Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Senusi F, Nasuha N, Husain A, Ismail S
    Environ Sci Pollut Res Int, 2023 Dec;30(60):124585-124595.
    PMID: 35604600 DOI: 10.1007/s11356-022-20167-4
    Recently, the plant polyphenols have attracted much attention for membrane modification, especially in surface coating application. In this study, the synthesis of catechol-amine coating solutions was evaluated at different pH conditions and with different concentrations of tannic acid and tetraethylenepentamine in order to determine the relationship between chemical structure and mechanism in the oxidation reaction. The reactivity of catechol and amine groups in the formulation was measured using UV-Vis spectroscopy and observation of the change in colour of the coating solutions. Then, the deposition of catechol-amine coating solutions was applied onto the hydrophobic polyvinylidene fluoride (PVDF) membrane. The formulation results show significant differences in alkaline conditions, revealing the role of catechol groups in the oxidation of polyphenolics. The reactions of quinone and amines to form crosslinks by Michael addition and Schiff base reactions were observed at different concentrations of each compound in coating solution. In addition, the negative charge of hydrophilic and underwater oleophobic-coated PVDF membrane was confirmed by surface zeta potential analysis. The morphological surface of modified membrane is rougher due to that coating deposition was also examined using scanning electron microscopy (SEM). Furthermore, the performance of modified membrane is comparable with the commercial hydrophilic membrane in terms of fluxes and separation efficiency of emulsion solution.
    Matched MeSH terms: Catechols
  2. Manoj D, Gnanasekaran L, Rajendran S, Jalil AA, Siddiqui MN, Gracia F, et al.
    Environ Res, 2023 Apr 01;222:115358.
    PMID: 36702188 DOI: 10.1016/j.envres.2023.115358
    The subject of water contamination and how it gets defiled to the society and humans is confabulating from the past decades. Phenolic compounds widely exist in the water sources and it is emergent to determine the toxicity in natural and drinking water, because it is hazardous to the humans. Among these compounds, catechol has sought a strong concern because of its rapid occurrence in nature and its potential toxicity to humans. The present work aims to develop an effective electrochemical sensing of catechol using mesoporous structure of Fe3O4-TiO2 decorated on glassy carbon (GC) electrode. The creation of pure TiO2 using the sol-gel technique was the first step in the synthesis protocol for binary nanocomposite, which was then followed by the loading of Fe3O4 nanoparticles on the surface of TiO2 using the thermal decomposition method. The resultant Fe3O4-TiO2 based nanocomposite exhibited mesoporous structure and the cavities were occupied with highly active magnetite nanoparticles (Fe3O4) with high specific surface area (90.63 m2/g). When compared to pure TiO2, catechol showed a more prominent electrochemical response for Fe3O4-TiO2, with a significant increase in anodic peak current at a lower oxidation potential (0.387 V) with a detection limit of 45 μM. Therefore, the prepared magnetite binary nanocomposite can serve as an efficient electroactive material for sensing of catechol, which could also act as a promising electrocatalyst for various electrocatalytic applications.
    Matched MeSH terms: Catechols
  3. Zainudin MAM, Jongberg S, Lund MN
    Food Chem, 2021 Jan 01;334:127611.
    PMID: 32712493 DOI: 10.1016/j.foodchem.2020.127611
    Plant polyphenols applied as natural antioxidant ingredients, are known to bind to cysteine residues on meat proteins. The aim of this study was to examine the effect of light exposure on the formation of cysteine-phenol adduct in meat added 4-methylcatechol (4MC), a model polyphenol, during storage through quantitative LC-MS/MS-based analysis. Cysteine-4-methylcatechol adduct (Cys-4MC) formation in meat added 1500 ppm 4-MC increased significantly (by 50%) when stored under light in oxygen at 4 °C for 7 days as compared to storage in the dark. This was reflected by a significant decrease in thiol concentrations in the same sample. Gel electrophoresis showed loss in myosin heavy chain (MHC), and a resulting increase in cross-linked MHC (CL-MHC) and larger protein polymers in samples added 4MC. Protein blots stained with nitroblue tetrazolium (NBT) showed intensive protein-polyphenol binding in the meat samples added 4MC, but no major differences between storage conditions.
    Matched MeSH terms: Catechols/chemistry*
  4. Lee GLY, Zakaria NN, Convey P, Futamata H, Zulkharnain A, Suzuki K, et al.
    Int J Mol Sci, 2020 Dec 09;21(24).
    PMID: 33316871 DOI: 10.3390/ijms21249363
    Study of the potential of Antarctic microorganisms for use in bioremediation is of increasing interest due to their adaptations to harsh environmental conditions and their metabolic potential in removing a wide variety of organic pollutants at low temperature. In this study, the psychrotolerant bacterium Rhodococcus sp. strain AQ5-07, originally isolated from soil from King George Island (South Shetland Islands, maritime Antarctic), was found to be capable of utilizing phenol as sole carbon and energy source. The bacterium achieved 92.91% degradation of 0.5 g/L phenol under conditions predicted by response surface methodology (RSM) within 84 h at 14.8 °C, pH 7.05, and 0.41 g/L ammonium sulphate. The assembled draft genome sequence (6.75 Mbp) of strain AQ5-07 was obtained through whole genome sequencing (WGS) using the Illumina Hiseq platform. The genome analysis identified a complete gene cluster containing catA, catB, catC, catR, pheR, pheA2, and pheA1. The genome harbours the complete enzyme systems required for phenol and catechol degradation while suggesting phenol degradation occurs via the β-ketoadipate pathway. Enzymatic assay using cell-free crude extract revealed catechol 1,2-dioxygenase activity while no catechol 2,3-dioxygenase activity was detected, supporting this suggestion. The genomic sequence data provide information on gene candidates responsible for phenol and catechol degradation by indigenous Antarctic bacteria and contribute to knowledge of microbial aromatic metabolism and genetic biodiversity in Antarctica.
    Matched MeSH terms: Catechols/metabolism*
  5. Mulyati S, Muchtar S, Arahman N, Syamsuddin Y, Mat Nawi NI, Yub Harun N, et al.
    Polymers (Basel), 2020 Sep 09;12(9).
    PMID: 32916778 DOI: 10.3390/polym12092051
    Polydopamine has been widely used as an additive to enhance membrane fouling resistance. This study reports the effects of two-step dopamine-to-polydopamine modification on the permeation, antifouling, and potential anti-UV properties of polyethersulfone (PES)-based ultrafiltration membranes. The modification was performed through a two-step mechanism: adding the dopamine additive followed by immersion into Tris-HCl solution to allow polymerization of dopamine into polydopamine (PDA). The results reveal that the step of treatment, the concentration of dopamine in the first step, and the duration of dipping in the Tris solution in the second step affect the properties of the resulting membranes. Higher dopamine loadings improve the pure water flux (PWF) by more than threefold (15 vs. 50 L/m2·h). The extended dipping period in the Tris alkaline buffer leads to an overgrowth of the PDA layer that partly covers the surface pores which lowers the PWF. The presence of dopamine or polydopamine enhances the hydrophilicity due to the enrichment of hydrophilic catechol moieties which leads to better anti-fouling. Moreover, the polydopamine film also improves the membrane resistance to UV irradiation by minimizing photodegradation's occurrence.
    Matched MeSH terms: Catechols
  6. Kausar S, Altaf AA, Hamayun M, Rasool N, Hadait M, Akhtar A, et al.
    Molecules, 2020 Jul 31;25(15).
    PMID: 32752133 DOI: 10.3390/molecules25153520
    Lignin depolymerization for the purpose of synthesizing aromatic molecules is a growing focus of research to find alternative energy sources. In current studies, the photocatalytic depolymerization of lignin has been investigated by two new iso-propylamine-based lead chloride perovskite nanomaterials (SK9 and SK10), synthesized by the facile hydrothermal method. Characterization was done by Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), UV-Visible (UV-Vis), Photoluminescence (PL), and Fourier-Transform Infrared (FTIR) Spectroscopy and was used for the photocatalytic depolymerization of lignin under UV light. Lignin depolymerization was monitored by taking absorption spectra and catalytic paths studied by applying kinetic models. The %depolymerization was calculated for factors such as catalyst dose variation, initial concentration of lignin, and varying temperatures. Pseudo-second order was the best suited kinetic model, exhibiting a mechanism for lignin depolymerization that was chemically rate controlled. The activation energy (Ea) for the depolymerization reaction was found to be 15 kJ/mol, which is remarkably less than conventional depolymerization of the lignin, i.e., 59.75 kJ/mol, exhibiting significant catalytic efficiencies of synthesized perovskites. Products of lignin depolymerization obtained after photocatalytic activity at room temperature (20 °C) and at 90 °C were characterized by GC-MS analysis, indicating an increase in catalytic lignin depolymerization structural subunits into small monomeric functionalities at higher temperatures. Specifically, 2-methoxy-4-methylphenol (39%), benzene (17%), phenol (10%) and catechol (7%) were detected by GC-MS analysis of lignin depolymerization products.
    Matched MeSH terms: Catechols/analysis
  7. Aziz FAA, Suzuki K, Moriuchi R, Dohra H, Tashiro Y, Futamata H
    Microbiol Resour Announc, 2020 Feb 13;9(7).
    PMID: 32054711 DOI: 10.1128/MRA.01478-19
    We report the draft genome sequence of Variovorax boronicumulans strain HAB-30, which was isolated from a phenol-degrading chemostat culture. This strain contains genes encoding a multicomponent type of phenol hydroxylase, with degradation pathways for catechol and other aromatic compounds. The genome sequence will be useful for understanding the metabolic pathways involved in phenol degradation.
    Matched MeSH terms: Catechols
  8. Mohd Sahardi NFN, Jaafar F, Mad Nordin MF, Makpol S
    PMID: 32419792 DOI: 10.1155/2020/1787342
    Background: Ageing resulted in a progressive loss of muscle mass and strength. Increased oxidative stress in ageing affects the capacity of the myoblast to differentiate leading to impairment of muscle regeneration. Zingiber officinale Roscoe (ginger) has potential benefits in reversing muscle ageing due to its antioxidant property. This study aimed to determine the effect of ginger in the prevention of cellular senescence and promotion of muscle regeneration.

    Methods: Myoblast cells were cultured into young and senescent state before treated with different concentrations of ginger standardised extracts containing different concentrations of 6-gingerol and 6-shogaol. Analysis on cellular morphology and myogenic purity was carried out besides determination of SA-β-galactosidase expression and cell cycle profile. Myoblast differentiation was quantitated by determining the fusion index, maturation index, and myotube size.

    Results: Treatment with ginger extracts resulted in improvement of cellular morphology of senescent myoblasts which resembled the morphology of young myoblasts. Our results also showed that ginger treatment caused a significant reduction in SA-β-galactosidase expression on senescent myoblasts indicating prevention of cellular senescence, while cell cycle analysis showed a significant increase in the percentage of cells in the G0/G1 phase and reduction in the S-phase cells. Increased myoblast regenerative capacity was observed as shown by the increased number of nuclei per myotube, fusion index, and maturation index.

    Conclusions: Ginger extracts exerted their potency in promoting muscle regeneration as indicated by prevention of cellular senescence and promotion of myoblast regenerative capacity.

    Matched MeSH terms: Catechols
  9. Song S, Dang M, Kumar M
    Inflammopharmacology, 2019 Dec;27(6):1243-1254.
    PMID: 30826930 DOI: 10.1007/s10787-019-00569-6
    P38 mitogen-activated protein kinase (p38 MAPK), a tissue inflammatory factor can be activated under oxidative stress and in conditions associated with hyperglycemia. Gingerol containing various natural herbs has been extensively studied for its pharmacological actions both in reducing the inflammation and as immunity booster. The aim of the current investigation was to examine the renal protective effect of gingerol in high-fat diet/streptozotocin-induced type II diabetes mellitus in a rat model.NRK 52E cells were divided into normal and high glucose group treated with gingerol. The methylthiazotetrazolium assay was used to establish the cell proliferation progress. Streptozotocin-inducted diabetes in rats was treated with gingerol for 16 weeks. The blood glucose, serum creatinine, body weight, food intake, biochemical, antioxidant and haematological parameters were assayed to establish the correlation. Pro-inflammatory cytokines including Il-1β, IL-6, TNF-α; inflammatory mediator COX-2, PGE2, NF-kB, p38MAPK, and TGF-β, were also determined to assess the molecular mechanism. Gingerol exhibited the protective effect on the high glucose level induced NRK 52E cells and did not show any effect on the normal cells. Gingerol significantly (P 
    Matched MeSH terms: Catechols/pharmacology*; Catechols/therapeutic use
  10. Yusof KM, Makpol S, Fen LS, Jamal R, Wan Ngah WZ
    J Nat Med, 2019 Sep;73(4):745-760.
    PMID: 31177355 DOI: 10.1007/s11418-019-01323-6
    Our previous study reported that combined treatment of γ-tocotrienol with 6-gingerol showed promising anticancer effects by synergistically inhibiting proliferation of human colorectal cancer cell lines. This study aimed to identify and elucidate molecular mechanisms involved in the suppression of SW837 colorectal cancer cells modulated by combined treatment of γ-tocotrienol and 6-gingerol. Total RNA from both untreated and treated cells was prepared for transcriptome analysis using RNA sequencing techniques. We performed high-throughput sequencing at approximately 30-60 million coverage on both untreated and 6G + γT3-treated cells. The results showed that cancer-specific differential gene expression occurred and functional enrichment pathway analysis suggested that more than one pathway was modulated in 6G + γT3-treated cells. Combined treatment with 6G + γT3 augmented its chemotherapeutic effect by interfering with the cell cycle process, downregulating the Wnt signalling pathway and inducing apoptosis mainly through caspase-independent programmed cell death through mitochondrial dysfunction, activation of ER-UPR, disruption of DNA repair mechanisms and inactivation of the cell cycle process through the downregulation of main genes in proliferation such as FOXM1 and its downstream genes. The combined treatment exerted its cytotoxic effect through upregulation of genes in stress response activation and cytostatic effects demonstrated by downregulation of main regulator genes in the cell cycle. Selected genes involved in particular pathways including ATF6, DDIT3, GADD34, FOXM1, CDK1 and p21 displayed concordant patterns of gene expression between RNA sequencing and RT-qPCR. This study provides new insights into combined treatment with bioactive compounds not only in terms of its pleiotropic effects that enhance multiple pathways but also specific target genes that could be exploited for therapeutic purposes, especially in suppressing cancer cell growth.
    Matched MeSH terms: Catechols/pharmacology*
  11. Mohd Sahardi NFN, Makpol S
    PMID: 31531114 DOI: 10.1155/2019/5054395
    Currently, the age of the population is increasing as a result of increased life expectancy. Ageing is defined as the progressive loss of physiological integrity, which can be characterized by functional impairment and high vulnerability to various types of diseases, such as diabetes, hypertension, Alzheimer's disease (AD), Parkinson's disease (PD), and atherosclerosis. Numerous studies have reported that the presence of oxidative stress and inflammation contributes to the development of these diseases. In general, oxidative stress could induce proinflammatory cytokines and reduce cellular antioxidant capacity. Increased oxidative stress levels beyond the production of antioxidant agents cause oxidative damage to biological molecules, including DNA, protein, and carbohydrates, which affects normal cell signalling, cell growth, differentiation, and apoptosis and leads to disease pathogenesis. Since oxidative stress and inflammation contribute to these diseases, ginger (Zingiber officinale Roscoe) is one of the potential herbs that can be used to reduce the level of oxidative stress and inflammation. Ginger consists of two major active components, 6-gingerol and 6-shogaol, which are essential for preventing oxidative stress and inflammation. Thus, this paper will review the effects of ginger on ageing and degenerative diseases, including AD, PD, type 2 diabetes mellitus (DM), hypertension, and osteoarthritis.
    Matched MeSH terms: Catechols
  12. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 07 05;23(7).
    PMID: 29976903 DOI: 10.3390/molecules23071646
    Gingerols and shogaols are compounds found in ginger (Zingiber officinale Roscoe); shogaols are found in lower concentration than gingerols but exhibit higher biological activities. This work studied the effects of different drying methods including open sun drying (OSD) solar tunnel drying (STD) and hot air drying (HAD) with various temperature on the formation of six main active compounds in ginger rhizomes, namely 6-, 8-, and 10-gingerols and 6-, 8-, and 10-shogaols, as well as essential oil content. Antioxidant and antimicrobial activity of dried ginger was also evaluated. High performance liquid chromatography (HPLC) analysis showed that after HAD with variable temperature (120, 150 and 180 °C), contents of 6-, 8-, and 10-gingerols decreased, while contents of 6-, 8-, and 10-shogaol increased. High formation of 6-, 8-, and 10-shogaol contents were observed in HAD (at 150 °C for 6 h) followed by STD and OSD, respectively. OSD exhibited high content of essential oil followed by STD and HAD method. Ginger-treated with HAD exhibited the highest DPPH (IC50 of 57.8 mg/g DW) and FRAP (493.8 µM of Fe(II)/g DM) activity, compared to STD and OSD method. HAD ginger exhibited potent antimicrobial activity with lower minimum inhibition concentration (MIC) value against bacteria strains followed by STD and OSD, respectively. Ginger extracts showed more potent antimicrobial activity against Gram positive bacteria than Gram negative bacteria strains. Result of this study confirmed that conversion of gingerols to shogaols was significantly affected by different drying temperature and time. HAD at 150 °C for 6 h, provides a method for enhancing shogaols content in ginger rhizomes with improving antioxidant and antimicrobial activities.
    Matched MeSH terms: Catechols/analysis*; Catechols/pharmacology
  13. Xing M, Akowuah GA, Gautam V, Gaurav A
    J Biomol Struct Dyn, 2017 Oct;35(13):2910-2924.
    PMID: 27608741 DOI: 10.1080/07391102.2016.1234417
    Phosphodiesterase 4 (PDE4) has been established as a drug target for inflammatory diseases of respiratory tract like asthma and chronic obstructive pulmonary disease. The selective inhibitors of PDE4B, a subtype of PDE4, are devoid of adverse effects like nausea and vomiting commonly associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. Thus, in the present study, molecular docking, molecular dynamic simulations and binding free energy were performed to explore potential selective PDE4B inhibitors based on ginger phenolic compounds. The results of docking studies indicate that some of the ginger phenolic compounds demonstrate higher selective PDE4B inhibition than existing selective PDE4B inhibitors. Additionally, 6-gingerol showed the highest PDE4B inhibitory activity as well as selectivity. The comparison of binding mode of PDE4B/6-gingerol and PDE4D/6-gingerol complexes revealed that 6-gingerol formed additional hydrogen bond and hydrophobic interactions with active site and control region 3 (CR3) residues in PDE4B, which were primarily responsible for its PDE4B selectivity. The results of binding free energy demonstrated that electrostatic energy is the primary factor in elucidating the mechanism of PDE4B inhibition by 6-gingerol. Dynamic cross-correlation studies also supported the results of docking and molecular dynamics simulation. Finally, a small library of molecules were designed based on the identified structural features, majority of designed molecules showed higher PDE4B selectivity than 6-gingerol. These results provide important structural features for designing new selective PDE4B inhibitors as anti-inflammatory drugs and promising candidates for synthesis and pre-clinical pharmacological investigations.
    Matched MeSH terms: Catechols/chemistry
  14. Seow SLS, Hong SL, Lee GS, Malek SNA, Sabaratnam V
    BMC Complement Altern Med, 2017 Jun 24;17(1):334.
    PMID: 28646880 DOI: 10.1186/s12906-017-1837-6
    BACKGROUND: Ginger is a popular spice and food preservative. The rhizomes of the common ginger have been used as traditional medicine to treat various ailments. 6-Shogaol, a pungent compound isolated from the rhizomes of jahe gajah (Zingiber officinale var officinale) has shown numerous pharmacological activities, including neuroprotective and anti-neuroinflammatory activities. The aim of this study was to investigate the potential of 6-shogaol to mimic the neuritogenic activity of nerve growth factor (NGF) in rat pheochromocytoma (PC-12) cells.

    METHODS: The cytotoxic effect of 6-shogaol was determined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The neuritogenic activity was assessed by neurite outgrowth stimulation assay while the concentration of extracellular NGF in cell culture supernatant was assessed by enzyme-linked immunosorbent assay (ELISA). Involvement of cellular signaling pathways, mitogen-activated protein kinase kinase/extracellular signal-regulated kinase1/2 (MEK/ERK1/2) and phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) in 6-shogaol-stimulated neuritogenesis were examined by using specific pharmacological inhibitors.

    RESULTS: 6-Shogaol (500 ng/ml) induced neuritogenesis that was comparable to NGF (50 ng/ml) and was not cytotoxic towards PC-12 cells. 6-Shogaol induced low level of NGF biosynthesis in PC-12 cells, showing that 6-shogaol stimulated neuritogenesis possibly by inducing NGF biosynthesis, and also acting as a substitute for NGF (NGF mimic) in PC-12 cells. The inhibitors of Trk receptor (K252a), MEK/ERK1/2 (U0126 and PD98059) and PI3K/AKT (LY294002) attenuated the neuritogenic activity of both NGF and 6-shogaol, respectively.

    CONCLUSIONS: The present findings demonstrated that 6-shogaol induced neuritogenic activity in PC-12 cells via the activation MEK/ERK1/2 and PI3K/AKT signaling pathways. This study suggests that 6-shogaol could act as an NGF mimic, which may be beneficial for preventive and therapeutic uses in neurodegenerative diseases.

    Matched MeSH terms: Catechols/isolation & purification; Catechols/pharmacology*; Catechols/chemistry
  15. Lee, Siew Yi, Janna Ong Abdullah
    MyJurnal
    Widespread applications of phenol in manufacturing industries and oil refineries had resulted in unprecedented leakage of phenol into the environment, which can cause serious health effects such as tissue necrosis and cardiac arrhythmia upon contact or ingestion. Plants exposed to phenol had reduced seed germination index, inhibited growth or even fatality. There are many technologies currently practised to remediate phenol pollution such as physiochemical methods (adsorption to activated carbon and chemical oxidation), biological methods (biodegradation by bacteria or fungus, and soil bioaugmentation), and phytoremediation method (using hairy roots of plants). As physiochemical and microbial phenol degradation are destructive and costly, phytoremediation is widely studied as an alternative phenol remediator which is environmental friendly and cost effective. Microorganisms can detoxify the aromatic xenobiotic through the aerobic or anaerobic pathway. Aerobic degradation of phenol is through either the meta- or ortho-pathway of catechol cleavage while anaerobic degradation occurs through the benzoate pathway. In plants, degradation of phenol is also through catechol cleavage as in microorganisms. However, different enzyme systems were utilised in the different pathways involved.
    Matched MeSH terms: Catechols
  16. Gan HM, Lee YP, Austin CM
    Front Microbiol, 2017;8:1880.
    PMID: 29046667 DOI: 10.3389/fmicb.2017.01880
    We improved upon the previously reported draft genome of Hydrogenophaga intermedia strain PBC, a 4-aminobenzenesulfonate-degrading bacterium, by supplementing the assembly with Nanopore long reads which enabled the reconstruction of the genome as a single contig. From the complete genome, major genes responsible for the catabolism of 4-aminobenzenesulfonate in strain PBC are clustered in two distinct genomic regions. Although the catabolic genes for 4-sulfocatechol, the deaminated product of 4-aminobenzenesulfonate, are only found in H. intermedia, the sad operon responsible for the first deamination step of 4-aminobenzenesulfonate is conserved in various Hydrogenophaga strains. The absence of pabB gene in the complete genome of H. intermedia PBC is consistent with its p-aminobenzoic acid (pABA) auxotrophy but surprisingly comparative genomics analysis of 14 Hydrogenophaga genomes indicate that pABA auxotrophy is not an uncommon feature among members of this genus. Of even more interest, several Hydrogenophaga strains do not possess the genomic potential for hydrogen oxidation, calling for a revision to the taxonomic description of Hydrogenophaga as "hydrogen eating bacteria."
    Matched MeSH terms: Catechols
  17. Hussain RM, Abdullah NF, Amom Z
    J Integr Med, 2016 Nov;14(6):456-464.
    PMID: 27854197 DOI: 10.1016/S2095-4964(16)60279-0
    OBJECTIVE: This study investigated the effects of allylpyrocatechol (APC), the major component in ethanolic extract of Piper betle, on key oxidative stress resistance enzymes important for the survival of Staphylococcus aureus, a major pathogen in the human host.

    METHODS: Effects of APC on expressions of genes encoding catalase (katA), superoxide dismutases (SODs), including sodA and sodM, and alkyl hydroperoxide reductase (ahpC) in S· aureus were quantitated by RT-qPCR in reference to gyrA and 16S rRNA. Corresponding activities of the enzymes were also investigated. The Livak analysis was performed for verification of gene-fold expression data. Effects of APC on intracellular and extracellular reactive oxygen species (ROS) levels were determined using the nitroblue tetrazolium (NBT) reduction assay.

    RESULTS: APC-treated S· aureus cells had higher sodA and sodM transcripts at 1.5-fold and 0.7-fold expressions respectively with corresponding increase in total SOD activity of 12.24 U/mL compared to untreated cells, 10.85 U/mL (P<0.05). Expression of ahpC was highest in APC-treated cells with 5.5-fold increased expression compared to untreated cells (P<0.05). Correspondingly, ahpC activity was higher in APC-treated cells at 0.672 (A310nm) compared to untreated cells which was 0.394 (A310nm). In contrast, katA expression was 1.48-fold and 0.33-fold lower respectively relative to gyrA and 16S rRNA. Further, APC-treated cells showed decreased catalase activity of 1.8 ×10-4 (U/L or μmol/(min·L)) compared to untreated cells, which was 4.8 ×10-4 U/L (P<0.05). Absorbance readings (A575nm) for the NBT reduction assay were 0.709 and 0.695 respectively for untreated and treated cells, which indicated the presence of ROS. APC-treated S· aureus cells had lower ROS levels both extracellularly and intracellularly, but larger amounts remained intracellularly compared to extracellular levels with absorbances of 0.457 and 0.137 respectively (P<0.05).

    CONCLUSION: APC induced expressions of both sodA and sodM, resulting in increased total SOD activity in S· aureus. Higher sodA expression indicated stress induced intracellularly involving O2- , presumably leading to higher intracellular pools of H2O2. A concommittant decrease in katA expression and catalase activity possibly induced ahpC expression, which was increased the highest in APC-treated cells. Our findings suggest that in the absence of catalase, cells are propelled to seek an alternate pathway involving ahpC to reduce stress invoked by O2- and H2O2. Although APC reduced levels of ROS, significant amounts eluded its antioxidative action and remained intracellularly, which adds to oxidative stress in treated cells.

    Matched MeSH terms: Catechols/pharmacology*
  18. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2016 Jun 17;21(6).
    PMID: 27322227 DOI: 10.3390/molecules21060780
    The effects of different drying methods (freeze drying, vacuum oven drying, and shade drying) on the phytochemical constituents associated with the antioxidant activities of Z. officinale var. rubrum Theilade were evaluated to determine the optimal drying process for these rhizomes. Total flavonoid content (TFC), total phenolic content (TPC), and polyphenol oxidase (PPO) activity were measured using the spectrophotometric method. Individual phenolic acids and flavonoids, 6- and 8-gingerol and shogaol were identified by ultra-high performance liquid chromatography method. Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used for the evaluation of antioxidant activities. The highest reduction in moisture content was observed after freeze drying (82.97%), followed by vacuum oven drying (80.43%) and shade drying (72.65%). The highest TPC, TFC, and 6- and 8-shogaol contents were observed in samples dried by the vacuum oven drying method compared to other drying methods. The highest content of 6- and 8-gingerol was observed after freeze drying, followed by vacuum oven drying and shade drying methods. Fresh samples had the highest PPO activity and lowest content of flavonoid and phenolic acid compounds compared to dried samples. Rhizomes dried by the vacuum oven drying method represent the highest DPPH (52.9%) and FRAP activities (566.5 μM of Fe (II)/g DM), followed by freeze drying (48.3% and 527.1 μM of Fe (II)/g DM, respectively) and shade drying methods (37.64% and 471.8 μM of Fe (II)/g DM, respectively) with IC50 values of 27.2, 29.1, and 34.8 μg/mL, respectively. Negative and significant correlations were observed between PPO and antioxidant activity of rhizomes. Vacuum oven dried rhizomes can be utilized as an ingredient for the development of value-added food products as they contain high contents of phytochemicals with valuable antioxidant potential.
    Matched MeSH terms: Catechols/chemistry
  19. Lin H, Ng AWR, Wong CW
    Food Sci Biotechnol, 2016;25(Suppl 1):91-96.
    PMID: 30263491 DOI: 10.1007/s10068-016-0103-x
    Purification and characterization of polyphenol oxidase (PPO) from Chinese parsley (Coriandrum sativum) were achieved. Crude PPO exhibited an enzyme activity of 1,952.24 EU/mL. PPO was partially purified up to 6.52x with a 10.89% yield using gel filtration chromatography. Maximal PPO activity was found at 35°C, pH 8.0 for 4-methylcatechol and at 40°C, pH 7.0 for catechol. PPO showed a higher affinity towards 4-methylcatechol, but a higher thermal stability when reacting with catechol. LCysteine was a better inhibitor than citric acid for reducing PPO activity at concentrations of 1 and 3mM in the presence of either substrate. Two 46 kDa isoenzymes were identified using SDS-PAGE. Isolation and characterization of Chinese parsley serves as a guideline for prediction of enzyme behavior leading to effective prevention of enzymatic browning during processing and storage, including inhibition and inactivation of PPO.
    Matched MeSH terms: Catechols
  20. Dongare S, Gupta SK, Mathur R, Saxena R, Mathur S, Agarwal R, et al.
    Mol Vis, 2016;22:599-609.
    PMID: 27293376
    PURPOSE: Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes.

    METHODS: Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels.

    RESULTS: Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract-treated group compared to the vehicle-treated group.

    CONCLUSIONS: The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation.

    Matched MeSH terms: Catechols/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links