranging from 66MPa to 79MPa. The improved mechanical properties were associated with the occurrence of residual stress as a result of decomposition of HA to b-Tricalcium Phosphate (TCP) and in 5wt% GRHA to a-Tricalcium Phosphate (TCP).
    Matched MeSH terms: Calcium Phosphates
  16. Taha A, Akram M, Jawad Z, Alshemary AZ, Hussain R
    Mater Sci Eng C Mater Biol Appl, 2017 Nov 01;80:93-101.
    PMID: 28866230 DOI: 10.1016/j.msec.2017.05.117
    Microwave assisted wet precipitation method was used to synthesize calcium deficient strontium doped β-tricalcium phosphate (Sr-βTCP) with a chemical formula of Ca2.96-xSrx(PO4)2. Sr-βTCP was reacted with monocalcium phosphate monohydrate [Ca(H2PO4)2.H2O, MCPM] in presence of water to furnish corresponding Sr containing brushite cement (Sr-Brc). The samples were characterized by using X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). Strontium content in the prepared samples was determined by using inductively coupled plasma optical emission spectrometry (ICP-OES). The effect of Sr2+ions on the structural, mechanical, setting properties and drug release of the cement is reported. Incorporation of Sr2+ions improved the injectability, setting time and mechanical properties of the Brc. The release profiles of antibiotics incorporated in Brc and Sr-Brc confirmed that the Sr incorporation into the Brc results in the efficient release of the antibiotics from the cement.
    Matched MeSH terms: Calcium Phosphates
  17. Jamuna, K., Noorsal, K., Zakaria, F.A., Hussin, Z.H.
    ASM Science Journal, 2010;4(1):41-47.
    MyJurnal
    Introducing CO2 flux as the carbonate source had an effect on the carbonate content of carbonate apatite (CAp) synthesized by solid state reaction. The reactants were CaCO3 and beta-tricalcium phosphate (β-TCP) and the heat treatment in air was performed at 1250ºC followed by instant cooling in CO2 flux for temperatures ranging from 800ºC room temperature (RT) . The influence of CO2 flux at various temperature drop differences in the cooling process (1250ºC RT, 1250ºC–500ºC, 1250ºC–600ºC, 1250ºC–700ºC, and 1250ºC–800ºC) was tested to optimize the carbonation degree and subsequent effects on the physical and mechanical properties of CAp. Thermally treated samples revealed an increasing degree of carbonation, achieving a maximum of 5.2 wt% at the highest (1250ºC RT) and a minimum of 2.7 wt% at the lowest (1250ºC–800ºC) temperature drop differences, respectively. This showed that the carbonate content was correlated with the increase in exposure to CO2 flux. However, consistent compressive strength, tensile strength, density and porosity were observed against increasing temperature drop differences which indicated that the degree of carbonation exerted no influence on the physical and mechanical properties of CAp. This method enabled the synthesis of solid state CAp simply by exposing calcium phosphate mixtures to CO2 flux. It also allowed the control of carbonate content for desired medical applications.
    Matched MeSH terms: Calcium Phosphates
  18. Ng MH, Duski S, Tan KK, Yusof MR, Low KC, Rose IM, et al.
    Biomed Res Int, 2014;2014:345910.
    PMID: 25165699 DOI: 10.1155/2014/345910
    Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function.
    Matched MeSH terms: Calcium Phosphates/administration & dosage*
  19. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RB
    Indian J Med Res, 2013 Jun;137(6):1093-101.
    PMID: 23852290
    Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering.
    Matched MeSH terms: Calcium Phosphates/chemistry*
  20. Shamsudin R, Abdul Azam F', Abdul Hamid MA, Ismail H
    Materials (Basel), 2017 Oct 17;10(10).
    PMID: 29039743 DOI: 10.3390/ma10101188
    The aim of this study was to prepare β-wollastonite using a green synthesis method (autoclaving technique) without organic solvents and to study its bioactivity. To prepare β-wollastonite, the precursor ratio of CaO:SiO₂ was set at 55:45. This mixture was autoclaved for 8 h and later sintered at 950 °C for 2 h. The chemical composition of the precursors was studied using X-ray fluorescence (XRF), in which rice husk ash consists of 89.5 wt % of SiO₂ in a cristobalite phase and calcined limestone contains 97.2 wt % of CaO. The X-ray diffraction (XRD) patterns after sintering showed that only β-wollastonite was detected as the single phase. To study its bioactivity and degradation properties, β-wollastonite samples were immersed in simulated body fluid (SBF) for various periods of time. Throughout the soaking period, the molar ratio of Ca/P obtained was in the range of 1.19 to 2.24, and the phase detected was amorphous calcium phosphate, which was confirmed by scanning electron microscope with energy dispersive X-ray analysis (SEM/EDX) and XRD. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that the peaks of the calcium and phosphate ions increased when an amorphous calcium phosphate layer was formed on the surface of the β-wollastonite sample. A cell viability and proliferation assay test was performed on the rice husk ash, calcined limestone, and β-wollastonite samples by scanning electron microscope. For heavy metal element evaluation, a metal panel that included As, Cd, Pb, and Hg was selected, and both precursor and β-wollastonite fulfilled the requirement of an American Society for Testing and Materials (ASTM F1538-03) standard specification. Apart from that, a degradation test showed that the loss of mass increased incrementally as a function of soaking period. These results showed that the β-wollastonite materials produced from rice husk ash and limestone possessed good bioactivity, offering potential for biomedical applications.
    Matched MeSH terms: Calcium Phosphates
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links