Displaying publications 1 - 20 of 533 in total

Abstract:
Sort:
  1. Esa NM, Yunus WM, Ahmad MB, Basri M, Razak CN, Salleh AB
    Ann N Y Acad Sci, 1998 Dec 13;864:489-92.
    PMID: 9928130
    Matched MeSH terms: Catalysis
  2. Kee CY, Hassan M, Ramachandran KB
    PMID: 10595438
    The objective of this research was to study the kinetics of synthesis of a commercially important ester - Isopropyl Palmitate (IPP) using immobilized lipase (Lipozyme IM). It was studied in a packed bed differential reactor. In order to establish the kinetics of the reaction, parameters such as linear velocity of the fluid through the reactor, particle size, substrate concentration, substrate molar ratio, temperature and water activity were studied. Operational and storage stability of the enzyme were also assessed. The reaction followed Michaelis-Menton kinetics as observed from the relationship of initial rate of the reaction as a function of substrate concentration. It was found that the optimum substrate concentration was 0.15M palmitic acid and isopropyl alcohol in 1:1 stoichiometric ratio. Inhibition by excess of isopropyl alcohol has been identified. The optimum temperature for the esterification reaction was found to be around 50 degrees C. The activation energy of this process was determined to be 43.67 kJ/mol. The optimum water content was 0.50%. The reaction rates were measured in the absence of any significant external diffusional limitations. Since internal diffusional limitations could not be eliminated, the kinetics observed is only apparent.
    Matched MeSH terms: Catalysis
  3. Bhatia S, Naidu AD, Kamaruddin AH
    Artif Cells Blood Substit Immobil Biotechnol, 1999 Sep-Nov;27(5-6):435-40.
    PMID: 10595445
    Hydrolysis of palm oil has become an important process in Oleochemical industries. Therefore, an investigation was carried out for hydrolysis of palm oil to fatty acid and glycerol using immobilized lipase in packed bed reactor. The conversion vs. residence time data were used in Michaelis-Menten rate equation to evaluate the kinetic parameters. A mathematical model for the rate of palm oil hydrolysis was proposed incorporating role of external mass transfer and pore diffusion. The model was simulated for steady-state isothermal operation of immobilized lipase packed bed reactor. The experimental data were compared with the simulated results. External mass transfer was found to affect the rate of palm oil hydrolysis at higher residence time.
    Matched MeSH terms: Catalysis
  4. Salleh AB, Basri M, Taib M, Jasmani H, Rahman RN, Rahman MB, et al.
    Appl Biochem Biotechnol, 2002 10 25;102-103(1-6):349-57.
    PMID: 12396136
    Recent studies on biocatalysis in water-organic solvent biphasic systems have shown that many enzymes retain their catalytic activities in the presence of high concentrations of organic solvents. However, not all enzymes are organic solvent tolerant, and most have limited and selective tolerance to particular organic solvents. Protein modification or protein tailoring is an approach to alter the characteristics of enzymes, including solubility in organic solvents. Particular amino acids may play pivotal roles in the catalytic ability of the protein. Attaching soluble modifiers to the protein molecule may alter its conformation and the overall polarity of the molecule. Enzymes, in particular lipases, have been chemically modified by attachment of aldehydes, polyethylene glycols, and imidoesters. These modifications alter the hydrophobicity and conformation of the enzymes, resulting in changes in the microenvironment of the enzymes. By these modifications, newly acquired properties such as enhancement of activity and stability and changes in specificity and solubility in organic solvents are obtained. Modified lipases were found to be more active and stable in organic solvents. The optimum water activity (a(w)) for reaction was also shifted by using modified enzymes. Changes in enantioselective behavior were also observed.
    Matched MeSH terms: Catalysis
  5. Aris A, Din MF, Salim MR, Yunus S, Abu Bakar WA
    Water Sci Technol, 2002;46(9):255-62.
    PMID: 12448476
    In Malaysia, most colored wastewater from dyeing factories is discharged to the environment causing serious problems. In this paper the influence of several reacting conditions, i.e. H2O2, pH, Ultraviolet (UV) intensity and dye concentration, on the performance of the immobilized system is discussed. The pH of the solution was varied from 3 to 11 while H2O2 concentration tested was from 10(-4) M to 5 x 10(-2) M. UV was tested at 365 nm and 254 nm, while dye concentration ranged from 2.5 x 10(-4) M to 10(-3) M. The influence of the reacting conditions was assessed based on absorbance. Using an OG concentration of 10(-3) M, the degradation increases from 17.8% to 49.7%. Optimum concentration of H2O2 was found to be 5 x 10(-3) M for degradation. Increasing the intensity of the UV light via shorter light wavelength also improves the performance of the system. Increasing the concentration of the dye reduces the overall performance of the system. Using the dye concentration of 2.5 x 10(-4) M (H2O2 = 10(-2) M, lambda = 254 nm, pH = 11), gives a degradation of 93.2%. At dye concentration of 10(-3) M, the performance was reduced to 53.1%.
    Matched MeSH terms: Catalysis
  6. Yassin AA, Mohamed IO, Ibrahim MN, Yusoff MS
    Appl Biochem Biotechnol, 2003 Jul;110(1):45-52.
    PMID: 12909731
    Immobilized PS-C 'Amano' II lipase was used to catalyze the interesterification of palm olein (POo) with 30, 50, and 70% stearic acid in n-hexane at 60 degrees C. The catalytic performance of the immobilized lipase was evaluated by determining the composition change of fatty acyl groups and triacylglycerol (TAG) by gas liquid chromatography and high-performance liquid chromatography, respectively. The interesterification process resulted in the formation of new TAGs, mainly tripalmitin and dipalmitostearin, both of which were absent in the original oil. These changes in TAG composition resulted in an increase in slip melting point, from the original 25.5 degrees C to 36.3, 37.0, and 40.0 degrees C in the modified POo with 30, 50, and 70% stearic acid, respectively. All the reactions attained steady state in about 6 h. This type of work will find great applications in food industries, such as confectionery.
    Matched MeSH terms: Catalysis
  7. Soo EL, Salleh AB, Basri M, Zaliha Raja Abdul Rahman RN, Kamaruddin K
    J Biosci Bioeng, 2003;95(4):361-7.
    PMID: 16233420
    The feasibility of using palm oil fractions as cheap and abundant sources of raw material for the synthesis of amino acid surfactants was investigated. Of a number of enzymes screened, the best results were obtained with the immobilized enzyme, Lipozyme. The effects of temperature, solvent, incubation period, fatty substrate/amino acid molar ratio, enzyme amount, and water removal on the reactions were analyzed and compared to those on reactions with free fatty acids and pure triglycerides as fatty substrates. All reactions were most efficient when carried out at high temperatures (70-80 degrees C) in hexane as a solvent. However, while reactions with free fatty acids proceeded better when a slight excess of the free fatty acids over the amino acids was used, reactions with triglycerides and palm oil fractions were best performed at equimolar ratios. Also, the addition of molecular sieves slightly enhanced reactions with free fatty acids but adversely affected reactions with triglycerides and palm oil fractions. Although reactions with palm oil fractions took longer (6 d) to reach equilibrium compared to reactions with free fatty acids (4 d) and pure triglycerides (4 d), better yields were obtained. Such lipase-catalyzed transacylation of palm oil fractions with amino acids is potentially useful in the production of mixed medium- to long-chain surfactants for specific applications.
    Matched MeSH terms: Catalysis
  8. Awang R, Basri M, Ahmad S, Salleh AB
    Biotechnol Lett, 2004 Jan;26(1):11-4.
    PMID: 15005144
    The esterification of palm-based 9,10-dihydroxystearic acid (DHSA) and 1-octanol in hexane as catalyzed by lipase from Rhizomucor meihei (Lipozyme IM) followed Michaelis-Menten kinetics. The esterification reaction follows a Ping-Pong, Bi-Bi mechanism. The maximum rate was estimated to be 1 micromol min(-1) mg(-1) catalyst in hexane at 50 degrees C, and the Michaelis-Menten constants for DHSA and 1-octanol were 1.3 M and 0.7 M, respectively.
    Matched MeSH terms: Catalysis
  9. Aishah AJ, Nobuhito K, Tokuda M
    Med J Malaysia, 2004 May;59 Suppl B:210-1.
    PMID: 15468892
    Highly reactive zinc metal was prepared by electrolysis of a N,N-dimethylformamide (DMF) solution containing naphthalene and a supporting electrolyte in a one-compartment cell fitted with a platinum cathode and a zinc anode. This highly reactive electrogenerated zinc (EGZn/Naph) was used for transformation of ethyl 2-bromoacrylate into the corresponding organozinc compound, which can not be achieved by the use of usual zinc metals. Reaction of the organozinc compounds thus prepared with various aryl halides in the presence of 5 mol% of palladium catalyst gave the corresponding cross-coupling products in high yields. These cross-coupling reactions were successfully applied to a synthesis of the precursor of anti-inflammatory agents such as ibuprofen, naproxen, cicloprofen and suprofen.
    Matched MeSH terms: Catalysis
  10. Ling CM, Mohamed AR, Bhatia S
    Chemosphere, 2004 Nov;57(7):547-54.
    PMID: 15488916
    TiO2 thin film photocatalyst was successfully synthesized and immobilized on glass reactor tube using sol-gel method. The synthesized TiO2 coating was transparent, which enabled the penetration of ultra-violet (UV) light to the catalyst surface. Two photocatalytic reactors with different operating modes were tested: (a) tubular photocatalytic reactor with re-circulation mode and (b) batch photocatalytic reactor. A new proposed TiO2 synthesized film formulation of 1 titanium isopropoxide: 8 isopropanol: 3 acetyl acetone: 1.1 H2O: 0.05 acetic acid (in molar ratio) gave excellent photocatalytic activity for degradation of phenol and methylene blue dye present in the water. The half-life time, t1/2 of photocatalytic degradation of phenol was 56 min at the initial phenol concentration of 1000 microM in the batch reactor. In the tubular photocatalytic reactor, 5 re-circulation passes with residence time of 2.2 min (single pass) degraded 50% of 40-microM methylene blue dye. Initial phenol concentration, presence of hydrogen peroxide, presence of air bubbling and stirring speed as the process variables were studied in the batch reactor. Initial methylene blue concentration, pH value, light intensity and reaction temperature were studied as the process variables in the tubular reactor. The synthesized TiO2 thin film was characterized using SEM, XRD and EDX analysis. A comparative performance between the synthesized TiO2 thin film and commercial TiO2 particles (99% anatase) was evaluated under the same experimental conditions. The TiO2 film was equally active as the TiO2 powder catalyst.
    Matched MeSH terms: Catalysis
  11. Al-Zuhair S
    Biotechnol Prog, 2005 Sep-Oct;21(5):1442-8.
    PMID: 16209548
    Kinetics of production of biodiesel by enzymatic methanolysis of vegetable oils using lipase has been investigated. A mathematical model taking into account the mechanism of the methanolysis reaction starting from the vegetable oil as substrate, rather than the free fatty acids, has been developed. The kinetic parameters were estimated by fitting the experimental data of the enzymatic reaction of sunflower oil by two types of lipases, namely, Rhizomucor miehei lipase (RM) immobilized on ion-exchange resins and Thermomyces lanuginosa lipase (TL) immobilized on silica gel. There was a good agreement between the experimental results of the initial rate of reaction and those predicted by the proposed model equations, for both enzymes. From the proposed model equations, the regions where the effect of alcohol inhibition fades, at different substrate concentrations, were identified. The proposed model equation can be used to predict the rate of methanolysis of vegetable oils in a batch or a continuous reactor and to determine the optimal conditions for biodiesel production.
    Matched MeSH terms: Catalysis
  12. Abdullah AZ, Bakar MZ, Bhatia S
    J Hazard Mater, 2006 Feb 28;129(1-3):39-49.
    PMID: 16310938
    The paper reports on the performance of chromium or/and copper supported on H-ZSM-5(Si/Al = 240) modified with silicon tetrachloride (Cr1.5/SiCl4-Z, Cu1.5/SiCl4-Z and Cr1.0Cu0.5/SiCl4-Z) as catalysts in the combustion of chlorinated VOCs (Cl-VOCs). A reactor operated at a gas hourly space velocity (GHSV) of 32,000 h(-1), a temperature between 100 and 500 degrees C with 2500 ppm of dichloromethane (DCM), trichloromethane (TCM) and trichloroethylene (TCE) is used for activity studies. The deactivation study is conducted at a GHSV of 3800 h(-1), at 400 degrees C for up to 12 h with a feed concentration of 35,000 ppm. Treatment with silicon tetrachloride improves the chemical resistance of H-ZSM-5 against hydrogen chloride. TCM is more reactive compared to DCM but it produces more by-products due to its high chlorine content. The stabilization of TCE is attributed to resonance effects. Water vapor increases the carbon dioxide yield through its role as hydrolysis agent forming reactive carbocations and acting as hydrogen-supplying agent to suppress chlorine-transfer reactions. The deactivation of Cr1.0Cu0.5/SiCl4-Z is mainly due to the chlorination of its metal species, especially with higher Cl/H feed. Coking is limited, particularly with DCM and TCM. In accordance with the Mars-van Krevelen model, the weakening of overall metal reducibility due to chlorination leads to a loss of catalytic activity.
    Matched MeSH terms: Catalysis
  13. Chong FC, Tey BT, Dom ZM, Ibrahim N, Rahman RA, Ling TC
    ScientificWorldJournal, 2006 Sep 07;6:1124-31.
    PMID: 16964369
    An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD) and glycerol in hexane, through a packed-bed reactor (PBR) filled with 10 kg of delipidated rice bran lipase (RBL). The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61%) was achieved at a reaction temperature of 65 masculineC, using silica gels as the water-removal agent. Thin-layer chromatography (TLC) analysis showed that the major composition of the esterified product was diacylglycerol.
    Matched MeSH terms: Catalysis
  14. Adam F, Kandasamy K, Balakrishnan S
    J Colloid Interface Sci, 2006 Dec 1;304(1):137-43.
    PMID: 16996077
    Silica supported iron catalyst was prepared from rice husk ash (RHA) via the sol-gel technique using an aqueous solution of iron(III) salt in 3.0 M HNO3. The sample was dried at 110 degrees C and labeled as RHA-Fe. A sample of RHA-Fe was calcined at 700 degrees C for 5 h and labeled as RHA-Fe700. X-ray diffraction spectrogram showed that both RHA-Fe and RHA-Fe700 were amorphous. The SEM/EDX results showed that the metal was present as agglomerates and the Fe ions were not homogeneously distributed in RHA-Fe but RHA-Fe700 was shown to be homogeneous. The specific surface areas for RHA-Fe and RHA-Fe700 were determined by BET nitrogen adsorption studies and found to be 87.4 and 55.8 m(2) g(-1), respectively. Both catalysts showed high activity in the reaction between toluene and benzyl chloride. The mono-substituted benzyltoluene was the major product and both catalysts yielded more than 92% of the product. The GC showed that both the ortho- and para-substituted monoisomers were present in about equal quantities. The minor products consisting of 16 di-substituted isomers were also observed in the GC-MS spectra of both catalytic products. The catalyst was found to be reusable without loss of activity and with no leaching of the metal.
    Matched MeSH terms: Catalysis
  15. Ali S, Garforth A, Fakhru'l-Razi A
    PMID: 16760091
    Feedstock recycling of high-density polyethylene (HDPE) over fluid catalytic cracking (FCC) catalysts (1:6 ratio) was carried out using a laboratory fluidized bed reactor operating at 450 degrees C. Fresh and steam deactivated commercial FCC catalysts with different levels of rare earth oxide (REO) were compared as well as used FCC catalysts (E-Cats) with different levels of metal poisoning. Fresh FCC catalysts gave the highest results of HDPE degradation in terms of yield of volatile hydrocarbon product. Meanwhile, steamed FCC catalysts and used FCC catalysts showed similar but lower yields. Overall, the product yields from HDPE cracking showed that the level of metal contamination (nickel and vanadium) did not affect the product stream generated from polymer cracking. This study gives promising results as an alternative technique for the cracking and recycling of polymer waste.
    Matched MeSH terms: Catalysis
  16. Wahab HA, Ahmad Khairudin NB, Samian MR, Najimudin N
    BMC Struct Biol, 2006;6:23.
    PMID: 17076907
    Polyhydroxyalkanoates (PHA), are biodegradable polyesters derived from many microorganisms such as the pseudomonads. These polyesters are in great demand especially in the packaging industries, the medical line as well as the paint industries. The enzyme responsible in catalyzing the formation of PHA is PHA synthase. Due to the limited structural information, its functional properties including catalysis are lacking. Therefore, this study seeks to investigate the structural properties as well as its catalytic mechanism by predicting the three-dimensional (3D) model of the Type II Pseudomonas sp. USM 4-55 PHA synthase 1 (PhaC1P.sp USM 4-55).
    Matched MeSH terms: Catalysis
  17. Adam F, Andas J
    J Colloid Interface Sci, 2007 Jul 1;311(1):135-43.
    PMID: 17391688
    Iron and 4-(methylamino)benzoic acid have been successfully incorporated into silica extracted from rice husk. The silica/Fe/amine complex, RH-Fe(5% amine), showed a ca. 24% increase in specific surface area compared to RH-Fe. This increase was attributed to the templated formation of regular pores. The XRD showed the RH-Fe(5% amine) to be amorphous. The Friedel-Crafts benzylation reaction with toluene using RH-Fe(5% amine) showed a drastic reduction in the di-substituted products to ca. 1.0%.
    Matched MeSH terms: Catalysis
  18. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2007 Oct 26;72(22):8452-8.
    PMID: 17918997
    A kinetic study on the aqueous cleavage of N-(2-methoxyphenyl)phthalimide (1) and N-(2-hydroxyphenyl)phthalimide (2), under the buffers of N-methylmorpholine, reveals the equilibrium presence of monocationic amide (Ctam) formed due to nucleophilic reactions of N-methylmorpholine with 1 and 2. Pseudo-first-order rate constants for the reactions of water and HO- with Ctam (formed through nucleophilic reaction of N-methylmorpholine with 1) are 4.60 x 10(-5) s-1 and 47.9 M-1 s-1, respectively. But the cleavage of Ctam, formed through nucleophilic reaction of N-methylmorpholine with 2, involves intramolecular general base (2'-O- group of Ctam)-assisted water attack at carbonyl carbon of cationic amide group of Ctam in or before the rate-determining step.
    Matched MeSH terms: Catalysis
  19. Tamunaidu P, Bhatia S
    Bioresour Technol, 2007 Dec;98(18):3593-601.
    PMID: 17208441
    Oil palm is widely grown in Malaysia. Palm oil has attracted the attention of researchers to develop an 'environmentally friendly' and high quality fuel, free of nitrogen and sulfur. In the present study, the catalytic cracking of palm oil to biofuel was studied over REY catalyst in a transport riser reactor at atmospheric pressure. The effect of reaction temperature (400-500 degrees C), catalyst/palm oil ratio (5-10) and residence time (10-30s) was studied over the yield of bio-gasoline and gas as fuel. Design of experiments was used to study the effect of operating variables over conversion of palm oil and yield of hydrocarbon fuel. The response surface methodology was used to determine the optimum value of the operating variables for maximum yield of bio-gasoline fraction in the liquid product obtained.
    Matched MeSH terms: Catalysis
  20. Salmiaton A, Garforth A
    Waste Manag, 2007;27(12):1891-6.
    PMID: 17084608
    Catalytic cracking of high-density polyethylene (HDPE) over fluid catalytic cracking (FCC) catalysts (1:6 ratio) was carried out using a laboratory fluidized bed reactor operating at 450 degrees C. Two fresh and two steam deactivated commercial FCC catalysts with different levels of rare earth oxide (REO) were compared as well as two used FCC catalysts (E-Cats) with different levels of metal poisoning. Also, inert microspheres (MS3) were used as a fluidizing agent to compare with thermal cracking process at BP pilot plant at Grangemouth, Scotland, which used sand as its fluidizing agent. The results of HDPE degradation in terms of yield of volatile hydrocarbon product are fresh FCC catalysts>steamed FCC catalysts approximately used FCC catalysts. The thermal cracking process using MS3 showed that at 450 degrees C, the product distribution gave 46 wt% wax, 14% hydrocarbon gases, 8% gasoline, 0.1% coke and 32% nonvolatile product. In general, the product yields from HDPE cracking showed that the level of metal contamination (nickel and vanadium) did not affect the product stream generated from polymer cracking. This study gives promising results as an alternative technique for the cracking and recycling of polymer waste.
    Matched MeSH terms: Catalysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links