Displaying publications 1 - 20 of 167 in total

Abstract:
Sort:
  1. Zamzuri, Z., Adham, S.Y., Shukrimi, A., Azril, M.A., Amran, R.
    MyJurnal
    Clinically, it is sometimes diffi cult to distinguish an infection of the spine from a metastasis. Spinal tuberculosis is common according to its endemic region and adenocarcinoma of the lung is also rising in the incidence worldwide. Similar presentations, with unknown primary, clinical fi ndings and hematological investigations rarely conclude a true diagnosis. Radiologically, the hallmark of spinal infection is erosion of adjacent vertebral endplates and narrowing of the disc space with or without a paravertebral shadow. Metastasis typically does not involve the disc space with erosion of the adjacent vertebral endplates. It usually presents as a lytic/sclerotic lesion in the vertebral body or “winkle owl” sign. These distinguishing features of infection versus metastasis are not certainties. Biopsy is mandatory whenever in doubt or patient is not responded with provisional treatment. The author presents a case with so-called radiological features of spinal tuberculosis infection, which turns out to be a metastatic adenocarcinoma of the lung.
    Matched MeSH terms: Cartilage Diseases
  2. Zainal Z, Longman AJ, Hurst S, Duggan K, Hughes CE, Caterson B, et al.
    Lipids, 2009 Jul;44(7):581-92.
    PMID: 19449050 DOI: 10.1007/s11745-009-3304-8
    Palm oil is one of the most important edible oils in the world. Its composition (rich in palmitate and oleate) make it suitable for general food uses but its utility could be increased if its fatty acid quality could be varied. In this study, we have modified a palm olein fraction by transesterification with the n-3 polyunsaturated fatty acids, alpha-linolenate or eicosapentaenoic acid (EPA). Evaluation of the potential nutritional efficacy of the oils was made using chondrocyte culture systems which can be used to mimic many of the degenerative and inflammatory pathways involved in arthritis. On stimulation of such cultures with interleukin-1alpha, they showed increased expression of cyclooxygenase-2, the inflammatory cytokines tumour necrosis factor-alpha (TNF-alpha), IL-1alpha and IL-1beta and the proteinase ADAMTS-4. This increased expression was not affected by challenge of the cultures with palm olein alone but showed concentration-dependent reduction by the modified oil in a manner similar to EPA. These results show clearly that it is possible to modify palm oil conveniently to produce a nutraceutical with effective anti-inflammatory properties.
    Matched MeSH terms: Cartilage/drug effects; Cartilage/metabolism; Cartilage/pathology
  3. Zainal Abidin SS, Kew TY, Azman M, Mat Baki M
    BMJ Case Rep, 2020 Dec 22;13(12).
    PMID: 33370978 DOI: 10.1136/bcr-2020-237129
    A 57-year-old male chronic smoker with underlying diabetes mellitus presented with dysphonia associated with cough, dysphagia and reduced effort tolerance of 3 months' duration. Videoendoscope finding revealed bilateral polypoidal and erythematous true and false vocal fold with small glottic airway. The patient was initially treated as having tuberculous laryngitis and started on antituberculous drug. However, no improvement was observed. CT of the neck showed erosion of thyroid cartilage, which points to laryngeal carcinoma as a differential diagnosis. However, the erosion was more diffuse and appeared systemic in origin. The diagnosis of laryngeal perichondritis was made when the histopathological examination revealed features of inflammation, and the tracheal aspirate isolated Pseudomonas aeruginosa The patient made a good recovery following treatment with oral ciprofloxacin.
    Matched MeSH terms: Thyroid Cartilage/microbiology
  4. Yusoff N, Abu Osman NA, Pingguan-Murphy B
    Med Eng Phys, 2011 Jul;33(6):782-8.
    PMID: 21356602 DOI: 10.1016/j.medengphy.2011.01.013
    A mechanical-conditioning bioreactor has been developed to provide bi-axial loading to three-dimensional (3D) tissue constructs within a highly controlled environment. The computer-controlled bioreactor is capable of applying axial compressive and shear deformations, individually or simultaneously at various regimes of strain and frequency. The reliability and reproducibility of the system were verified through validation of the spatial and temporal accuracy of platen movement, which was maintained over the operating length of the system. In the presence of actual specimens, the system was verified to be able to deliver precise bi-axial load to the specimens, in which the deformation of every specimen was observed to be relatively homogeneous. The primary use of the bioreactor is in the culture of chondrocytes seeded within an agarose hydrogel while subjected to physiological compressive and shear deformation. The system has been designed specifically to permit the repeatable quantification and characterisation of the biosynthetic activity of cells in response to a wide range of short and long term multi-dimensional loading regimes.
    Matched MeSH terms: Cartilage/physiology*; Cartilage, Articular/physiology
  5. Yunus MHM, Nordin A, Kamal H
    Medicina (Kaunas), 2020 Nov 16;56(11).
    PMID: 33207632 DOI: 10.3390/medicina56110614
    Osteoarthritis (OA) is the most well-known degenerative disease among the geriatric and is a main cause of significant disability in daily living. It has a multifactorial etiology and is characterized by pathological changes in the knee joint structure including cartilage erosion, synovial inflammation, and subchondral sclerosis with osteophyte formation. To date, no efficient treatment is capable of altering the pathological progression of OA, and current therapy is broadly divided into pharmacological and nonpharmacological measures prior to surgical intervention. In this review, the significant risk factors and mediators, such as cytokines, proteolytic enzymes, and nitric oxide, that trigger the loss of the normal homeostasis and structural changes in the articular cartilage during the progression of OA are described. As the understanding of the mechanisms underlying OA improves, treatments are being developed that target specific mediators thought to promote the cartilage destruction that results from imbalanced catabolic and anabolic activity in the joint.
    Matched MeSH terms: Cartilage, Articular*
  6. Yousefi AM, Hoque ME, Prasad RG, Uth N
    J Biomed Mater Res A, 2015 Jul;103(7):2460-81.
    PMID: 25345589 DOI: 10.1002/jbm.a.35356
    The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article.
    Matched MeSH terms: Cartilage Diseases/therapy*
  7. Yong CW, Lai KW, Murphy BP, Hum YC
    Curr Med Imaging, 2021;17(8):981-987.
    PMID: 33319690 DOI: 10.2174/1573405616666201214122409
    BACKGROUND: Osteoarthritis (OA) is a common degenerative joint inflammation that may lead to disability. Although OA is not lethal, this disease will remarkably affect patient's mobility and their daily lives. Detecting OA at an early stage allows for early intervention and may slow down disease progression.

    INTRODUCTION: Magnetic resonance imaging is a useful technique to visualize soft tissues within the knee joint. Cartilage delineation in magnetic resonance (MR) images helps in understanding the disease progressions. Convolutional neural networks (CNNs) have shown promising results in computer vision tasks, and various encoder-decoder-based segmentation neural networks are introduced in the last few years. However, the performances of such networks are unknown in the context of cartilage delineation.

    METHODS: This study trained and compared 10 encoder-decoder-based CNNs in performing cartilage delineation from knee MR images. The knee MR images are obtained from the Osteoarthritis Initiative (OAI). The benchmarking process is to compare various CNNs based on physical specifications and segmentation performances.

    RESULTS: LadderNet has the least trainable parameters with the model size of 5 MB. UNetVanilla crowned the best performances by having 0.8369, 0.9108, and 0.9097 on JSC, DSC, and MCC.

    CONCLUSION: UNetVanilla can be served as a benchmark for cartilage delineation in knee MR images, while LadderNet served as an alternative if there are hardware limitations during production.

    Matched MeSH terms: Cartilage
  8. Yahaya NH, Teo R, Izaham A, Tang S, Mohamad Yusof A, Abdul Manap N
    Braz J Anesthesiol, 2016 May-Jun;66(3):283-8.
    PMID: 27108826 DOI: 10.1016/j.bjane.2014.10.008
    BACKGROUND AND OBJECTIVE: To evaluate the ability of anaesthetic trainee doctors compared to nursing anaesthetic assistants in identifying the cricoid cartilage, applying the appropriate cricoid pressure and producing an adequate laryngeal inlet view.

    METHODS: Eighty-five participants, 42 anaesthetic trainee doctors and 43 nursing anaesthetic assistants, were asked to complete a set of questionnaires which included the correct amount of force to be applied to the cricoid cartilage. They were then asked to identify the cricoid cartilage and apply the cricoid pressure on an upper airway manikin placed on a weighing scale, and the pressure was recorded. Subsequently they applied cricoid pressure on actual anaesthetized patients following rapid sequence induction. Details regarding the cricoid pressure application and the Cormack-Lehane classification of the laryngeal view were recorded.

    RESULTS: The anaesthetic trainee doctors were significantly better than the nursing anaesthetic assistants in identifying the cricoid cartilage (95.2% vs. 55.8%, p=0.001). However, both groups were equally poor in the knowledge about the amount of cricoid pressure force required (11.9% vs. 9.3% respectively) and in the correct application of cricoid pressure (16.7% vs. 20.9% respectively). The three-finger technique was performed by 85.7% of the anaesthetic trainee doctors and 65.1% of the nursing anaesthetic assistants (p=0.03). There were no significant differences in the Cormack-Lehane view between both groups.

    CONCLUSION: The anaesthetic trainee doctors were better than the nursing anaesthetic assistants in cricoid cartilage identification but both groups were equally poor in their knowledge and application of cricoid pressure.
    Matched MeSH terms: Cricoid Cartilage*
  9. Wu Y, Yang Z, Law JB, He AY, Abbas AA, Denslin V, et al.
    Tissue Eng Part A, 2017 01;23(1-2):43-54.
    PMID: 27824280 DOI: 10.1089/ten.TEA.2016.0123
    Stem cell differentiation is guided by contact with the physical microenvironment, influence by both topography and mechanical properties of the matrix. In this study, the combined effect of substratum nano-topography and mechanical stiffness in directing mesenchymal stem cell (MSC) chondrogenesis was investigated. Three polyesters of varying stiffness were thermally imprinted to create nano-grating or pillar patterns of the same dimension. The surface of the nano-patterned substrate was coated with chondroitin sulfate (CS) to provide an even surface chemistry, with cell-adhesive and chondro-inductive properties, across all polymeric substrates. The surface characteristic, mechanical modulus, and degradation of the CS-coated patterned polymeric substrates were analyzed. The cell morphology adopted on the nano-topographic surfaces were accounted by F-actin distribution, and correlated to the cell proliferation and chondrogenic differentiation outcomes. Results show that substratum stiffness and topographical cues affected MSC morphology and aggregation, and influenced the phenotypic development at the earlier stage of chondrogenic differentiation. Hyaline-like cartilage with middle/deep zone cartilage characteristics was generated on softer pillar surface, while on stiffer nano-pillar material MSCs showed potential to generate constituents of hyaline/fibro/hypertrophic cartilage. Fibro/superficial zone-like cartilage could be derived from nano-grating of softer stiffness, while stiffer nano-grating resulted in insignificant chondrogenesis. This study demonstrates the possibility of refining the phenotype of cartilage generated from MSCs by manipulating surface topography and material stiffness.
    Matched MeSH terms: Cartilage/cytology; Cartilage/metabolism
  10. Wong HT, Tham SY, Elangkumaran K, Ng W, Sia KJ
    Ann R Coll Surg Engl, 2017 Mar;99(3):e1-e2.
    PMID: 28071949 DOI: 10.1308/rcsann.2017.0010
    Fishbones are of particular interest to otolaryngologists. Most fishbones can be removed transorally or via endoscopic guidance. Transcervical neck exploration is occasionally necessary, especially in cases of an embedded foreign body. Computed tomography is the most sensitive and specific imaging modality for identifying embedded fishbones. To our knowledge, this is the first reported case of a laryngeal foreign body embedded in the paraglottic space that was removed using an open approach via a lateral thyroid cartilage window.
    Matched MeSH terms: Thyroid Cartilage/surgery
  11. Wan Osman WN, Che Ahmad Tantowi NA, Lau SF, Mohamed S
    J Food Biochem, 2019 03;43(3):e12755.
    PMID: 31353568 DOI: 10.1111/jfbc.12755
    The scopoletin (coumarin) and epicatechin (flavonoid) rich Morinda citrifolia L. (MC) Noni leaves are non-toxic (unlike the fruits) and consumed as vegetables. The anti-osteoarthritis effects of the MC leaf extract against joint cartilage degradation and inflammation were investigated through cartilage explant cultures and pre-clinical animal study. Osteoarthritis were induced by intra-articular monosodium iodoacetate injection into the right knee. The extract, scopoletin and epicatechin, suppressed glycosaminoglycan and nitric oxide release from the cartilage explant in the presence of Interleukin-1β. After 28 days, the extract treatment reduced the in vivo serum levels and joint tissues mRNA expressions for joint cartilage degradation, aggrecanase, and collagenase biomarkers. The extract increased the bone formation marker PINP levels, besides improving the articular cartilage structure and chondrocytes cellularity. The extract improved bone formation/repair, subchondral bone structure, strength and integrity, as well as cartilage synthesis by suppressing inflammation, nitric oxide production, joint catabolism by proteases, and oxidative stress. PRACTICAL APPLICATIONS: The scopoletin (coumarin) and epicatechin (flavonoid) rich Morinda citrifolia (Noni) leaves may be used as vegetables, functional food ingredient, or dietary supplements to suppress osteoarthritis progression against joint cartilage degradation and inflammation. The extract, scopoletin, or epicatechin, suppressed glycosaminoglycan, and nitric oxide release from the cartilage. The Morinda citrifolia leaf extract suppressed inflammation, nitric oxide production, tissues catabolism by proteases and oxidative stress to help reduce joint cartilage degradation, besides improving the articular cartilage structure, chondrocytes health, subchondral bone structure, bone formation/repair, and cartilage synthesis.
    Matched MeSH terms: Cartilage, Articular/drug effects; Cartilage, Articular/metabolism
  12. Wan Osman WN, Lau SF, Mohamed S
    Phytother Res, 2017 Dec;31(12):1954-1961.
    PMID: 29067744 DOI: 10.1002/ptr.5949
    The effect of scopoletin-standardized Morinda elliptica leaf extract against osteoarthritis was investigated in ex vivo explant culture and preclinical rodent model. Thirty male rats were grouped (n = 6) into untreated osteoarthritis (OA), OA + Diclofenac (5 mg/kg), and OA + extract (200 and 400 mg/kg) and compared with healthy control. Monosodium iodoacetate were injected into the right intra-articular knee joints to induce OA. The rats were evaluated for OA severity via physical (micro-CT and histological observations), biochemical, ELISA, and mRNA expression analysis (for inflammation and cartilage degradation biomarkers), after 28 days of treatment. The extract suppressed glycosaminoglycan release from the cartilage explant in the presence of Interleukin-1β. The 200 mg/kg dose appeared better than 400 mg/kg dose, at reducing cartilage and subchondral bone erosions in OA-induced rats, by significantly down-regulating the collagenases and aggrecanase. The extract dose-dependently reduced serum inflammation biomarkers and increased bone formation biomarkers to near normal levels in the OA-induced rats. M. elliptica leaf scopoletin-standardised extract alleviated OA progression and articular cartilage structure, by ameliorating cartilage degradation, nitric oxide levels, inflammation, bone /cartilage homeostasis, collagenase/aggrecanase activities, chondrocytes survival, subchondral bone structure and integrity.
    Matched MeSH terms: Cartilage, Articular/drug effects*
  13. Ude Chinedu Cletus, Azizi Miskon, Ruszymah Idrus
    Sains Malaysiana, 2018;47(11):2757-2767.
    Despite remarkable mechanical durability and strength, hyaline cartilage has very limited capacity for self-repair when injured and over time, may degenerate to osteoarthritis. We evaluated the most significant mile stones attained, in the pursuit of cure for cartilage defects and osteoarthritis. The basic treatment options include: Natural or physical therapy, medications, nutritional supplements, nutriceuticals and chondroprotective agents. Next are repairs and replacements, which include surgical procedures: Debridement/chondroplasty, microfracturing, mosaicplasty, periosteum transplantation, osteochondral autografting and allografting, high tibial osteotomy and total knee arthroplasty. But, current trend has shifted from repair, replacement, to most recently regeneration. Regenerations include the cell and gene therapies. While cell therapy involves the use of cells isolated from different tissues to cause regeneration of cartilage; gene therapy involves the selection of appropriate gene and optimal vector to incorporate cDNA. There has been much positivity reported with big animal models, which has led to several ongoing clinical trials. Translations of these findings hold high promises, though not without inherent regulatory hurdles. Considering the initial success rates, there are increasing hopes of realizing these treatments from bench to bedsides. Significant improvements in the treatment of cartilage degenerations and osteoarthritis have been made so far, but no gold standard delineated.
    Matched MeSH terms: Cartilage Diseases; Hyaline Cartilage
  14. Ude CC, Sulaiman SB, Min-Hwei N, Hui-Cheng C, Ahmad J, Yahaya NM, et al.
    PLoS One, 2014;9(6):e98770.
    PMID: 24911365 DOI: 10.1371/journal.pone.0098770
    In this study, Adipose stem cells (ADSC) and bone marrow stem cells (BMSC), multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model.
    Matched MeSH terms: Cartilage/pathology; Cartilage/physiopathology*; Cartilage/surgery
  15. Ude CC, Ng MH, Chen CH, Htwe O, Amaramalar NS, Hassan S, et al.
    Osteoarthritis Cartilage, 2015 Aug;23(8):1294-306.
    PMID: 25887366 DOI: 10.1016/j.joca.2015.04.003
    OBJECTIVES: Our previous studies on osteoarthritis (OA) revealed positive outcome after chondrogenically induced cells treatment. Presently, the functional improvements of these treated OA knee joints were quantified followed by evaluation of the mechanical properties of the engineered cartilages.
    METHODS: Baseline electromyogram (EMGs) were conducted at week 0 (pre-OA), on the locomotory muscles of nine un-castrated male sheep (Siamese long tail cross) divided into controls, adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs), before OA inductions. Subsequent recordings were performed at week 7 and week 31 which were post-OA and post-treatments. Afterwards, the compression tests of the regenerated cartilage were performed.
    RESULTS: Post-treatment EMG analysis revealed that the control sheep retained significant reductions in amplitudes at the right medial gluteus, vastus lateralis and bicep femoris, whereas BMSCs and ADSCs samples had no further significant reductions (P < 0.05). Grossly and histologically, the treated knee joints demonstrated the presence of regenerated neo cartilages evidenced by the fluorescence of PKH26 tracker. Based on the International Cartilage Repair Society scores (ICRS), they had significantly lower grades than the controls (P < 0.05). The compression moduli of the native cartilages and the engineered cartilages differed significantly at the tibia plateau, patella femoral groove and the patella; whereas at the medial femoral condyle, they had similar moduli of 0.69 MPa and 0.40-0.64 MPa respectively. Their compression strengths at all four regions were within ±10 MPa.
    CONCLUSION: The tissue engineered cartilages provided evidence of functional recoveries associated to the structural regenerations, and their mechanical properties were comparable with the native cartilage.
    KEYWORDS: Cartilage; Cell therapy; Function; Osteoarthritis; Regeneration
    Matched MeSH terms: Cartilage, Articular/pathology; Cartilage, Articular/physiopathology
  16. Ude CC, Shamsul BS, Ng MH, Chen HC, Ohnmar H, Amaramalar SN, et al.
    Exp Gerontol, 2018 04;104:43-51.
    PMID: 29421350 DOI: 10.1016/j.exger.2018.01.020
    BACKGROUND: Hyaline articular cartilage, which protects the bones of diarthrodial joints from forces associated with load bearing, frictions, and impacts has very limited capacities for self-repair. Over the years, the trend of treatments has shifted to regenerations and researchers have been on the quest for a lasting regeneration. We evaluated the treatment of osteoarthritis by chondrogenically induced ADSCs and BMSCs for a long time functional recovery.

    METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of ACL and medial meniscus. Stem cells from sheep were induced to chondrogenic lineage. Test sheep received 5 mls single doses of 2 × 107 autologous PKH26-labelled ADSCs or BMSCs, while controls received basal medium. Functional recovery of the knees was evaluated via electromyography.

    RESULTS: Induced ADSCs had 625, 255, 393, 908, 409, 157 and 1062 folds increases of collagen I, collagen II, aggrecan, SOX9, cartilage oligomeric protein, chondroadherin and fibromodullin compare to uninduced cells, while BMSCs had 702, 657, 321, 276, 337, 233 and 1163 respectively; p = .001. Immunocytochemistry was positive for these chondrogenic markers. 12 months post-treatment, controls scored 4 in most regions using ICRS, while the treated had 8; P = .001. Regenerated cartilages were positive to PKH26 and demonstrated the presence of condensing cartilages on haematoxylin and eosin; and Safranin O. OA degenerations caused significant amplitude shift from right to left hind limb. After treatments, controls persisted with significant decreases; while treated samples regained balance.

    CONCLUSIONS: Both ADSCs and BMSCs had increased chondrogenic gene expressions using TGF-β3 and BMP-6. The treated knees had improved cartilage scores; PKH26 can provide elongated tracking, while EMG results revealed improved joint recoveries. These could be suitable therapies for osteoarthritis.

    Matched MeSH terms: Cartilage, Articular/pathology; Cartilage, Articular/physiopathology*; Cartilage, Articular/surgery
  17. Ude CC, Seet WT, Sharen Aini S, Aminuddin BS, Ruszymah BHI
    Sci Rep, 2018 03 12;8(1):4345.
    PMID: 29531282 DOI: 10.1038/s41598-018-22748-1
    The study objectives include, enhancing the proliferations of aged bone marrow stem cells (BMSCs) and adipose stem cells (ADSCs); and evaluating the shelf lives of clinical grade chondrogenically induced cells from both samples. ADSCs and BMSCs from 56 patients (76 ± 8 yrs) were proliferated using basal medium (FD) and at (5, 10, 15, 20 and 25) ng/ml of basal fibroblast growth factor (bFGF). They were induced to chondrogenic lineage and stored for more than 120 hrs in FD, serum, Dulbecco's phosphate buffered saline (DPBS) and saline at 4 °C. In FD, cells stagnated and BMSCs' population doubling time (PDT) was 137 ± 30 hrs, while ADSCs' was 129.7 ± 40 hrs. bFGF caused PDT's decrease to 24.5 ± 5.8 hrs in BMSCs and 22.0 ± 6.5 hrs in ADSCs (p = 0.0001). Both cells were positive to stem cell markers before inductions and thereafter, expressed significantly high chondrogenic genes (p = 0.0001). On shelf life, both cells maintained viabilities and counts above 70% in FD and serum after 120 hrs. BMSCs' viabilities in DPBS fell below 70% after 96 hrs and saline after 72 hrs. ADSCs' viability fell below 70% in DPBS after 24 hrs and saline within 24 hrs. Concentrations between 20 ng/ml bFGF is ideal for aged adult cells' proliferation and delivery time of induced BMSCs and ADSCs can be 120 hrs in 4 °C serum.
    Matched MeSH terms: Cartilage/physiology*
  18. Tay, L.X.
    JUMMEC, 2015;18(1):1-8.
    MyJurnal
    Osteoarthritis (OA) affects millions of people worldwide with its irreversible destruction of articular cartilage. Recently, the potential of using chondrogenic differentiated multipotent mesenchymal stromal cells (cMSCs) for OA treatment is being assessed. Preliminary clinical studies have been encouraging. However current studies have also demonstrated that cMSCs are not biochemically and biomechanically identical to native articular chondrocytes (ACs). Thus, there is an urgent need for the implementation of proteomic applications as proteomics involve protein identification, relative quantification of proteins and studies of post-translational modification which reveal novel regulating processes of complex mechanisms such as in chondrogenesis. A comprehensive understanding of chondrogenesis is essential for the establishment of an effective cMSC model to regenerate cartilage. In this article, we will review current proteomic studies on chondrogenesis, focusing on recent findings and the proteomic approaches utilised.
    Matched MeSH terms: Cartilage, Articular
  19. Tay LX, Ahmad RE, Dashtdar H, Tay KW, Masjuddin T, Ab-Rahim S, et al.
    Am J Sports Med, 2012 Jan;40(1):83-90.
    PMID: 21917609 DOI: 10.1177/0363546511420819
    Mesenchymal stem cells (MSCs) represent a promising alternative form of cell-based therapy for cartilage injury. However, the capacity of MSCs for chondrogenesis has not been fully explored. In particular, there is presently a lack of studies comparing the effectiveness of MSCs to conventional autologous chondrocyte (autoC) treatment for regeneration of full-thickness cartilage defects in vivo.
    Matched MeSH terms: Cartilage, Articular/injuries*; Cartilage, Articular/surgery*
  20. Tang IP, Shashinder S, Kuljit S, Gopala KG
    Med J Malaysia, 2007 Mar;62(1):53-5.
    PMID: 17682572
    We reviewed the recurrence rate and possible factors influencing recurrence of preauricular sinus after excision. Seventy-one patients with 73 preauricular sinuses seen at our centre from year 2000 to 2005 were reviewed in this study. The overall recurrence rate was 14.1%. Twelve sinuses needed to be drained for an abscess prior to a definitive surgery. Different modalities used in demonstrating the sinus tract between methylene blue alone and probing together with methylene blue, showed different outcomes, which were statistically significant with a p value of < 0.05(chi-square test). A preauricular sinus with a previous history of infection or actively infected during the definitive surgery may have a higher tendency of recurrence. Meanwhile demonstrating the sinus tract by probing with lacrimal probe/sinus probe followed by injection of methylene blue reduces the recurrence rate (p < 0.05 with chi-square test).
    Matched MeSH terms: Ear Cartilage/surgery
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links