Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Dama G, Hu X, Yan Y, Li Y, Li H, Yang F, et al.
    Histochem Cell Biol, 2023 Jul;160(1):11-25.
    PMID: 37014442 DOI: 10.1007/s00418-023-02186-5
    Experimental autoimmune encephalomyelitis (EAE) is a classical animal model of human multiple sclerosis (MS) that is most commonly used to study the neuropathology and therapeutic effects of the disease. Telocytes (TCs) are a specialized type of interstitial or mesenchymal cell first identified by Popescu in various tissues and organs. However, the existence, distribution and role of CD34+ stromal cells (SCs)/TCs in the EAE-induced mouse spleen remain to be elucidated. We conducted immunohistochemistry, immunofluorescence (double staining for CD34 and c-kit, vimentin, F4/80, CD163, Nanog, Sca-1, CD31 or tryptase) and transmission electron microscopy experiments to investigate the existence, distribution and role of CD34+ SCs/TCs in the EAE-induced mouse spleen. Interestingly, immunohistochemistry, double-immunofluorescence, and transmission electron microscopy results revealed that CD34+ SCs/TCs were significantly upregulated in the EAE mouse spleen. Immunohistochemical or double-immunofluorescence staining of CD34+ SCs/TCs showed positive expression for CD34, c-kit, vimentin, CD34/vimentin, c-kit/vimentin and CD34/c-kit, and negative expression for CD31 and tryptase. Transmission electron microscopy (TEM) results demonstrated that CD34+ SCs/TCs established close connections with lymphocytes, reticular cells, macrophages, endothelial cells and erythrocytes. Furthermore, we also found that M1 (F4/80) or M2 (CD163) macrophages, and haematopoietic, pluripotent stem cells were markedly increased in EAE mice. Our results suggest that CD34+ SCs/TCs are abundant and may play a contributing role in modulating the immune response, recruiting macrophages and proliferation of haematopoietic and pluripotent stem cells following injury to promote tissue repair and regeneration in EAE mouse spleens. This suggests that their transplantation combined with stem cells might represent a promising therapeutic target for the treatment and prevention of multiple autoimmune and chronic inflammatory disorders.
    Matched MeSH terms: Cell Adhesion Molecules/metabolism
  2. Alshrari AS, Hudu SA, Asdaq SMB, Ali AM, Kin CV, Omar AR, et al.
    J Infect Public Health, 2021 Nov;14(11):1603-1611.
    PMID: 34624714 DOI: 10.1016/j.jiph.2021.09.001
    BACKGROUND: Rhinoviruses (RV) are associated with the development and exacerbations of asthma and chronic obstructive pulmonary disease. They've also been linked to more severe diseases like pneumonia, acute bronchiolitis, croup, and otitis media. Because of the hypervariable sequences in the same serotypes, no effective vaccine against rhinoviruses has been developed to date. With the availability of new full-length genome sequences for all RV-A and RV-B serotyped strains, this study used bioinformatics to find a suitable RV strain with the highest similarity matrices to the other strains.

    METHODS: The full genomic sequences of all known different RV-A and -B prototypes were downloaded from the National Centre for Biotechnology Information (NCBI) and divided into minor low-density lipoprotein receptor (LDLR) and major intercellular adhesion molecule groups (ICAM). The sequences were edited using Biological Sequence Alignment Editor, v 7.2.0 (BioEdit software) to study each capsid protein (VP1, VP2, VP3, and VP4) and analyzed using the EMBL-EBI ClustalW server and the more current Clustal Omega tool for the calculation of the identities and similarities.

    RESULTS: We analyzed and predicted immunogenic motifs from capsid proteins that are conserved across distinct RV serotypes using a bioinformatics technique. The amino acid sequences of VP3 were found to be the most varied, while VP4 was the most conserved protein among all RV-A and RV-B strains. Among all strains studied, RV-74 demonstrated the highest degree of homology to other strains and could be a potential genetic source for recombinant protein production. Nine highly conserved regions with a minimum length of 9-mers were identified, which could serve as potential immune targets against rhinoviruses.

    CONCLUSION: Therefore, bioinformatics analysis conducted in the current study has paved the way for the selection of immunogenic targets. Bioinformatically, the ideal strain's capsid protein is suggested to contain the most common RVs immunogenic sites.

    Matched MeSH terms: Cell Adhesion Molecules
  3. Rahman SK, Ansari MA, Gaur P, Ahmad I, Chakravarty C, Verma DK, et al.
    Viruses, 2021 04 21;13(5).
    PMID: 33919410 DOI: 10.3390/v13050726
    To establish a productive infection in host cells, viruses often use one or multiple host membrane glycoproteins as their receptors. For Influenza A virus (IAV) such a glycoprotein receptor has not been described, to date. Here we show that IAV is using the host membrane glycoprotein CD66c as a receptor for entry into human epithelial lung cells. Neuraminidase (NA), a viral spike protein, binds to CD66c on the cell surface during IAV entry into the host cells. Lung cells overexpressing CD66c showed an increase in virus binding and subsequent entry into the cell. Upon comparison, CD66c demonstrated higher binding capacity than other membrane glycoproteins (EGFR and DC-SIGN) reported earlier to facilitate IAV entry into host cells. siRNA mediated knockdown of CD66c from lung cells inhibited virus binding on cell surface and entry into cells. Blocking CD66c by antibody on the cell surface resulted in decreased virus entry. We found that CD66c is a specific glycoprotein receptor for influenza A virus that did not affect entry of non-IAV RNA virus (Hepatitis C virus). Finally, IAV pre-incubated with recombinant CD66c protein when administered intranasally in mice showed decreased cytopathic effects in mice lungs. This publication is the first to report CD66c (Carcinoembryonic cell adhesion molecule 6 or CEACAM6) as a glycoprotein receptor for Influenza A virus.
    Matched MeSH terms: Cell Adhesion Molecules/genetics; Cell Adhesion Molecules/metabolism*
  4. Low CF, Chong CM
    Fish Shellfish Immunol, 2020 Sep;104:605-612.
    PMID: 32619624 DOI: 10.1016/j.fsi.2020.06.047
    Classical characteristic of the innate immune system is the lack of ability to build up immunological memory, contrast to the adaptive immune system that is capable of "remembering" antigens, and rapidly mount a greater magnitude of immune response upon subsequent exposure to the same antigens. Peculiarly, immunological memory of innate immunity is evidenced in invertebrates. At least three different memory phenomena have been described, namely sustained unique response, recalled response, and immune shift. Studies attended to decipher the mechanistic biology of the innate immune memory reveals the role of epigenetics, which modulates the response of immune memory, and the heritability of immune memory to subsequent generations. A parthenogenetic Artemia model demonstrated successful transgenerational epigenetic inheritance of resistance trait against Vibrio campbellii. Following, the role of invertebrate hemocytes and Down syndrome cell adhesion molecule (Dscam) in innate immune memory is reviewed. While there is no vertebrate antibody homolog found in invertebrates, Dscam was found to resemble the functionality of vertebrate antibody. Insight of Dscam as immune factor was illustrated further in the current review.
    Matched MeSH terms: Cell Adhesion Molecules/genetics; Cell Adhesion Molecules/immunology*
  5. Mohtar MA, Syafruddin SE, Nasir SN, Low TY
    Biomolecules, 2020 02 07;10(2).
    PMID: 32046162 DOI: 10.3390/biom10020255
    Epithelial cell adhesion molecule (EpCAM) is a cell surface protein that was discovered as a tumour marker of epithelial origins nearly four decades ago. EpCAM is expressed at basal levels in the basolateral membrane of normal epithelial cells. However, EpCAM expression is upregulated in solid epithelial cancers and stem cells. EpCAM can also be found in disseminated tumour cells and circulating tumour cells. Various OMICs studies have demonstrated that EpCAM plays roles in several key biological processes such as cell adhesion, migration, proliferation and differentiation. Additionally, EpCAM can be detected in the bodily fluid of cancer patients suggesting that EpCAM is a pathophysiologically relevant anti-tumour target as well as being utilized as a diagnostic/prognostic agent for a variety of cancers. This review will focus on the structure-features of EpCAM protein and discuss recent evidence on the pathological and physiological roles of EpCAM in modulating cell adhesion and signalling pathways in cancers as well as deliberating the clinical implication of EpCAM as a therapeutic target.
    Matched MeSH terms: Cell Adhesion Molecules
  6. Ashaie MA, Islam RA, Kamaruzman NI, Ibnat N, Tha KK, Chowdhury EH
    Pharmaceutics, 2019 Jul 02;11(7).
    PMID: 31269666 DOI: 10.3390/pharmaceutics11070309
    While several treatment strategies are applied to cure breast cancer, it still remains one of the leading causes of female deaths worldwide. Since chemotherapeutic drugs have severe side effects and are responsible for development of drug resistance in cancer cells, gene therapy is now considered as one of the promising options to address the current treatment limitations. Identification of the over-expressed genes accounting for constitutive activation of certain pathways, and their subsequent knockdown with specific small interfering RNAs (siRNAs), could be a powerful tool in inhibiting proliferation and survival of cancer cells. In this study, we delivered siRNAs against mRNA transcripts of over-regulated cell adhesion molecules such as catenin alpha 1 (CTNNA1), catenin beta 1 (CTNNB1), talin-1 (TLN1), vinculin (VCL), paxillin (PXN), and actinin-1 (ACTN1) in human (MCF-7 and MDA-MB-231) and murine (4T1) cell lines as well as in the murine female Balb/c mice model. In order to overcome the barriers of cell permeability and nuclease-mediated degradation, the pH-sensitive carbonate apatite (CA) nanocarrier was used as a delivery vehicle. While targeting CTNNA1, CTNNB1, TLN1, VCL, PXN, and ACTN1 resulted in a reduction of cell viability in MCF-7 and MDA-MB-231 cells, delivery of all these siRNAs via carbonate apatite (CA) nanoparticles successfully reduced the cell viability in 4T1 cells. In 4T1 cells, delivery of CTNNA1, CTNNB1, TLN1, VCL, PXN, and ACTN1 siRNAs with CA caused significant reduction in phosphorylated and total AKT levels. Furthermore, reduced band intensity was observed for phosphorylated and total MAPK upon transfection of 4T1 cells with CTNNA1, CTNNB1, and VCL siRNAs. Intravenous delivery of CTNNA1 siRNA with CA nanoparticles significantly reduced tumor volume in the initial phase of the study, while siRNAs targeting CTNNB1, TLN1, VCL, PXN, and ACTN1 genes significantly decreased the tumor burden at all time points. The tumor weights at the end of the treatments were also notably smaller compared to CA. This successfully demonstrates that targeting these dysregulated genes via RNAi and by using a suitable delivery vehicle such as CA could serve as a promising therapeutic treatment modality for breast cancers.
    Matched MeSH terms: Cell Adhesion Molecules
  7. Ming NGJ, Binte Mostafiz S, Johon NS, Abdullah Zulkifli NS, Wagiran A
    Plants (Basel), 2019 May 30;8(6).
    PMID: 31151227 DOI: 10.3390/plants8060144
    The development of efficient tissue culture protocol for somatic embryo would facilitate the genetic modification breeding program. The callus induction and regeneration were studied by using different parameters i.e., auxins, cytokinins, and desiccation treatment. Scanning electron microscopy and histological analysis were performed to identify the embryogenic callus for regeneration. The callus percentage results showed that MS (Murashige and Skoog) basal medium supplemented with 3 mg/L 2, 4-D and 30g/L maltose were the optimal callus induction medium for MR220 (80%) and MR220-CL2 (95%). The morphology of the embryogenic callus was confirmed by the SEM (Scanning Electron Microscopy) (presence of extracellular matrix surface network) and later by histological analysis. Finally, MS media supplemented with 0.5 mg/L NAA (Naphthalene Acetic Acid), 2 mg/L kin, and 1 mg/L BAP were selected as the optimum regeneration media treatment while callus desiccated for 48 h was proved to produce more plantlets in MR220 (60%) and MR220-CL2 (73.33%) compared to control treatment (without desiccation). The protocol presented here showed the necessity for the inclusion of partial desiccation as an important step in the tissue culture protocol of Malaysian indica rice genotypes in order to enhance their regeneration potential.
    Matched MeSH terms: Cell Adhesion Molecules, Neuronal
  8. Choy KW, Murugan D, Leong XF, Abas R, Alias A, Mustafa MR
    Front Pharmacol, 2019;10:1295.
    PMID: 31749703 DOI: 10.3389/fphar.2019.01295
    Cardiovascular diseases (CVDs) such as angina, hypertension, myocardial ischemia, and heart failure are the leading causes of morbidity and mortality worldwide. One of the major transcription factors widely associated with CVDs is nuclear factor-kappa B (NFκB). NFκB activation initiates the canonical and non-conical pathways that promotes activation of transcription factors leading to inflammation, such as leukocyte adhesion molecules, cytokines, and chemokines. Flavonoids are bioactive polyphenolic compounds found abundantly in various fruits, vegetables, beverages (tea, coffee), nuts, and cereal products with cardiovascular protective properties. Flavonoids can be classified into six subgroups based on their chemical structures: flavanones, flavones, flavonols, flavan-3-ols, isoflavones, and anthocyanidins. As NFκB inhibitors, these flavonoids may modulate the expression of pro-inflammatory genes leading to the attenuation of the inflammatory responses underlying various cardiovascular pathology. This review presents an update on the anti-inflammatory actions of flavonoids via inhibition of NFκB mechanism supporting the therapeutic potential of these natural compounds in various CVDs.
    Matched MeSH terms: Cell Adhesion Molecules
  9. Chan YH, Harith HH, Israf DA, Tham CL
    Front Cell Dev Biol, 2019;7:280.
    PMID: 31970155 DOI: 10.3389/fcell.2019.00280
    Endothelial cells lining the inner vascular wall form a monolayer that contributes to the selective permeability of endothelial barrier. This selective permeability is mainly regulated by an endothelium-specific adherens junctional protein, known as vascular endothelial-cadherin (VE-cadherin). In endothelial cells, the adherens junction comprises of VE-cadherin and its associated adhesion molecules such as p120, α-catenin, and β-catenin, in which α-catenin links cytoplasmic tails of VE-cadherin to actin cytoskeleton through β-catenin. Proinflammatory stimuli such as lipopolysaccharide (LPS) are capable of attenuating vascular integrity through the disruption of VE-cadherin adhesion in endothelial cells. To date, numerous studies demonstrated the disruption of adherens junction as a result of phosphorylation-mediated VE-cadherin disruption. However, the outcomes from these studies were inconsistent and non-conclusive as different cell fractions were used to examine the effect of LPS on the disruption of VE-cadherin. By using Western Blot, some studies utilized total protein lysate and reported decreased protein expression while some studies reported unchanged expression. Other studies which used membrane and cytosolic fractions of protein extract demonstrated decreased and increased VE-cadherin expression, respectively. Despite the irregularities, the results of immunofluorescence staining are consistent with the formation of intercellular gap. Besides that, the overall underlying disruptive mechanisms of VE-cadherin remain largely unknown. Therefore, this mini review will focus on different experiment approaches in terms of cell fractions used in different human endothelial cell studies, and relate these differences to the results obtained in Western blot and immunofluorescence staining in order to give some insights into the overall differential regulatory mechanisms of LPS-mediated VE-cadherin disruption and address the discrepancy in VE-cadherin expression.
    Matched MeSH terms: Cell Adhesion Molecules
  10. Baker EJ, Yusof MH, Yaqoob P, Miles EA, Calder PC
    Mol Aspects Med, 2018 12;64:169-181.
    PMID: 30102930 DOI: 10.1016/j.mam.2018.08.002
    Endothelial cells (ECs) play a role in the optimal function of blood vessels. When endothelial function becomes dysregulated, the risk of developing atherosclerosis increases. Specifically, upregulation of adhesion molecule expression on ECs promotes the movement of leukocytes, particularly monocytes, into the vessel wall. Here, monocytes differentiate into macrophages and may become foam cells, contributing to the initiation and progression of an atherosclerotic plaque. The ability of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) to influence the expression of adhesion molecules by ECs and to modulate leukocyte-endothelial adhesion has been studied in cell culture using various types of ECs, in animal feeding studies and in human trials; the latter have tended to evaluate soluble forms of adhesion molecules that circulate in the bloodstream. These studies indicate that n-3 PUFAs (both eicosapentaenoic acid and docosahexaenoic acid) can decrease the expression of key adhesion molecules, such as vascular cell adhesion molecule 1, by ECs and that this results in decreased adhesive interactions between leukocytes and ECs. These findings suggest that n-3 PUFAs may lower leukocyte infiltration into the vascular wall, which could contribute to reduced atherosclerosis and lowered risk of cardiovascular disease.
    Matched MeSH terms: Cell Adhesion Molecules
  11. Heng BC, Gong T, Xu J, Lim LW, Zhang C
    Biomed Rep, 2018 Aug;9(2):161-168.
    PMID: 29963307 DOI: 10.3892/br.2018.1108
    Dental pulp stem cells (DPSCs) originate from the embryonic neural crest and have neurogenic potential. The present study investigated the roles of the forward and reverse EphrinB2 signalling pathways during DPSC neurogenesis. Treatment of DPSCs with recombinant EphrinB2-Fc protein over 7 days in a neural induction culture resulted in significant downregulation of the following neural markers: βIII-Tubulin, neural cell adhesion molecule (NCAM), nestin, neurogenin 2 (NGN2), neurofilament medium polypeptide and Musashi1. Immunocytochemistry revealed that EphrinB2-Fc-treated DPSCs exhibited more rounded morphologies with fewer neurite outgrowths as well as reduced protein expression of βIII-tubulin and NGN2. Treatment of DPSCs with a peptide inhibitor specific to the EphB4 receptor significantly upregulated expression of the neural markers microtubule-associated protein 2, Musashi1, NGN2 and neuron-specific enolase, whereas treatment with a peptide inhibitor specific to the EphB2 receptor exerted negligible effects on neurogenesis. Transgenic expression of EphrinB2 in DPSCs resulted in significant upregulation of Musashi1 and NCAM gene expression, while treatment of DPSCs with recombinant EphB4-Fc protein led to significant upregulation of only Musashi1. Thus, it may be concluded that stimulation of forward EphrinB2-EphB4 signalling markedly inhibited neurogenesis in DPSCs, whereas suppression of this forward signalling pathway with peptide inhibitor specific to EphB4 promoted neurogenesis. Meanwhile, stimulation of reverse EphB4-EphrinB2 signalling only marginally enhanced the neural differentiation of DPSCs. The present findings indicate the potential application of peptide or small molecule inhibitors of EphrinB2 forward signalling in neural tissue engineering with DPSCs.
    Matched MeSH terms: Neural Cell Adhesion Molecules
  12. Tukimat Lihan, Nur Fatin Khodri, Muzzneena Ahmad Mustapha, Zulfahmi Ali Rahman, Wan Mohd Razi Idris
    Sains Malaysiana, 2018;47:2241-2249.
    Aktiviti guna tanah di kawasan lembangan adalah salah satu faktor yang mendorong kepada kemerosotan kualiti air
    sungai akibat daripada hakisan tanih. Potensi hakisan tanih di kawasan lembangan Sungai Bilut, Raub, Pahang yang
    menjadi sumber bekalan air minuman utama di daerah Raub boleh ditentukan dengan menggunakan integrasi model
    Semakan Semula Persamaan Kehilangan Tanih Universal (RUSLE) dan Sistem Maklumat Geografi (GIS). Kajian ini
    bertujuan untuk menentukan potensi hakisan tanih dan faktor utama yang mempengaruhi kadar hakisan tanih. Kajian ini
    melibatkan penggunaan data sekunder yang terdiri daripada data hujan, data siri tanih dan topografi bagi menghasilkan
    faktor kehakisan hujan (R), kebolehhakisan tanih (K), serta panjang dan kecuraman cerun (LS). Faktor litupan tumbuhan
    (C) dan amalan pemuliharaan (P) pula dijana daripada imej satelit Landsat 8 (2014). Keputusan kajian menunjukkan
    nilai faktor R di kawasan kajian ialah 8927.68-9775.18 MJ mm ha-1 jam-1 tahun-1, nilai K ialah 0.036-0.500 tan jam-1
    MJ-1 mm-1, nilai LS ialah 0-514, nilai C ialah 0.03-0.80 dan nilai P ialah 0.1-0.7. Kawasan yang mempunyai potensi
    hakisan sangat rendah hingga rendah meliputi 81%, manakala potensi hakisan tanih sederhana hingga sangat tinggi
    meliputi 19% daripada keseluruhan kawasan kajian. Model yang dihasilkan mempunyai ketepatan sebanyak 81%. Faktor
    utama yang mempengaruhi berlakunya hakisan tanih di kawasan kajian adalah faktor topografi, litupan tumbuhan dan
    kebolehhakisan tanih. Keputusan menunjukkan analisis integrasi RUSLE dan GIS berpotensi dalam penentuan potensi
    hakisan tanih untuk kawasan luas yang mempunyai pelbagai jenis guna tanah, topografi dan jenis tanih.
    Matched MeSH terms: Cell Adhesion Molecules
  13. Nabil Fikri RM, Norlelawati AT, Nour El-Huda AR, Hanisah MN, Kartini A, Norsidah K, et al.
    J Psychiatr Res, 2017 05;88:28-37.
    PMID: 28086126 DOI: 10.1016/j.jpsychires.2016.12.020
    The epigenetic changes of RELN that are involved in the development of dopaminergic neurons may fit the developmental theory of schizophrenia. However, evidence regarding the association of RELN DNA methylation with schizophrenia is far from sufficient, as studies have only been conducted on a few limited brain samples. As DNA methylation in the peripheral blood may mirror the changes taking place in the brain, the use of peripheral blood for a DNA methylation study in schizophrenia is feasible due to the scarcity of brain samples. Therefore, the aim of our study was to examine the relationship of DNA methylation levels of RELN promoters with schizophrenia using genomic DNA derived from the peripheral blood of patients with the disorder. The case control studies consisted of 110 schizophrenia participants and 122 healthy controls who had been recruited from the same district. After bisufhite conversion, the methylation levels of the DNA samples were calculated based on their differences of the Cq values assayed using the highly sensitive real-time MethyLight TaqMan® procedure. A significantly higher level of methylation of the RELN promoter was found in patients with schizophrenia compared to controls (p = 0.005) and also in males compared with females (p = 0.004). Subsequently, the RELN expression of the methylated group was 25 fold less than that of the non-methylated group. Based upon the assumption of parallel methylation changes in the brain and peripheral blood, we concluded that RELN DNA methylation might contribute to the pathogenesis of schizophrenia. However, the definite effects of methylation on RELN function during development and also in adult life still require further elaboration.
    Matched MeSH terms: Cell Adhesion Molecules, Neuronal/blood*; Cell Adhesion Molecules, Neuronal/genetics*
  14. Mohamad Shah NS, Salahshourifar I, Sulong S, Wan Sulaiman WA, Halim AS
    BMC Genet, 2016 Feb 11;17:39.
    PMID: 26868259 DOI: 10.1186/s12863-016-0345-x
    BACKGROUND: Nonsyndromic orofacial clefts are one of the most common birth defects worldwide. It occurs as a result of genetic or environmental factors. This study investigates the genetic contribution to nonsyndromic cleft lip and/or palate through the analysis of family pedigrees. Candidate genes associated with the condition were identified from large extended families from the Malay population.

    RESULTS: A significant nonparametric linkage (NPL) score was detected in family 100. Other suggestive NPL and logarithm of the odds (LOD) scores were attained from families 50, 58, 99 and 100 under autosomal recessive mode. Heterogeneity LOD (HLOD) score ≥ 1 was determined for all families, confirming genetic heterogeneity of the population and indicating that a proportion of families might be linked to each other. Several candidate genes in linkage intervals were determined; LPHN2 at 1p31, SATB2 at 2q33.1-q35, PVRL3 at 3q13.3, COL21A1 at 6p12.1, FOXP2 at 7q22.3-q33, FOXG1 and HECTD1 at 14q12 and TOX3 at 16q12.1.

    CONCLUSIONS: We have identified several novel and known candidate genes for nonsyndromic cleft lip and/or palate through genome-wide linkage analysis. Further analysis of the involvement of these genes in the condition will shed light on the disease mechanism. Comprehensive genetic testing of the candidate genes is warranted.

    Matched MeSH terms: Cell Adhesion Molecules/genetics
  15. Dashtdar H, Murali MR, Selvaratnam L, Balaji Raghavendran H, Suhaeb AM, Ahmad TS, et al.
    PeerJ, 2016;4:e1650.
    PMID: 26966647 DOI: 10.7717/peerj.1650
    Chondrogenic differentiation of mesenchymal stromal cells (MSCs) in the form of pellet culture and encapsulation in alginate beads has been widely used as conventional model for in vitro chondrogenesis. However, comparative characterization between differentiation, hypertrophic markers, cell adhesion molecule and ultrastructural changes during alginate and pellet culture has not been described. Hence, the present study was conducted comparing MSCs cultured in pellet and alginate beads with monolayer culture. qPCR was performed to assess the expression of chondrogenic, hypertrophic, and cell adhesion molecule genes, whereas transmission electron microscopy (TEM) was used to assess the ultrastructural changes. In addition, immunocytochemistry for Collagen type II and aggrecan and glycosaminoglycan (GAG) analysis were performed. Our results indicate that pellet and alginate bead cultures were necessary for chondrogenic differentiation of MSC. It also indicates that cultures using alginate bead demonstrated significantly higher (p < 0.05) chondrogenic but lower hypertrophic (p < 0.05) gene expressions as compared with pellet cultures. N-cadherin and N-CAM1 expression were up-regulated in second and third weeks of culture and were comparable between the alginate bead and pellet culture groups, respectively. TEM images demonstrated ultrastructural changes resembling cell death in pellet cultures. Our results indicate that using alginate beads, MSCs express higher chondrogenic but lower hypertrophic gene expression. Enhanced production of extracellular matrix and cell adhesion molecules was also observed in this group. These findings suggest that alginate bead culture may serve as a superior chondrogenic model, whereas pellet culture is more appropriate as a hypertrophic model of chondrogenesis.
    Matched MeSH terms: Cell Adhesion Molecules
  16. Habib R, Begum S, Alam G, Ali A, Khan I, Waseem M, et al.
    Ren Fail, 2015 Aug;37(7):1225-31.
    PMID: 26114661 DOI: 10.3109/0886022X.2015.1057801
    The objective of the present study was to examine the changes in the expression profile of certain genes in rat model of gentamicin-induced acute kidney injury (AKI) and to see whether time period and routes of administration affect their expression levels.
    Matched MeSH terms: Cell Adhesion Molecules/genetics*
  17. Voon PT, Ng TK, Lee VK, Nesaretnam K
    Eur J Clin Nutr, 2015 Jun;69(6):712-6.
    PMID: 25804278 DOI: 10.1038/ejcn.2015.26
    Effects of high-protein diets that are rich in saturated fats on cell adhesion molecules, thrombogenicity and other nonlipid markers of atherosclerosis in humans have not been firmly established. We aim to investigate the effects of high-protein Malaysian diets prepared separately with virgin olive oil (OO), palm olein (PO) and coconut oil (CO) on cell adhesion molecules, lipid inflammatory mediators and thromobogenicity indices in healthy adults.
    Matched MeSH terms: Cell Adhesion Molecules/blood*; Cell Adhesion Molecules/chemistry
  18. Mu AK, Bee PC, Lau YL, Chen Y
    Int J Mol Sci, 2014;15(11):19952-61.
    PMID: 25372941 DOI: 10.3390/ijms151119952
    Malaria is caused by parasitic protozoans of the genus Plasmodium and is one of the most prevalent infectious diseases in tropical and subtropical regions. For this reason, effective and practical diagnostic methods are urgently needed to control the spread of malaria. The aim of the current study was to identify a panel of new malarial markers, which could be used to diagnose patients infected with various Plasmodium species, including P. knowlesi, P. vivax and P. falciparum. Sera from malaria-infected patients were pooled and compared to control sera obtained from healthy individuals using the isobaric tags for relative and absolute quantitation (iTRAQ) technique. Mass spectrometry was used to identify serum proteins and quantify their relative abundance. We found that the levels of several proteins were increased in pooled serum from infected patients, including cell adhesion molecule-4 and C-reactive protein. In contrast, the serum concentration of haptoglobin was reduced in malaria-infected individuals, which we verified by western blot assay. Therefore, these proteins might represent infectious markers of malaria, which could be used to develop novel diagnostic tools for detecting P. knowlesi, P. vivax and P. falciparum. However, these potential malarial markers will need to be validated in a larger population of infected individuals.
    Matched MeSH terms: Cell Adhesion Molecules/blood*; Cell Adhesion Molecules/metabolism
  19. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH
    J Oral Maxillofac Surg, 2013 Oct;71(10):1758.e1-13.
    PMID: 24040948 DOI: 10.1016/j.joms.2013.05.016
    The main aim of the present study was to evaluate the capacity of stem cells from human exfoliated deciduous teeth (SHED) to enhance mandibular distraction osteogenesis (DO) in rabbits.
    Matched MeSH terms: Cell Adhesion Molecules, Neuronal/analysis
  20. Fatimah SS, Chua K, Tan GC, Azmi TI, Tan AE, Abdul Rahman H
    Cytotherapy, 2013 Aug;15(8):1030-41.
    PMID: 23830235 DOI: 10.1016/j.jcyt.2013.05.003
    The aim of the present study was to evaluate the effects of air-liquid interface on the differentiation potential of human amnion epithelial cells (HAECs) to skin-like substitute in organotypic culture.
    Matched MeSH terms: Cell Adhesion Molecules/biosynthesis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links