Displaying publications 1 - 20 of 70 in total

Abstract:
Sort:
  1. Zanirun Z, Bahrin EK, Lai-Yee P, Hassan MA, Abd-Aziz S
    Appl Biochem Biotechnol, 2014 Jan;172(1):423-35.
    PMID: 24085387 DOI: 10.1007/s12010-013-0530-6
    The effect of cultivation condition of two locally isolated ascomycetes strains namely Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 were compared in submerged and solid state fermentation. Physical evaluation on water absorption index, solubility index and chemical properties of lignin, hemicellulose and cellulose content as well as the cellulose structure on crystallinity and amorphous region of treated oil palm empty fruit bunch (OPEFB) (resulted in partial removal of lignin), sago pith residues (SPR) and oil palm decanter cake towards cellulases production were determined. Submerged fermentation shows significant cellulases production for both strains in all types of substrates. Crystallinity of cellulose and its chemical composition mainly holocellulose components was found to significantly affect the total cellulase synthesis in submerged fermentation as the higher crystallinity index, and holocellulose composition will increase cellulase production. Treated OPEFB apparently induced the total cellulases from T. asperellum UPM1 and A. fumigatus UPM2 with 0.66 U/mg FPase, 53.79 U/mg CMCase, 0.92 U/mg β-glucosidase and 0.67 U/mg FPase, 47.56 U/mg and 0.14 U/mg β-glucosidase, respectively. Physical properties of water absorption and solubility for OPEFB and SPR also had shown significant correlation on the cellulases production.
    Matched MeSH terms: Carbon/metabolism
  2. Lim JW, Lim PE, Seng CE, Adnan R
    Appl Biochem Biotechnol, 2013 Jun;170(4):831-40.
    PMID: 23613119 DOI: 10.1007/s12010-013-0245-8
    The aeration strategy ranging from intermittent to continuous aeration in the REACT period of moving bed sequencing batch reactor (MBSBR) was evaluated for simultaneous removal of 4-chlorophenol (4-CP) and nitrogen. The results show that the removal rates of 4-CP and ammonium nitrogen (NH(4)(+)-N) increased with the increase of continuous aeration period. In the presence of 4-CP, NH(4)(+)-N removal was mainly by the assimilation process. The removal of NH(4)(+)-N to oxidized nitrogen via oxidation was only observed after 4-CP was completely degraded with sufficient aeration period provided indicating the inhibitory effect of 4-CP on nitrification. As the intermittent aeration strategy would lead to slower 4-CP degradation resulting in the delay of nitrification process, continuous aeration would be the preferred strategy in the simultaneous removal of 4-CP and nitrogen in the MBSBR system.
    Matched MeSH terms: Carbon/metabolism
  3. Hong WK, Rairakhwada D, Seo PS, Park SY, Hur BK, Kim CH, et al.
    Appl Biochem Biotechnol, 2011 Aug;164(8):1468-80.
    PMID: 21424706 DOI: 10.1007/s12010-011-9227-x
    In the present study, a novel oleaginous Thraustochytrid containing a high content of docosahexaenoic acid (DHA) was isolated from a mangrove ecosystem in Malaysia. The strain identified as an Aurantiochytrium sp. by 18S rRNA sequencing and named KRS101 used various carbon and nitrogen sources, indicating metabolic versatility. Optimal culture conditions, thus maximizing cell growth, and high levels of lipid and DHA production, were attained using glucose (60 g l⁻¹) as carbon source, corn steep solid (10 g l⁻¹) as nitrogen source, and sea salt (15 g l⁻¹). The highest biomass, lipid, and DHA production of KRS101 upon fed-batch fermentation were 50.2 g l⁻¹ (16.7 g l⁻¹ day⁻¹), 21.8 g l⁻¹ (44% DCW), and 8.8 g l⁻¹ (40% TFA), respectively. Similar values were obtained when a cheap substrate like molasses, rather than glucose, was used as the carbon source (DCW of 52.44 g l⁻¹, lipid and DHA levels of 20.2 and 8.83 g l⁻¹, respectively), indicating that production of microbial oils containing high levels of DHA can be produced economically when the novel strain is used.
    Matched MeSH terms: Carbon/metabolism
  4. Luthfi AAI, Manaf SFA, Illias RM, Harun S, Mohammad AW, Jahim JM
    Appl Microbiol Biotechnol, 2017 Apr;101(8):3055-3075.
    PMID: 28280869 DOI: 10.1007/s00253-017-8210-z
    Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.
    Matched MeSH terms: Carbon/metabolism*
  5. Watts MP, Spurr LP, Gan HM, Moreau JW
    Appl Microbiol Biotechnol, 2017 Jul;101(14):5889-5901.
    PMID: 28510801 DOI: 10.1007/s00253-017-8313-6
    Thiocyanate (SCN-) forms as a by-product of cyanidation during gold ore processing and can be degraded by a variety of microorganisms utilizing it as an energy, nitrogen, sulphur and/or carbon source. In complex consortia inhabiting bioreactor systems, a range of metabolisms are sustained by SCN- degradation; however, despite the addition or presence of labile carbon sources in most bioreactor designs to date, autotrophic bacteria have been found to dominate key metabolic functions. In this study, we cultured an autotrophic SCN--degrading consortium directly from gold mine tailings. In a batch-mode bioreactor experiment, this consortium degraded 22 mM SCN-, accumulating ammonium (NH4+) and sulphate (SO42-) as the major end products. The consortium consisted of a diverse microbial community comprised of chemolithoautotrophic members, and despite the absence of an added organic carbon substrate, a significant population of heterotrophic bacteria. The role of eukaryotes in bioreactor systems is often poorly understood; however, we found their 18S rRNA genes to be most closely related to sequences from bacterivorous Amoebozoa. Through combined chemical and phylogenetic analyses, we were able to infer roles for key microbial consortium members during SCN- biodegradation. This study provides a basis for understanding the behaviour of a SCN- degrading bioreactor under autotrophic conditions, an anticipated approach to remediating SCN- at contemporary gold mines.
    Matched MeSH terms: Carbon/metabolism
  6. Nittami T, Mukai M, Uematsu K, Yoon LW, Schroeder S, Chua ASM, et al.
    Appl Microbiol Biotechnol, 2017 Dec;101(23-24):8607-8619.
    PMID: 29063174 DOI: 10.1007/s00253-017-8571-3
    Previous studies have shown that enhanced biological phosphorus removal (EBPR) performance under continuous aerobic conditions always eventually deteriorates; however, the speed at which this happens depends on the carbon source supplied. The published data suggest that propionate is a better carbon source than acetate is for maintaining operational stability, although it is not clear why. A lab-scale sequencing batch reactor was run initially under conventional anaerobic/aerobic conditions with either acetate or propionate as the carbon source. Chemical and microbiological analyses revealed that both sources performed as expected for such systems. When continuous aerobic conditions were imposed on both these established communities, marked shifts of the "Candidatus Accumulibacter" clades were recorded for both carbon sources. Here, we discuss whether this shift could explain the prolonged EBPR stability observed with propionate.
    Matched MeSH terms: Carbon/metabolism*
  7. Tanimu MI, Mohd Ghazi TI, Harun MR, Idris A
    Appl Microbiol Biotechnol, 2015 May;99(10):4509-20.
    PMID: 25761621 DOI: 10.1007/s00253-015-6486-4
    Foaming problem which occurred occasionally during food waste (FW) anaerobic digestion (AD) was investigated with the Malaysian FW by stepwise increase in organic loading (OL) from 0.5 to 7.5 g VS/L. The FW feedstock with carbon to nitrogen (C/N) ratio of 17 was upgraded to C/N ratio of 26 and 30 by mixing with other wastes. The digestion which was carried out at 37 °C in 1-L batch reactors showed that foam formation initiated at OL of 1.5 g VS/L and was further enhanced as OL of feedstock was increased. The digestion foaming reached its maximum at OL of 5.5 g VS/L and did not increase further even when OL was increased to 7.5 g VS/Ld. Increase in the C/N ratio of feedstock significantly enhanced the microbial degradation activity, leading to better removal of foam causing intermediates and reduced foaming in the reactor by up to 60%.
    Matched MeSH terms: Carbon/metabolism*
  8. El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M
    BMC Biotechnol, 2018 11 09;18(1):71.
    PMID: 30413198 DOI: 10.1186/s12896-018-0481-7
    BACKGROUND: Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020.

    RESULTS: The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h.

    CONCLUSIONS: Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.

    Matched MeSH terms: Carbon/metabolism
  9. Elsayed EA, Farid MA, El-Enshasy HA
    BMC Biotechnol, 2019 07 16;19(1):46.
    PMID: 31311527 DOI: 10.1186/s12896-019-0546-2
    BACKGROUND: Natamycin is an antifungal polyene macrolide antibiotic with wide applications in health and food industries. Currently, it is the only antifungal food additive with the GRAS status (Generally Regarded as Safe).

    RESULTS: Natamycin production was investigated under the effect of different initial glucose concentrations. Maximal antibiotic production (1.58 ± 0.032 g/L) was achieved at 20 g/L glucose. Under glucose limitation, natamycin production was retarded and the produced antibiotic was degraded. Higher glucose concentrations resulted in carbon catabolite repression. Secondly, intermittent feeding of glucose improved natamycin production due to overcoming glucose catabolite regulation, and moreover it was superior to glucose-beef mixture feeding, which overcomes catabolite regulation, but increased cell growth on the expense of natamycin production. Finally, the process was optimized in 7.5 L stirred tank bioreactor under batch and fed-batch conditions. Continuous glucose feeding for 30 h increased volumetric natamycin production by about 1.6- and 1.72-folds in than the batch cultivation in bioreactor and shake-flasks, respectively.

    CONCLUSIONS: Glucose is a crucial substrate that significantly affects the production of natamycin, and its slow feeding is recommended to alleviate the effects of carbon catabolite regulation as well as to prevent product degradation under carbon source limitation. Cultivation in bioreactor under glucose feeding increased maximal volumetric enzyme production by about 72% from the initial starting conditions.

    Matched MeSH terms: Carbon/metabolism
  10. Halmi MI, Zuhainis SW, Yusof MT, Shaharuddin NA, Helmi W, Shukor Y, et al.
    Biomed Res Int, 2013;2013:384541.
    PMID: 24383052 DOI: 10.1155/2013/384541
    Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.
    Matched MeSH terms: Carbon/metabolism
  11. Zin KM, Effendi Halmi MI, Abd Gani SS, Zaidan UH, Samsuri AW, Abd Shukor MY
    Biomed Res Int, 2020;2020:2734135.
    PMID: 32149095 DOI: 10.1155/2020/2734135
    The release of wastewater from textile dyeing industrial sectors is a huge concern with regard to pollution as the treatment of these waters is truly a challenging process. Hence, this study investigates the triazo bond Direct Blue 71 (DB71) dye decolorization and degradation dye by a mixed bacterial culture in the deficiency source of carbon and nitrogen. The metagenomics analysis found that the microbial community consists of a major bacterial group of Acinetobacter (30%), Comamonas (11%), Aeromonadaceae (10%), Pseudomonas (10%), Flavobacterium (8%), Porphyromonadaceae (6%), and Enterobacteriaceae (4%). The richest phylum includes Proteobacteria (78.61%), followed by Bacteroidetes (14.48%) and Firmicutes (3.08%). The decolorization process optimization was effectively done by using response surface methodology (RSM) and artificial neural network (ANN). The experimental variables of dye concentration, yeast extract, and pH show a significant effect on DB71 dye decolorization percentage. Over a comparative scale, the ANN model has higher prediction and accuracy in the fitness compared to the RSM model proven by approximated R2 and AAD values. The results acquired signify an efficient decolorization of DB71 dye by a mixed bacterial culture.
    Matched MeSH terms: Carbon/metabolism
  12. Foo KY, Hameed BH
    Bioresour Technol, 2011 Oct;102(20):9814-7.
    PMID: 21871796 DOI: 10.1016/j.biortech.2011.07.102
    Rice husk (RH), an abundant by-product of rice milling, was used for the preparation of activated carbon (RHAC) via KOH and K(2)CO(3) chemical activation. The activation process was performed at the microwave input power of 600 W for 7 min. RHACs were characterized by low temperature nitrogen adsorption/desorption, scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption behavior was examined using methylene blue as adsorbate. The K(2)CO(3)-activated sample showed higher yield and better pore structures and adsorption capacity development than the KOH-activated sample, with a BET surface area, total pore volume and monolayer adsorption capacity of 1165 m(2)/g, 0.78 cm(3)/g and 441.52 mg/g, respectively. The results revealed the feasibility of microwave heating for preparation of high surface area activated carbons from rice husks via K(2)CO(3) activation.
    Matched MeSH terms: Carbon/metabolism*
  13. Oh WD, Lim PE, Seng CE, Sujari AN
    Bioresour Technol, 2011 Oct;102(20):9497-502.
    PMID: 21871793 DOI: 10.1016/j.biortech.2011.07.107
    The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.
    Matched MeSH terms: Carbon/metabolism*
  14. Loh TC, Lee YC, Liang JB, Tan D
    Bioresour Technol, 2005 Jan;96(1):111-4.
    PMID: 15364088
    Vermicomposting is commonly adopted for the treatment of livestock organic wastes. In the present study, two types of livestock manure were used for culturing of the earthworm, Eisenia foetida. Each treatment group consisted of six replicates and worm vermicasts were examined after 5 weeks. The concentrations of total C, P and K in goat manure vermicasts were higher than those in cattle manure vermicasts. Cattle vermicasts had a higher N content than goat vermicasts but the C:N ratio of fresh manure was higher than that of vermicasts for both materials. Earthworm biomass and reproductive performance, in terms of number of worms after 5 weeks of experiment, were higher in cattle manure than in goat manure. The cocoon production per worm in cattle manure was higher than in goat manure. However, the hatchability of cocoons was not affected by manure treatments. In conclusion, cattle manure provided a more nutritious and friendly environment to the earthworms than goat manure.
    Matched MeSH terms: Carbon/metabolism
  15. Cheah WY, Ling TC, Juan JC, Lee DJ, Chang JS, Show PL
    Bioresour Technol, 2016 Sep;215:346-56.
    PMID: 27090405 DOI: 10.1016/j.biortech.2016.04.019
    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.
    Matched MeSH terms: Carbon/metabolism*
  16. Radzuan MN, Banat IM, Winterburn J
    Bioresour Technol, 2017 Feb;225:99-105.
    PMID: 27888734 DOI: 10.1016/j.biortech.2016.11.052
    In this research we assess the feasibility of using palm oil agricultural refinery waste as a carbon source for the production of rhamnolipid biosurfactant through fermentation. The production and characterization of rhamnolipid produced by Pseudomonas aeruginosa PAO1 grown on palm fatty acid distillate (PFAD) under batch fermentation were investigated. Results show that P. aeruginosa PAO1 can grow and produce 0.43gL(-1) of rhamnolipid using PFAD as the sole carbon source. Identification of the biosurfactant product using mass spectrometry confirmed the presence of monorhamnolipid and dirhamnolipid. The rhamnolipid produced from PFAD were able to reduce surface tension to 29mNm(-1) with a critical micelle concentration (CMC) 420mgL(-1) and emulsify kerosene and sunflower oil, with an emulsion index up to 30%. Results demonstrate that PFAD could be used as a low-cost substrate for rhamnolipid production, utilizing and transforming it into a value added biosurfactant product.
    Matched MeSH terms: Carbon/metabolism
  17. Samadlouie HR, Hamidi-Esfahani Z, Alavi SM, Varastegani B
    Braz J Microbiol, 2014;45(2):439-45.
    PMID: 25242926
    The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA) as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase.
    Matched MeSH terms: Carbon/metabolism
  18. Gumel AM, Annuar MS, Heidelberg T
    Braz J Microbiol, 2014;45(2):427-38.
    PMID: 25242925
    Growth associated biosynthesis of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. Models with substrate inhibition terms described well the kinetics of its growth. Selected fatty acids (C8:0 to C18:1) and ammonium were used as carbon and nitrogen sources during growth and PHA biosynthesis, resulting in PHA accumulation of about 50 to 69% (w/w) and PHA yields ranging from 10.12 g L(-1) to 15.45 g L(-1), respectively. The monomer composition of the PHA ranges from C4 to C14, and was strongly influenced by the type of carbon substrate fed. Interestingly, an odd carbon chain length (C7) monomer was also detected when C18:1 was fed. Polymer showed melting temperature (T m) of 42.0 (± 0.2) °C, glass transition temperature (T g) of -1.0 (± 0.2) °C and endothermic melting enthalpy of fusion (ΔHf) of 110.3 (± 0.1) J g(-1). The molecular weight (M w) range of the polymer was relatively narrow between 55 to 77 kDa.
    Matched MeSH terms: Carbon/metabolism*
  19. Ismail NS, Subbiah SK, Taib NM
    Curr Pharm Biotechnol, 2020;21(14):1539-1550.
    PMID: 32598252 DOI: 10.2174/1389201021666200629145217
    BACKGROUND: This is the fastest work in obtaining the metabolic profiles of Pseudomonas aeruginosa in order to combat the infection diseases which leads to high morbidity and mortality rates. Pseudomonas aeruginosa is a high versatility of gram-negative bacteria that can undergo aerobic and anaerobic respiration. Capabilities in deploying different carbon sources, energy metabolism and regulatory system, ensure the survival of this microorganism in the diverse environment condition. Determination of differences in carbon sources utilization among biofilm and non-biofilm of Pseudomonas aeruginosa provides a platform in understanding the metabolic activity of the microorganism.

    METHODS: The study was carried out from September 2017 to February 2019. Four archive isolates forming strong and intermediate biofilm and non-biofilms producer were subcultured from archive isolates. ATCC 27853 P. aeruginosa was used as a negative control or non-biofilm producing microorganism. Biofilm formation was confirmed by Crystal Violet Assay (CVA) and Congo Red Agar (CRA). Metabolic profiles of the biofilm and non-biofilms isolates were determined by phenotype microarrays (Biolog Omnilog).

    RESULTS AND DISCUSSION: In this study, Pseudomonas aeruginosa biofilm isolates utilized uridine, L-threonine and L-serine while non-biofilm utilized adenosine, inosine, monomethyl, sorbic acid and succinamic acid.

    CONCLUSION: The outcome of this result will be used for future studies to improve detection or inhibit the growth of P. aeruginosa biofilm and non-biofilm respectively.

    Matched MeSH terms: Carbon/metabolism*
  20. Wong WZ, H'ng PS, Chin KL, Sajap AS, Tan GH, Paridah MT, et al.
    Environ Entomol, 2015 Oct;44(5):1367-74.
    PMID: 26314017 DOI: 10.1093/ee/nvv115
    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway.
    Matched MeSH terms: Carbon/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links