Displaying all 14 publications

Abstract:
Sort:
  1. Ahmed AZ, Mumbrekar KD, Satyam SM, Shetty P, D'Souza MR, Singh VK
    Cardiovasc Toxicol, 2021 Jul;21(7):533-542.
    PMID: 33740233 DOI: 10.1007/s12012-021-09644-3
    Doxorubicin (DOX) is a potent anti-cancer antibiotic that was widely used for treatment of various cancers. It produces free radicals which result in extreme dose-limiting cardiotoxicity. This study investigated the cardioprotective potential of chia seed oil, an active polyphenolic nutraceutical against doxorubicin-induced cardiotoxicity in Wistar rats. Twenty-four female Wistar rats were divided into four groups (n = 6) which consist of normal control, DOX control, test-A and test-B group. Animals were prophylactically treated with two different doses of test drug, i.e. chia seed oil 2.5 ml/kg/day and 5 ml/kg/day in test-A and test-B groups orally for 7 days. Doxorubicin (25 mg/kg; single dose) was administered intraperitoneally to DOX control, Test-A and Test-B animals on the seventh day to induce cardiotoxicity. ECG analysis was done before and after treatment. Besides ECG, CK, CK-MB, LDH, AST, MDA and GSH were analyzed. DOX had significantly altered ECG, CK, CK-MB, LDH, AST, MDA and GSH. Pre-treatment with chia seed oil significantly alleviated DOX-induced ECG changes and also guarded against DOX-induced rise of serum CK, CK-MB and AST levels. Chia seed oil alleviated histopathological alteration in DOX-treated rats. It also significantly inhibited DOX-induced GSH depletion and elevation of MDA. The present study revealed that chia seed oil exerts cardioprotection against doxorubicin-induced cardiotoxicity in female Wistar rats. Our study opens the perspective to clinical studies to precisely consider chia seed oil as a potential chemoprotectant nutraceutical in the combination chemotherapy with doxorubicin to limit its cardiotoxicity.
    Matched MeSH terms: Cardiotoxicity
  2. Cheah HY, Šarenac O, Arroyo JJ, Vasić M, Lozić M, Glumac S, et al.
    Nanotoxicology, 2017 03;11(2):210-222.
    PMID: 28098511 DOI: 10.1080/17435390.2017.1285071
    Conjugation of Doxorubicin (DOX) to N-(2-hydroxypropyl) methylacrylamide copolymer (HPMA) has significantly reduced the DOX-associated cardiotoxicity. However, the reports on the impact of HPMA-DOX conjugates on the cardiovascular system such as blood pressure (BP) and heart rate (HR) were in restrained animals using tail cuff and/or other methods that lacked the resolution and sensitivity. Herein, we employed radiotelemetric-spectral-echocardiography approach to further understand the in vivo cardiovascular hemodynamics and variability post administration of free DOX and HPMA-DOX. Rats implanted with radio-telemetry device were administered intravenously with DOX (5 mg/kg), HPMA-DOX (5 mg DOX equivalent/kg) and HPMA copolymer and subjected to continuous cardiovascular monitoring and echocardiography for 140 days. We found that DOX-treated rats had ruffled fur, reduced body weight (BW) and a low survival rate. Although BP and HR were normal, spectral analysis indicated that their BP and HR variabilities were reduced. All rats exhibited typical signs of cardiotoxicity at histopathology. In contrast, HPMA-DOX rats gained weight over time and survived. Although BP, HR and related variabilities were unaffected, the left ventricular end diastolic volume (EDV) of these rats, as well as of the HPMA copolymer-treated rats, was found increased at the end of observation period. Additionally, HPMA copolymer caused microscopic injury of the heart tissue. All of these suggest the necessity of caution when employing HPMA as carrier for prolonged drug delivery. The current study also indicates the potential of radiotelemetric-spectral-echocardiography approach for improved preclinical cardiovascular risk assessment of polymer-drug conjugate and other nano-sized-drug constructs.
    Matched MeSH terms: Cardiotoxicity
  3. Cheah HY, Gallon E, Dumoulin F, Hoe SZ, Japundžić-Žigon N, Glumac S, et al.
    Mol Pharm, 2018 07 02;15(7):2594-2605.
    PMID: 29763568 DOI: 10.1021/acs.molpharmaceut.8b00132
    We previously developed a new zinc(II) phthalocyanine (ZnPc) derivative (Pc 1) conjugated to poly-L-glutamic acid (PGA) (1-PG) to address the limitations of ZnPc as part of an antitumor photodynamic therapy approach, which include hydrophobicity, phototoxicity, and nonselectivity in biodistribution and tumor targeting. During this study, we discovered that 1-PG possessed high near-infrared (NIR) light absorptivity (λmax = 675 nm), good singlet oxygen generation efficiency in an aqueous environment, and enhanced photocytotoxic efficacy and cancer cell uptake in vitro. In the current study, we discovered that 1-PG accumulated in 4T1 mouse mammary tumors, with a retention time of up to 48 h. Furthermore, as part of an antitumor PDT, low dose 1-PG (2 mg of Pc 1 equivalent/kg) induced a greater tumor volume reduction (-74 ± 5%) when compared to high dose ZnPc (8 mg/kg, -50 ± 12%). At higher treatment doses (8 mg of Pc 1 equivalent/kg), 1-PG reduced tumor volume maximally (-91 ± 6%) and suppressed tumor size to a minimal level for up to 15 days. The kidney, liver, and lungs of the mice treated with 1-PG (both low and high doses) were free from 4T1 tumor metastasis at the end of the study. Telemetry-spectral-echocardiography studies also revealed that PGA (65 mg/kg) produced insignificant changes to the cardiovascular physiology of Wistar-Kyoto rats when administered in vivo. Results indicate that PGA displays an excellent cardiovascular safety profile, underlining its suitability for application as a nanodrug carrier in vivo. These current findings indicate the potential of 1-PG as a useful photosensitizer candidate for clinical PDT.
    Matched MeSH terms: Cardiotoxicity/etiology
  4. Tan ML, Hamid SBS
    J Cancer Prev, 2021 Mar 30;26(1):1-17.
    PMID: 33842401 DOI: 10.15430/JCP.2021.26.1.1
    Patients with cancer are prone to several debilitating side effects including fatigue, insomnia, depression and cognitive disturbances. Beetroot (Beta vulgaris L.) as a health promoting functional food may be potentially beneficial in cancer. As a source of polyphenols, flavonoids, dietary nitrates and other useful nutrients, beetroot supplementation may provide a holistic means to prevent cancer and manage undesired effects associated with chemotherapy. The main aim of this narrative review is to discuss beetroot's nutrient composition, current studies on its potential utility in chemoprevention and cancer-related fatigue or treatment-related side effects such as cardiotoxicity. This review aims to provide the current status of knowledge and to identify the related research gaps in this area. The flavonoids and polyphenolic components present in abundance in beetroot support its significant antioxidant and anti-inflammatory capacities. Most in vitro and in vivo studies have shown promising results; however, the molecular mechanisms underlying chemopreventive and chemoprotective effects of beetroot have not been completely elucidated. Although recent clinical trials have shown that beetroot supplementation improves human performance, translational studies on beetroot and its functional benefits in managing fatigue or other symptoms in patients with cancer are still lacking.
    Matched MeSH terms: Cardiotoxicity
  5. Guo L, Zheng X, Wang E, Jia X, Wang G, Wen J
    Biomed Pharmacother, 2020 May;125:109784.
    PMID: 32092815 DOI: 10.1016/j.biopha.2019.109784
    Doxorubicin (DOX) is an eff ;ective chemotherapeutic drug to suppress the progression of various types of tumors. However, its clinical application has been largely limited due to its potential cardiotoxicity. MicroRNAs (miRNAs) are emerged as critical regulators of cardiac injury. This study was aimed to explore the effects of irigenin (IR), as an isoflavonoid isolated from the rhizome of Belamcanda chinensis, on DOX-induced cardiotoxicity using the in vivo and in vitrostudies. The results indicated that DOX-induced fibrosis, cardiac dysfunction and injury were markedly attenuated by IR through reducing apoptosis, oxidative stress and inflammation in heart tissue samples. Importantly, DOX resulted in a remarkable decrease of miR-425 in heart tissues and cells, which was significantly rescued by IR. Receptor-interacting protein kinase 1 (RIPK1) was discovered to be a direct target of miR-425. DOX induced over-expression of RIPK1 both in vivo and in vitro, which were greatly decreased by IR. Transfection with miR-425 mimic could inhibit RIPK1 expression, whereas reducing miR-425 increased RIPK1 expression levels. In parallel to miR-425 over-expression, RIPK1 knockdown could attenuate apoptosis, reactive oxygen species (ROS) production and inflammation in HL-1 cells. However, over-expression of RIPK1 markedly abolished miR-425 mimic-induced apoptosis, ROS accumulation and inflammatory response in DOX-exposed cells. Herein, miR-425 could ameliorate cardiomyocyte injury through directly targeting RIPK1. Furthermore, activation of miR-425 by IR markedly improved DOX-induced cardiotoxicity, and therefore IR could be considered as a promising therapeutic agent for the treatment of cardiac injury.
    Matched MeSH terms: Cardiotoxicity/prevention & control*
  6. Leong SL, Chaiyakunapruk N, Lee SWH
    Crit Rev Oncol Hematol, 2019 Sep;141:95-101.
    PMID: 31272046 DOI: 10.1016/j.critrevonc.2019.05.017
    BACKGROUND: Cancer and heart diseases are the leading causes of morbidity and mortality in many countries worldwide. Recent advancement in chemotherapy and targeted therapies has led to an improvement in cancer survival rates, but at a cost of higher cardiac side effects. However, report on antineoplastic-related cardiotoxicities incidence in Asia is lacking.

    METHODS: We systematically searched multiple databases to identify studies reporting incidence of antineoplastic-related cardiovascular toxicity in Asia published from inception to November 2018. Pre-specified subgroups were performed to explore heterogeneity and study quality assessed and reported according to PRISMA guidelines.

    RESULTS: A total of 61 studies across 11 countries in Asia reported 8 types of cardiovascular toxicities were included. These studies mostly reported on adult populations, and usually examined cardiotoxicities related to anthracycline use. The most frequently reported cardiotoxicities were heart failure, electrocardiogram abnormalities and left ventricular dysfunction. The pooled estimated incidence of cardiotoxicity was 4.27% (95% CI: 3.53-5.07). Subgroup analysis showed higher incidence in middle income countries compared to high income countries.

    CONCLUSIONS: Although robust incidence studies are sparse, cardiovascular complications affects approximately one in twenty cancer patients in Asia. This highlights a unique opportunity of cancer patients caring that need cardiologists and oncologist to become familiar with this emerging sub-specialty.

    Matched MeSH terms: Cardiotoxicity/epidemiology
  7. Chen M, Samuel VP, Wu Y, Dang M, Lin Y, Sriramaneni R, et al.
    J Environ Pathol Toxicol Oncol, 2019;38(2):143-152.
    PMID: 31679277 DOI: 10.1615/JEnvironPatholToxicolOncol.2019029341
    The current study evaluated the cardioprotective activity of genistein in cases of doxorubicin-(Dox) induced cardiac toxicity and a probable mechanism underlying this protection, such as an antioxidant pathway in cardiac tissues. Animals used in this study were categorized into four groups. The first group was treated with sodium carboxymethylcellulose (0.3%; CMC-Na) solution. The second group received Dox (3.0 mg/kg, i.p.) on days 6, 12, 18, and 24. The third and fourth groups received Dox (3 mg/kg, i.p.) on days 6, 12, 18, and 24 and received protective doses of genistein (100 [group 3] and 200 [group 4] mg/kg/day, p.o.) for 30 days. Treatment with genistein significantly improved the altered cardiac function markers and oxidative stress markers. This was coupled with significant improvement in cardiac histopathological features. Genistein enhanced the Nrf2 and HO-1 expression, which showed protection against oxidative insult induced by Dox. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed substantial inhibition of apoptosis by genistein in myocardia. The study showed that genistein has a strong reactive oxygen species scavenging property and potentially (P ≤ .001) decreases the lipid peroxidation as well as inhibits DNA damage in cardiac toxicity induced by Dox. In conclusion, the potential antioxidant effect of genistein may be because of its modulatory effect on Nrf2/HO-1 signalling pathway and by this means exhibits cardioprotective effects from Dox-induced oxidative injury.
    Matched MeSH terms: Cardiotoxicity/etiology
  8. Jaćević V, Wu Q, Nepovimova E, Kuča K
    Food Chem Toxicol, 2020 Jan 22.
    PMID: 31981685 DOI: 10.1016/j.fct.2020.111138
    T-2 toxin, A trichothecenes mycotoxin, is immunotoxic to animals and humans. Although it is highly cardiotoxic, the pathogenesis of cardiomyopathy caused by T-2 toxin is not entirely clear. Hence, in our research, cardiomyopathy was induced by a single injection of T-2 mycotoxin (0.23 mg/kg s.c., 1 LD50.) to Wistar rats. The cardiac tissue was carefully examinated by using basic histopathology, semiquantitative (tissue grading score scales) and imaging (a total number of mast cells - MCs) analyses on days 1, 7, 14, 21, 28 and 60 of the study. The most intensive myocardial alterations (cardiac damage score, CDS = 4.20-4.40), irregular glycogen distribution (glycogen distribution score, GDS = 4.07-4.17), haemorrhagic foci (vascular damage score, VDS = 4.57-4.90), diffuse accumulation and degranulation of MCs were observed on day 28 and 60 after treatment (p 
    Matched MeSH terms: Cardiotoxicity
  9. Ahmed AZ, Satyam SM, Shetty P, D'Souza MR
    Scientifica (Cairo), 2021;2021:6694340.
    PMID: 33510932 DOI: 10.1155/2021/6694340
    Doxorubicin-induced cardiotoxicity is the leading cause of morbidity and mortality among cancer survivors. The present study was aimed to investigate the cardioprotective potential of methyl gallate; an active polyphenolic nutraceutical, against doxorubicin-induced cardiotoxicity in Wistar rats. Twenty-four female Wistar rats (150-200 g) were divided into four groups (n = 6) which consist of normal control (group I), doxorubicin control (group II), test-A (group III), and test-B (group IV). Group III and group IV animals were prophylactically treated with methyl gallate 150 mg/kg/day and 300 mg/kg/day orally, respectively, for seven days. Doxorubicin (25 mg/kg; single dose) was administered through an intraperitoneal route to group II, III, and IV animals on the seventh day to induce acute cardiotoxicity. On the 8th day, besides ECG analysis, serum CK, CK-MB, LDH, AST, MDA, and GSH were assayed. Following gross examination of isolated hearts, histopathological evaluation was performed by light microscopy. A significant (p 
    Matched MeSH terms: Cardiotoxicity
  10. Sung TC, Liu CH, Huang WL, Lee YC, Kumar SS, Chang Y, et al.
    Biomater Sci, 2019 Oct 28.
    PMID: 31656967 DOI: 10.1039/c9bm00817a
    Current xeno-free and chemically defined methods for the differentiation of hPSCs (human pluripotent stem cells) into cardiomyocytes are not efficient and are sometimes not reproducible. Therefore, it is necessary to develop reliable and efficient methods for the differentiation of hPSCs into cardiomyocytes for future use in cardiovascular research related to drug discovery, cardiotoxicity screening, and disease modeling. We evaluated two representative differentiation methods that were reported previously, and we further developed original, more efficient methods for the differentiation of hPSCs into cardiomyocytes under xeno-free, chemically defined conditions. The developed protocol successively differentiated hPSCs into cardiomyocytes, approximately 90-97% of which expressed the cardiac marker cTnT, with beating speeds and sarcomere lengths that were similar to those of a healthy adult human heart. The optimal cell culture biomaterials for the cardiac differentiation of hPSCs were also evaluated using extracellular matrix-mimetic material-coated dishes. Synthemax II-coated and Laminin-521-coated dishes were found to be the most effective and efficient biomaterials for the cardiac differentiation of hPSCs according to the observation of hPSC-derived cardiomyocytes with high survival ratios, high beating colony numbers, a similar beating frequency to that of a healthy adult human heart, high purity levels (high cTnT expression) and longer sarcomere lengths similar to those of a healthy adult human heart.
    Matched MeSH terms: Cardiotoxicity
  11. Satyam SM, Bairy LK, Shetty P, Sainath P, Bharati S, Ahmed AZ, et al.
    Cardiovasc Toxicol, 2023 Feb;23(2):107-119.
    PMID: 36790727 DOI: 10.1007/s12012-023-09784-8
    Doxorubicin is a widely used anticancer drug whose efficacy is limited due to its cardiotoxicity. There is no ideal cardioprotection available against doxorubicin-induced cardiotoxicity. This study aimed to investigate the anticipated cardioprotective potential of metformin and dapagliflozin against doxorubicin-induced acute cardiotoxicity in Wistar rats. At the beginning of the experiment, cardiac screening of experimental animals was done by recording an electrocardiogram (ECG) before allocating them into the groups. Thereafter, a total of thirty healthy adult Wistar rats (150-200 g) were randomly divided into five groups (n = 6) and treated for eight days as follows: group I (normal control), group II (doxorubicin control), group III (metformin 250 mg/kg/day), group IV (metformin 180 mg/kg/day), and group V (dapagliflozin 0.9 mg/kg/day). On the 7th day of the treatment phase, doxorubicin 20 mg/kg was administered intraperitoneal to groups II, III, IV, and V. On the 9th day (immediately after 48 h of doxorubicin administration), blood was collected from anesthetized animals for glucose, lipid profile, CK-MB & AST estimation, and ECG was recorded. Later, animals were sacrificed, and the heart was dissected for histopathological examination. We found that compared to normal control rats, CK-MB, AST, and glucose were significantly increased in doxorubicin control rats. There was a significant reversal of doxorubicin-induced hyperglycemia in the rats treated with metformin 250 mg/kg compared to doxorubicin control rats. Both metformin (180 mg/kg and 250 mg/kg) and dapagliflozin (0.9 mg/kg) significantly altered doxorubicin-induced ECG changes and reduced the levels of cardiac injury biomarkers CK-MB and AST compared to doxorubicin control rats. Metformin and dapagliflozin protected the cellular architecture of the myocardium from doxorubicin-induced myocardial injury. Current study revealed that both metformin and dapagliflozin at the FDA-recommended antidiabetic doses mitigated doxorubicin-induced acute cardiotoxicity in Wistar rats. The obtained data have opened the perspective to perform chronic studies and then to clinical studies to precisely consider metformin and dapagliflozin as potential chemoprotection in the combination of chemotherapy with doxorubicin to limit its cardiotoxicity, especially in patients with comorbid conditions like type II diabetes mellitus.
    Matched MeSH terms: Cardiotoxicity/metabolism
  12. Lu J, Wei H, Wu J, Jamil MF, Tan ML, Adenan MI, et al.
    PLoS One, 2014;9(12):e115648.
    PMID: 25535742 DOI: 10.1371/journal.pone.0115648
    INTRODUCTION: Mitragynine is a major bioactive compound of Kratom, which is derived from the leave extracts of Mitragyna speciosa Korth or Mitragyna speciosa (M. speciosa), a medicinal plant from South East Asia used legally in many countries as stimulant with opioid-like effects for the treatment of chronic pain and opioid-withdrawal symptoms. Fatal incidents with Mitragynine have been associated with cardiac arrest. In this study, we determined the cardiotoxicity of Mitragynine and other chemical constituents isolated using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).

    METHODS AND RESULTS: The rapid delayed rectifier potassium current (IKr), L-type Ca2+ current (ICa,L) and action potential duration (APD) were measured by whole cell patch-clamp. The expression of KCNH2 and cytotoxicity was determined by real-time PCR and Caspase activity measurements. After significant IKr suppression by Mitragynine (10 µM) was confirmed in hERG-HEK cells, we systematically examined the effects of Mitragynine and other chemical constituents in hiPSC-CMs. Mitragynine, Paynantheine, Speciogynine and Speciociliatine, dosage-dependently (0.1∼100 µM) suppressed IKr in hiPSC-CMs by 67%∼84% with IC50 ranged from 0.91 to 2.47 µM. Moreover, Mitragynine (10 µM) significantly prolonged APD at 50 and 90% repolarization (APD50 and APD90) (439.0±11.6 vs. 585.2±45.5 ms and 536.0±22.6 vs. 705.9±46.1 ms, respectively) and induced arrhythmia, without altering the L-type Ca2+ current. Neither the expression, and intracellular distribution of KCNH2/Kv11.1, nor the Caspase 3 activity were significantly affected by Mitragynine.

    CONCLUSIONS: Our study indicates that Mitragynine and its analogues may potentiate Torsade de Pointes through inhibition of IKr in human cardiomyocytes.

    Matched MeSH terms: Cardiotoxicity/etiology; Cardiotoxicity/metabolism*; Cardiotoxicity/pathology
  13. Khan S, Khan SU
    J Clin Pharm Ther, 2020 Oct;45(5):927-936.
    PMID: 32672366 DOI: 10.1111/jcpt.13204
    WHAT IS KNOWN AND OBJECTIVE: The imbalance in serum potassium caused by laxatives can negatively affect the cardiovascular system, leading to life-threatening consequences. Our objective was to evaluate the reported evidence of adverse events related to the cardiac system due to laxative-induced hypokalaemia from case reports.

    METHODS: A systematic electronic literature search of PubMed, Embase, the Cochrane Library and Science Direct was conducted for the period 1995-2019. In these databases, search terms describing hypokalaemia and cardiotoxicity were combined with the term laxative use.

    RESULTS AND DISCUSSION: Over the 23 years, 27 incidents were identified in 12 countries. There were 19 female and eight male patients, with ages ranging from 1 month to 93 years. The frequency of reported cases according to severity was the following: severe hypokalaemia 48%, moderate hypokalaemia 44.4% and mild hypokalaemia 7.4%. In 70% of patients, the effect of laxative on the heart was typical hypokalaemic electrographic changes, 7.4% showed abnormal changes in cardiac rhythm, whereas in 18.5%, the cardiotoxicity observed was a very serious kind. Two patients died due to severe cardiac effects.

    WHAT IS NEW AND CONCLUSION: The laxatives-along with the involvement of some other contributing factors-caused mild-to-severe hypokalaemic cardiotoxicity. These factors were non-adherence of the patient to the recommended dosage, laxative abuse, drug-drug and drug-disease interactions, non-potassium electrolyte imbalances and the use of herbal laxatives. We recommend that laxatives and aggravating factors should be taken into account in the assessment of patients with suspected hypokalaemic cardiotoxicity.

    Matched MeSH terms: Cardiotoxicity/etiology*; Cardiotoxicity/physiopathology
  14. Leong SL, Chaiyakunapruk N, Lee SW
    Sci Rep, 2017 02 27;7(1):39.
    PMID: 28232737 DOI: 10.1038/s41598-017-00075-1
    Anthracyclines play an important role in the management of patients with cancer but the development of anthracycline-induced cardiotoxicity (ACT) remains a significant concern for most clinicians. Recently, genetic approach has been used to identify patients at increased risk of ACT. This systematic review assessed the association between genomic markers and ACT. A systematic literature search was performed in Medline, PubMed, Cochrane Central Register of Controlled Studies, CINAHL Plus, AMED, EMBASE and HuGE Navigator from inception until May 2016. Twenty-eight studies examining the association of genetic variants and ACT were identified. These studies examined 84 different genes and 147 single nucleotide polymorphisms. Meta-analyses showed 3 risk variants significantly increased the risk for ACT; namely ABCC2 rs8187710 (pooled odds ratio: 2.20; 95% CI: 1.36-3.54), CYBA rs4673 (1.55; 1.05-2.30) and RAC2 rs13058338 (1.79; 1.27-2.52). The current evidence remains unclear on the potential role of pharmacogenomic screening prior to anthracycline therapy. Further research is needed to improve the diagnostic and prognostic role in predicting ACT.
    Matched MeSH terms: Cardiotoxicity/epidemiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links