Displaying publications 1 - 20 of 160 in total

Abstract:
Sort:
  1. Wsoo MA, Razak SIA, Bohari SPM, Shahir S, Salihu R, Kadir MRA, et al.
    Int J Biol Macromol, 2021 Jun 30;181:82-98.
    PMID: 33771547 DOI: 10.1016/j.ijbiomac.2021.03.108
    Vitamin D deficiency is now a global health problem; despite several drug delivery systems for carrying vitamin D due to low bioavailability and loss bioactivity. Developing a new drug delivery system to deliver vitamin D3 is a strong incentive in the current study. Hence, an implantable drug delivery system (IDDS) was developed from the electrospun cellulose acetate (CA) and ε-polycaprolactone (PCL) nanofibrous membrane, in which the core of implants consists of vitamin D3-loaded CA nanofiber (CAVD) and enclosed in a thin layer of the PCL membrane (CAVD/PCL). CA nanofibrous mat loaded with vitamin D3 at the concentrations of 6, 12, and 20% (w/w) of vitamin D3 were produced using electrospinning. The smooth and bead-free fibers with diameters ranged from 324 to 428 nm were obtained. The fiber diameters increased with an increase in vitamin D3 content. The controlled drug release profile was observed over 30-days, which fit with the zero-order model (R2 > 0.96) in the first stage. The mechanical properties of IDDS were improved. Young's modulus and tensile strength of CAVD/PCL (dry) were161 ± 14 and 13.07 ± 2.5 MPa, respectively. CA and PCL nanofibers are non-cytotoxic based on the results of the in-vitro cytotoxicity studies. This study can further broaden in-vivo study and provide a reference for developing a new IDDS to carry vitamin D3 in the future.
    Matched MeSH terms: Calorimetry, Differential Scanning
  2. Woo HJ, Arof AK
    PMID: 26945998 DOI: 10.1016/j.saa.2016.02.034
    A flexible solid polymer electrolyte (SPE) system based on poly(ε-caprolactone) (PCL), a FDA approved non-toxic and biodegradable material in the effort to lower environmental impact was prepared. Ammonium thiocyanate (NH4SCN) and ethylene carbonate (EC) were incorporated as the source of charge carriers and plasticizing agent, respectively. When 50wt.% of ethylene carbonate (EC) was added to PCL-NH4SCN system, the conductivity increased by two orders from of 3.94×10(-7)Scm(-1) to 3.82×10(-5)Scm(-1). Molecular vibrational analysis via infrared spectroscopy had been carried out to study the interaction between EC, PCL and NH4SCN. The relative percentage of free ions, ion pairs and ion aggregates was calculated quantitatively by deconvoluting the SCN(-) stretching mode (2030-2090cm(-1)). This study provides fundamental insight on how EC influences the free ion dissociation rate and ion mobility. The findings are also in good agreement to conductivity, differential scanning calorimetry and X-ray diffraction results. High dielectric constant value (89.8) of EC had made it an effective ion dissociation agent to dissociate both ion pairs and ion aggregates, thus contributing to higher number density of free ions. The incorporation of EC had made the polymer chains more flexible in expanding amorphous domain. This will facilitate the coupling synergy between ionic motion and polymer segmental motion. Possible new pathway through EC-NH4(+) complex sites for ions to migrate with shorter distance has been anticipated. This implies an easier ion migration route from one complex site to another.
    Matched MeSH terms: Calorimetry, Differential Scanning
  3. Marikkar JM, Rana S
    J Oleo Sci, 2014;63(9):867-73.
    PMID: 25174673
    A study was conducted to detect and quantify lard stearin (LS) content in canola oil (CaO) using differential scanning calorimetry (DSC). Authentic samples of CaO were obtained from a reliable supplier and the adulterant LS were obtained through a fractional crystallization procedure as reported previously. Pure CaO samples spiked with LS in levels ranging from 5 to 15% (w/w) were analyzed using DSC to obtain their cooling and heating profiles. The results showed that samples contaminated with LS at 5% (w/w) level can be detected using characteristic contaminant peaks appearing in the higher temperature regions (0 to 70°C) of the cooling and heating curves. Pearson correlation analysis of LS content against individual DSC parameters of the adulterant peak namely peak temperature, peak area, peak onset temperature indicated that there were strong correlations between these with the LS content of the CaO admixtures. When these three parameters were engaged as variables in the execution of the stepwise regression procedure, predictive models for determination of LS content in CaO were obtained. The predictive models obtained with single DSC parameter had relatively lower coefficient of determination (R(2) value) and higher standard error than the models obtained using two DSC parameters in combination. This study concluded that the predictive models obtained with peak area and peak onset temperature of the adulteration peak would be more accurate for prediction of LS content in CaO based on the highest coefficient of determination (R(2) value) and smallest standard error.
    Matched MeSH terms: Calorimetry, Differential Scanning/methods*
  4. Azmi NA, Idris A, Yusof NSM
    Ultrason Sonochem, 2018 Oct;47:99-107.
    PMID: 29908610 DOI: 10.1016/j.ultsonch.2018.04.016
    Feather keratin is a biomass generated in excess from various livestock industries. With appropriate processing, it holds potential as a green source for degradable biopolymer that could potentially replace current fossil fuel based materials. Several processing methods have been developed, but the use of ultrasonication has not been explored. In this study, we focus on (i) comparing and optimizing the dissolution process of turkey feather keratin through sonication and conventional processes, and (ii) generating a biodegradable polymer material, as a value added product, from the dissolved keratin that could be used in packaging and other applications. Sonication of feather keratin in pure ionic liquids (ILs) and a mixture containing ILs and different co-solvents was conducted under different applied acoustic power levels. It was found that ultrasonic irradiation significantly improved the rate of dissolution of feather keratin as compared to the conventional method, from about 2 h to less than 20 min. The amount of ILs needed was also reduced by introducing a suitable co-solvent. The keratin was then regenerated, analyzed and characterized using various methods. This material holds the potential to be reused in various appliances.
    Matched MeSH terms: Calorimetry, Differential Scanning
  5. Ng WK, Saiful Yazan L, Yap LH, Wan Nor Hafiza WA, How CW, Abdullah R
    Biomed Res Int, 2015;2015:263131.
    PMID: 25632388 DOI: 10.1155/2015/263131
    Thymoquinone (TQ) has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI) lower than 0.25. The zeta potential of TQ-NLC was greater than -30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P < 0.05). TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells.
    Matched MeSH terms: Calorimetry, Differential Scanning
  6. Singh R, Singh G, Singh J, Kumar R, Rahman MM, Ramakrishna S
    Proc Inst Mech Eng H, 2019 Nov;233(11):1196-1203.
    PMID: 31545132 DOI: 10.1177/0954411919877979
    In this experimental study, a composite of poly-ether-ketone-ketone by reinforcement of hydroxyapatite and chitosan has been prepared for possible applications as orthopaedic scaffolds. Initially, different weight percentages of hydroxyapatite and chitosan were reinforced in the poly-ether-ketone-ketone matrix and tested for melt flow index in order to check the flowability of different compositions/proportions. Suitable compositions revealed by the melt flow index test were then taken forward for the extrusion of filament required for fused deposition modelling. For thermomechanical investigations, Taguchi-based design of experiments has been used with input variables in the extrusion process as follows: temperature, load applied and different composition/proportions. The specimens in the form of feedstock filament produced by the extrusion process were made to undergo tensile testing. The specimens were also inspected by differential scanning calorimetry and photomicrographs. Finally, the specimen showing the best performance from the thermomechanical viewpoint has been selected to extrude the filament for the fused deposition modelling process.
    Matched MeSH terms: Calorimetry, Differential Scanning
  7. Siregar, Januar Parlaungan, Mohd. Sapuan Salit, Mohd. Zaki Ab. Rahman, Khairul Zaman Hj. Mohd. Dahlan
    MyJurnal
    This paper studied the thermal behaviour of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composite. Thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC) analysis were used to measure the thermal characteristic of HIPS/PALF composites. In particular, the TGA analysis was utilized to measure the degradation and decomposition of materials in neat polystyrene, pineapple fibre, and the composites. The measurements were carried out in the temperature of 25°C – 800°C, at a heating rate of 20°C min-1 and the nitrogen gas flow was 50 mL min-1. The temperature of the DSC analysis was programmed to be between 25°C – 300°C. The results from TGA analysis show that the addition of pineapple fibre has improved the thermal stability of the composites as compared to neat HIPS. In addition, the effects of compatibilising agent and surface modification of PALF with alkali treated were also determined and compared.
    Matched MeSH terms: Calorimetry, Differential Scanning
  8. Venkata Srikanth M, Songa AS, Nali SR, Battu JR, Kolapalli VR
    Drug Dev Ind Pharm, 2014 Jan;40(1):33-45.
    PMID: 23317339 DOI: 10.3109/03639045.2012.744416
    The objective of the present investigation was to study the applicability of thermal sintering technique for the development of gastric floating tablets of propranolol HCl. Formulations were prepared using four independent variables, namely (i) polymer quantity, (ii) sodium bicarbonate concentration, (iii) sintering temperature and (iv) sintering time. Floating lag time and t95 were taken as dependent variables. Tablets were prepared by the direct compression method and were evaluated for physicochemical properties, in vitro buoyancy and dissolution studies. From the drug release studies, it was observed that drug retarding property mainly depends upon the sintering temperature and time of exposure. The statistically optimized formulation (PTSso) was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry studies, and no significant chemical interaction between drug and polymer was observed. Optimized formulation was stable at accelerated conditions for a period of six months. PTSso was evaluated for in vivo buoyancy studies in humans for both fed and fasted states and found that gastric residence time of the floating tablets were enhanced by fed stage but not in fasted state. Optimized formulation PTSso and commercial formulation Ciplar LA 80 were subjected to bioavailability studies in healthy human volunteers by estimating pharmacokinetic parameters such as Cmax, Tmax, area under curve (AUC), elimination rate constant (Kel), biological half-life (t1/2) and mean residence time (MRT). There was a significant increase in the bioavailability of the propranolol HCl from PTSso formulation, which was evident from increased AUC levels and larger MRT values than Ciplar LA 80.
    Matched MeSH terms: Calorimetry, Differential Scanning
  9. Sim, S.Y., Noor Aziah, A.A., Teng, T.T., Cheng, L.H.
    MyJurnal
    The effects of food gums addition on wheat dough freeze-thaw and frozen storage stability were studied. Thermal and dynamic mechanical properties of frozen wheat dough without yeast addition were
    determined by means of Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA).
    DSC results revealed that food gums showed the ability to increase freeze-thaw stability in frozen-stored
    samples wherein lower difference in melting enthalpy between first and second freeze-thaw cycle was shown. Based on DMA results, in general, difference between Tg’ and storage temperature (- 18°C) of dough became smaller upon addition of food gums. This may have a practical implication whereby the unfrozen phase could be better protected against physical degradation.
    Matched MeSH terms: Calorimetry, Differential Scanning
  10. Kamarudin SH, Abdullah LC, Aung MM, Ratnam CT
    Polymers (Basel), 2020 Nov 06;12(11).
    PMID: 33171889 DOI: 10.3390/polym12112604
    New environmentally friendly plasticized poly(lactic acid) (PLA) kenaf biocomposites were obtained through a melt blending process from a combination of epoxidized jatropha oil, a type of nonedible vegetable oil material, and renewable plasticizer. The main objective of this study is to investigate the effect of the incorporation of epoxidized jatropha oil (EJO) as a plasticizer and alkaline treatment of kenaf fiber on the thermal properties of PLA/Kenaf/EJO biocomposites. Kenaf fiber was treated with 6% sodium hydroxide (NaOH) solution for 4 h. The thermal properties of the biocomposites were analyzed using a differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It must be highlighted that the addition of EJO resulted in a decrease of glass transition temperature which aided PLA chain mobility in the blend as predicted. TGA demonstrated that the presence of treated kenaf fiber together with EJO in the blends reduced the rate of decomposition of PLA and enhanced the thermal stability of the blend. The treatment showed a rougher surface fiber in scanning electron microscopy (SEM) micrographs and had a greater mechanical locking with matrix, and this was further supported with Fourier-transform infrared spectroscopy (FTIR) analysis. Overall, the increasing content of EJO as a plasticizer has improved the thermal properties of PLA/Kenaf/EJO biocomposites.
    Matched MeSH terms: Calorimetry, Differential Scanning
  11. Goh CF, Hadgraft J, Lane ME
    Int J Pharm, 2022 Feb 25;614:121447.
    PMID: 34998922 DOI: 10.1016/j.ijpharm.2021.121447
    For effective topical and transdermal drug delivery, it is necessary for most actives to penetrate and permeate through the stratum corneum (SC). Extensive investigation of the thermal behaviour of mammalian SC has been performed to understand the barrier function of the skin. However, little attention has been paid to the related experimental variables in thermal analysis of the SC using differential scanning calorimetry that may influence the results obtained from such studies. In this review, we provide a comprehensive overview of the thermal transitions of the SC of both porcine and human skin. More importantly, the selection and impact of the experimental and instrumental parameters used in thermal analysis of the SC are critically evaluated. New opportunities for the use of thermal analysis of mammalian SC in advancing skin research, particularly for elucidation of the actions of excipients employed in topical and transdermal formulations on the skin are also highlighted.
    Matched MeSH terms: Calorimetry, Differential Scanning
  12. Awang N, Jaafar J, Ismail AF
    Polymers (Basel), 2018 Feb 15;10(2).
    PMID: 30966230 DOI: 10.3390/polym10020194
    Void-free electrospun SPEEK/Cloisite15A® densed (SP/e-spunCL) membranes are prepared. Different loadings of Cloisite15A® (0.10, 0.15, 0.20, 0.25 and 0.30 wt %) are incorporated into electrospun fibers. The physico-chemical characteristics (methanol permeability, water uptake and proton conductivity) of the membranes are observed. Thermal stability of all membranes is observed using Thermal Gravimetry Analysis (TGA). The thrree stages of degradation range between 163.1 and 613.1 °C. Differential Scanning Calorimetry (DSC) is used to study the wettability of the membranes. SP/e-spunCL15 shows the lowest freezing bound water of 15.27%, which contributed to the lowest methanol permeability. The non-freezing bound water that proportionally increased with proton conductivity of SP/e-spunCL15 membrane is the highest, 10.60%. It is suggested that the electrospinning as the fabricating method has successfully exfoliated the Cloisite in the membrane surface structure, contributing to the decrease of methanol permeability, while the retained water has led to the enhancement of proton conductivity. This new fabrication method of SP/e-spunCL membrane is said to be a desirable polymer electrolyte membrane for future application in direct methanol fuel cell field.
    Matched MeSH terms: Calorimetry, Differential Scanning
  13. Zaharuddin ND, Noordin MI, Kadivar A
    Biomed Res Int, 2014;2014:735891.
    PMID: 24678512 DOI: 10.1155/2014/735891
    The effectiveness of Okra gum in sustaining the release of propranolol hydrochloride in a tablet was studied. Okra gum was extracted from the pods of Hibiscus esculentus using acetone as a drying agent. Dried Okra gum was made into powder form and its physical and chemical characteristics such as solubility, pH, moisture content, viscosity, morphology study using SEM, infrared study using FTIR, crystallinity study using XRD, and thermal study using DSC and TGA were carried out. The powder was used in the preparation of tablet using granulation and compression methods. Propranolol hydrochloride was used as a model drug and the activity of Okra gum as a binder was compared by preparing tablets using a synthetic and a semisynthetic binder which are hydroxylmethylpropyl cellulose (HPMC) and sodium alginate, respectively. Evaluation of drug release kinetics that was attained from dissolution studies showed that Okra gum retarded the release up to 24 hours and exhibited the longest release as compared to HPMC and sodium alginate. The tensile and crushing strength of tablets was also evaluated by conducting hardness and friability tests. Okra gum was observed to produce tablets with the highest hardness value and lowest friability. Hence, Okra gum was testified as an effective adjuvant to produce favourable sustained release tablets with strong tensile and crushing strength.
    Matched MeSH terms: Calorimetry, Differential Scanning
  14. Saringat HB, Alfadol KI, Khan GM
    Pak J Pharm Sci, 2005 Jul;18(3):25-38.
    PMID: 16380341
    Coating has been widely used in pharmaceutical manufacture either as non-functional or a functional entity. The objectives of the present study were to investigate the effect of plasticizers such as PEG400, PEG1000 and triacetin on mechanical properties, glass transition temperature and water vapor transmission of free films prepared from HPMC and/or HPMC:PVA blends, to develop suitable coating system for tablets, and to determine the release profiles of the coated tablets. The tensile strength of plasticized HPMC films was generally lower than that of control HPMC film and could be attributed to increased crystallinity and segmental chain mobility of HPMC. This effect increased as the concentration of plasticizer increased. Generally the addition of both grades of polyethylene glycol (PEG400 & PEG1000) increased the moisture permeability of HPMC films but the films containing triacetin provided a more rigid barrier to moisture compared to unplasticized HPMC films. The dissolution profiles of paracetamol tablets coated with 7% w/v HPMC coating-solutions containing PEG400, PEG1000 and triacetin, and those containing PEG400 & PVA together showed that HPMC had weak water resistance. The presence of PEG400 and 1000 in HPMC films further weakened its resistance to solubility while the presence of triacetin caused a little increase in HPMC water resistance. From the results it was concluded that HPMC at 7%w/w concentration was suitable for film-coating intended for non-functional coating. Presence of the PEG 400, PEG1000 and triacetin as well as the presence of PVA and PEG400 together improved the coating properties of HPMC films and made it more suitable as a non-functional coating material.
    Matched MeSH terms: Calorimetry, Differential Scanning
  15. Mawazi SM, Doolaanea AA, Hadi HA, Chatterjee B
    Int J Pharm, 2021 Jun 01;602:120638.
    PMID: 33901596 DOI: 10.1016/j.ijpharm.2021.120638
    Crystallinity plays a vital role in the pharmaceutical industry. It affects drug manufacturing, development processes, and the stability of pharmaceutical dosage forms. An objective of this study was to measure and analyze the carbamazepine (CBZ) crystallinity before and after formulation. Moreover, it intended to determine the extent to which the crystallinity of CBZ would affect the drug loading, the particle size, and the release of CBZ from the microparticles. The CBZ microparticles were prepared by encapsulating CBZ in ethyl cellulose (EC) polymer using a solvent evaporation method. EC was used here as a release modifier polymer and polyvinyl alcohol (PVA) as an aqueous phase stabilizer. Factorial design was used to prepare the CBZ microparticle formulations, including polymer concentration, solvent (dichloromethane, ethyl acetate), PVA concentrations factor, the homogenization time, and homogenization speed. The crystallinity of CBZ was calculated utilizing differential scanning calorimetry (DSC) thermal analysis. The crystallinity was calculated from the enthalpy of CBZ. Enthalpy was analyzed from the area under the curve peak of CBZ standard and CBZ-loaded microparticles. DSC and ATR-FTIR assessed the possible interaction between CBZ and excipients in the microparticle. The prepared CBZ microparticles showed various changes in the crystallinity rate of CBZ. The changes in the rate of CBZ crystallinity had different effects on the particle size, the drug loading, and the release of CBZ from the polymer. Statistically, all studied factors significantly affected the crystallinity of CBZ after formulation to microparticles.
    Matched MeSH terms: Calorimetry, Differential Scanning
  16. Siti Rohana Ahmad, Salmah Husseinsyah, Kamarudin Hussin
    MyJurnal
    A chemical modifier (acrylic acid) was used to improve the thermal properties of polypropylene/ ethylene propylene diene terpolymer/calcium carbonate (PP/EPDM/CaCO3) composites. Treated
    and untreated PP/EPDM composites were filled by CaCO3 at 0, 20 and 40% wt. The composites
    were prepared using Z-blade mixer machine at 180oC and 50 rpm of rotor speed. Thermogravimetric
    analysis (TGA) and differential scanning calorimetry (DSC) methods were used to analyze the thermal properties of the composites. Thermogravimetric analysis indicated that the total weight loss of PP/EPDM/CaCO3 composites decreased with the increasing filler loading for the treated and untreated composites. Meanwhile, the presence of acrylic acid was found to have increased the thermal stability and crystallinity of PP/EPDM/CaCO3
    .
    Matched MeSH terms: Calorimetry, Differential Scanning
  17. Chia TS, Quah CK
    Acta Crystallogr B Struct Sci Cryst Eng Mater, 2017 Apr 01;73(Pt 2):285-295.
    PMID: 28362293 DOI: 10.1107/S2052520616019405
    Isonicotinamide-4-methoxybenzoic acid co-crystal (1), C6H6N2O·C8H8O3, is formed through slow evaporation from methanol solution and it undergoes a first-order isosymmetry (monoclinic I2/a ↔ monoclinic I2/a) structural phase transition at Tc= 142.5 (5) K, which has been confirmed by an abrupt jump of crystallographic interaxial angle β from variable-temperature single-crystal XRD and small heat hysteresis (6.25 K) in differential scanning calorimetry measurement. The three-dimensional X-ray crystal structures of (1) at the low-temperature phase (LTP) (100, 140 and 142 K) and the high-temperature phase (HTP) (143, 150, 200, 250 and 300 K) were solved and refined as a simple non-disordered model with final R[F2> 2σ(F2)] ≃ 0.05. The asymmetric unit of (1) consists of crystallographically independent 4-methoxybenzoic acid (A) and isonicotinamide (B) molecules in both enantiotropic phases. Molecule A adopts a `near-hydroxyl' conformation in which the hydroxyl and methoxy groups are positioned on the same side. Both `near-hydroxyl' and `near-carbonyl' molecular conformations possess minimum conformational energies with an energy difference of
    Matched MeSH terms: Calorimetry, Differential Scanning
  18. Haniffa MACM, Ching YC, Chuah CH, Kuan YC, Liu DS, Liou NS
    Polymers (Basel), 2017 May 01;9(5).
    PMID: 30970841 DOI: 10.3390/polym9050162
    Non-isocyanate polyurethane (NIPU) was prepared from Jatropha curcas oil (JCO) and its alkyd resin via curing with different diamines. The isocyanate-free approach is a green chemistry route, wherein carbon dioxide conversion plays a major role in NIPU preparation. Catalytic carbon dioxide fixation can be achieved through carbonation of epoxidized derivatives of JCO. In this study, 1,3-diaminopropane (DM) and isophorone diamine (IPDA) were used as curing agents separately. Cyclic carbonate conversion was catalyzed by tetrabutylammonium bromide. After epoxy conversion, carbonated JCO (CJCO) and carbonated alkyd resin (CC-AR) with carbonate contents of 24.9 and 20.2 wt %, respectively, were obtained. The molecular weight of CJCO and CC-AR were determined by gel permeation chromatography. JCO carbonates were cured with different amine contents. CJCO was blended with different weight ratios of CC-AR to improve its characteristics. The cured NIPU film was characterized by spectroscopic techniques, differential scanning calorimetry, and a universal testing machine. Field emission scanning electron microscopy was used to analyze the morphology of the NIPU film before and after solvent treatment. The solvent effects on the NIPU film interfacial surface were investigated with water, 30% ethanol, methyl ethyl ketone, 10% HCl, 10% NaCl, and 5% NaOH. NIPU based on CCJO and CC-AR (ratio of 1:3) with IPDA crosslink exhibits high glass transition temperature (44 °C), better solvent and chemical resistance, and Young's modulus (680 MPa) compared with the blend crosslinked with DM. Thus, this study showed that the presence of CC-AR in CJCO-based NIPU can improve the thermomechanical and chemical resistance performance of the NIPU film via a green technology approach.
    Matched MeSH terms: Calorimetry, Differential Scanning
  19. Mohammed IA, Hamidi RM
    Molecules, 2012 Jan 10;17(1):645-56.
    PMID: 22233565 DOI: 10.3390/molecules17010645
    The phenolic Schiff bases I-VI were synthesized by condensation reactions between various diamines, namely o-dianisidine, o-tolidine and ethylenediamine with vanillin or p-hydroxybenzaldehyde and subsequent reactions between these phenolic Schiff bases and epichlorohydrin to produce new diglycidyl ethers Ia-VIa. The structures of these compounds were confirmed by CHN, FT-IR, (1)H-NMR, and (13)C-NMR spectroscopy. Their thermotropic liquid crystalline behavior was studied using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). All the diglycidyl ethers prepared exhibit nematic mesophases, except for Va and VIa, which did not show any transition mesophases, but simply flow to liquids.
    Matched MeSH terms: Calorimetry, Differential Scanning
  20. Mohammed IA, Sankar G, Khairuddean M, Mohamad AB
    Molecules, 2010 Apr 30;15(5):3260-9.
    PMID: 20657475 DOI: 10.3390/molecules15053260
    A series of new mesogenic azomethine diols were successfully synthesized by condensation reactions between various chloroalkanols and N,N'-bis(4-hydroxy)-benzylidene-o-toluidine (1). The structures of these compounds were confirmed by CHN, FT-IR, (1)H-NMR, and (13)C-NMR spectrophotometer. Their thermotropic liquid crystalline behavior was studied using differential scanning calorimetry (DSC) and polarizing optical microscope (POM). 4,4'-di(4-Hydroxybutoxy)-N-benzylidine-o-tolidine (2a) does not exhibit liquid crystalline properties. A nematic texture was observed for mesogenic diols 2b, and 2d, whereas the diol 2c exhibits a smectic mesophase. The increase of terminal alkyl chain in these mesogenic diols leads to a decrease in the transition temperature.
    Matched MeSH terms: Calorimetry, Differential Scanning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links