Displaying publications 1 - 20 of 192 in total

Abstract:
Sort:
  1. Chu, W.L., Phang, S.M., Lim, S.L., Teoh, M.L., Wong, C.Y.
    ASM Science Journal, 2009;3(2):178-183.
    MyJurnal
    Chlorella is one of the common microalgae found in a wide range of habitats, including Antarctica. Chlorella UMACC 234 is an interesting isolate in the collection of Antarctic microalgae in the University of Malaya algae culture collection (UMACC) as it grows well at temperatures much higher than the ambience. The alga was isolated from snow samples collected from Casey, Antarctica. This study investigates the influence of nitrogen source on the growth, biochemical composition and fatty acid profile of Chlorella UMACC 234. The cultures were grown in Bold’s Basal Medium with 3.0 mM NaNO3, NH4Cl or urea. The cultures grown on NaNO3 attained the highest specific growth rate (μ = 0.43 day–1) while the specific growth rates of those grown on NH4Cl and urea were not significantly different (p > 0.05). The urea-grown cells produced the highest amounts of lipids (25.7% dry weight) and proteins (52.5% dry weight) compared to those grown on other nitrogen sources. The cell numbers attained by the cultures grown at NaNO3 levels between 0.3 and 3.0 mM were similar but decreased markedly at 9.0 mM NaNO3. The fatty acids of Chlorella UMACC 234 were dominated by saturated fatty acids, especially 16:0 and 18:0. The percentage of polyunsaturated fatty acids was very low, especially in cells grown on urea (0.9% total fatty acids). Characterisation of the growth and biochemical composition of this Antarctic Chlorella is important to our studies on the relationship of Chorella isolates from tropical, temperate and polar regions, especially in terms of phylogeny and stress adaptation.
    Matched MeSH terms: Cell Count
  2. Haque N, Widera D, Abu Kasim NH
    Adv Exp Med Biol, 2019;1084:175-186.
    PMID: 30771186 DOI: 10.1007/5584_2018_299
    BACKGROUND: The response of stem cells to paracrine factors within the host's body plays an important role in the regeneration process after transplantation. The aim of this study was to determine the viability and paracrine factor profile of stem cells from human extracted deciduous teeth (SHED) pre-cultivated in media supplemented with either foetal bovine serum (FBS) or pooled human serum (pHS) in the presence of individual human sera (iHS).

    METHODS: SHED (n = 3) from passage 4 were expanded in FBS (FBS-SHED) or pHS (pHS-SHED) supplemented media until passage 7. During expansion, the proliferation of SHED was determined. Cells at passage 7 were further expanded in human serum from four individual donors (iHS) for 120 h followed by assessment of cell viability and profiling of the secreted paracrine factors.

    RESULTS: Proliferation of SHED was significantly higher (p cell culture supernatants from FBS-SHED were profiled 120 h post-incubation.

    CONCLUSION: SHED expanded in pHS instead of FBS have higher proliferative capacity and show an altered secretion profile. Further studies are needed to determine whether these differences could result in better engraftment and regeneration following transplantation.

    Matched MeSH terms: Cell Count
  3. Yap HY, Siow TS, Chow SK, Teow SY
    Adv Virol, 2019;2019:6464521.
    PMID: 31049064 DOI: 10.1155/2019/6464521
    Epstein-Barr virus (EBV) is one of the common human herpesvirus types in the world. EBV is known to infect more than 95% of adults in the world. The virus mainly infects B lymphocytes and could immortalize and transform the cells into EBV-bearing lymphoblastoid cell lines (LCLs). Limited studies have been focused on characterizing the surface marker expression of the immortalized LCLs. This study demonstrates the generation of 15 LCLs from sixteen rheumatoid arthritis (RA) patients and a healthy volunteer using B95-8 marmoset-derived EBV. The success rate of LCL generation was 88.23%. All CD19+ LCLs expressed CD23 (16.94-58.9%) and CD27 (15.74-80.89%) on cell surface. Our data demonstrated two distinct categories of LCLs (fast- and slow-growing) (p<0.05) based on their doubling time. The slow-growing LCLs showed lower CD23 level (35.28%) compared to fast-growing LCLs (42.39%). In contrast, the slow-growing LCLs showed higher percentage in both CD27 alone and CD23+CD27+ in combination. Overall, these findings may suggest the correlations of cellular CD23 and CD27 expression with the proliferation rate of the generated LCLs. Increase expression of CD23 may play a role in EBV immortalization of B-cells and the growth and maintenance of the EBV-transformed LCLs while CD27 expression might have inhibitory effects on LCL proliferation. Further investigations are warranted to these speculations.

    Study site: Sunway Medical Centre, Malaysia
    Matched MeSH terms: Cell Count
  4. Ho J, Hamizan AW, Alvarado R, Rimmer J, Sewell WA, Harvey RJ
    Am J Rhinol Allergy, 2018 Jul;32(4):252-257.
    PMID: 29862828 DOI: 10.1177/1945892418779451
    Background Eosinophilic chronic rhinosinusitis (eCRS) is linked with skewed T-helper 2 or immunoglobulin E (IgE)-mediated allergic responses, with differing diagnosis, prognosis, and management to non-eCRS. Objective The association between biomarkers and eCRS was investigated to assess the predictors of eCRS. Methods A cross-sectional study of adult patients with chronic rhinosinusitis (CRS) undergoing endoscopic sinus surgery was conducted. eCRS was defined by histopathological assessment showing >10 eosinophils/high-power field on sinus mucosal biopsy. Blood tests were performed preoperatively and assessed for a full blood count including eosinophils and a white cell count (WCC) as well as biochemical markers of inflammation and atopy including Immunoglobulin E (IgE), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and ImmunoCAP testing for serum-specific IgE. Comparisons between eCRS and non-eCRS patients were performed. Results 345 patients (48.1% female, age 48.72 ± 15.06 years) were recruited, with 206 (59.7%) identified as eCRS, 41% with asthma and 47% CRS with nasal polyps. eCRS patients were more likely to have asthma ( P 0.24 × 109/L), eosinophil ratio (>4.27% of total WCC), and lower ESR when compared with non-eCRS.
    Matched MeSH terms: Cell Count
  5. Khoo SP, Lee, K.W.
    Ann Dent, 1995;2(1):-.
    MyJurnal
    A study was carried out to investigate whether smoking had any effect on the Langerhans cells in the oral mucosa, which might throw light onto the mechanism of malignant transformation of some keratotic lesions in the oral cavity. Thirty-two cases of keratotic lesions from biopsy specimens of smokers and non-smokers were studied. Langerhans cells were identified by immuno cytochemical staining for 5100 proteins and their densities quantified. Smokers were associated with a significant reduction in the Langerhans cell population compared to non-smokers. The mean values of Langellans cell density in light smokers and heavy smokers were 2 2 2 28.64/mm and 33.421mm respectively compared to 66.51/mm in non- smokers. There was a dose-response relation between the number of cigarettes smoked daily and the effect on cell counts. These findings of a local immunological effect of smoking on oral epithelium may explain the means by which cigarette smoking contributes to the development of oral cancer.
    Matched MeSH terms: Cell Count
  6. Abdullah N, Ismail N, Abd Jalal N, Mohd Radin F, Othman R, Kamalul Arifin AS, et al.
    Ann Hematol, 2020 Nov;99(11):2521-2527.
    PMID: 32975589 DOI: 10.1007/s00277-020-04279-w
    This study was aimed at determining the prevalence of anaemia amongst the Malaysian Cohort participants and the associated risk factors. This was a cross-sectional study that involved 102,388 participants from The Malaysian Cohort (TMC) aged between 35 and 70 years old recruited from April 2006 to September 2012. Venous blood was taken for the full blood count. The prevalence of anaemia was 13.8% with majority having the microcytic-hypochromic type (59.7%). Comparison between the ethnic groups showed that Indians have the highest prevalence of anaemia (19.9%), followed by Malays (13.1%), and Chinese (12.0%). The prevalence of anaemia was substantially higher in females (20.1%) compared to males (4.9%). Amongst the female participants, the prevalence of anaemia was highest amongst those who were younger than 49 years old and decreased as the age increased. In contrast, the prevalence of anaemia in males increased with age. Gender, ethnicity, age, marital status, presence of platelet disorders and kidney disease were significant risk factors associated with anaemia and contributed to 14.9% of the risk of developing anaemia in this population. The prevalence of anaemia amongst the Malaysian Cohort participants is 13.8% with the majority having the microcytic and hypochromic type implying iron deficiency as the main cause. It is important that those who have anaemia be further investigated and treated.
    Study name: The Malaysian Cohort (TMC) project
    Matched MeSH terms: Blood Cell Count
  7. Ismail AH, Jaafar MS
    Appl Radiat Isot, 2011 Mar;69(3):559-66.
    PMID: 21208807 DOI: 10.1016/j.apradiso.2010.11.004
    Complete blood counts were analyzed for 30 samples of human blood with radiation dose rate ranging between 10 and 41 μSv/h using a Radium-226 source with different time of exposure. A new technique involving a nuclear track detector type CR-39(CR-39 NTDs) was used to estimate the alpha particle density incident on the blood samples. The results show that the ranges of alpha particle in blood samples and on the surface of CR-39NTDs vary exponentially with energy of alpha particles. This depends on the restricted energy loss and target density. Changes in the blood components due to irradiation occurred for different durations of irradiation, and the duration of irradiation that influenced the blood samples in this study was 6 min. The change in red blood cell (RBC) was negligible, so it is less affected than other blood components. In addition, most changes in the blood contents began at a low radiation dose (10.38-13.41 μSv/h). For the doses 13.41-21.77 μSv/h, platelet (PLT) counts increased rapidly and adversely with the RBC and white blood cell (WBC) due to chromosomal aberration. Besides, rapid PLT count reduction rapidly at high dose (42.1 μSvh) causes thrombocytopenia; in contrast, WBC increased, which is an indication of cancer caused due to increase in alpha particle dose. Generally, our results are in agreement with the essentials of blood content and the principles of biological radiation interaction.
    Matched MeSH terms: Blood Cell Count
  8. Teoh LS, Foo SW, Mansurali VN, Ang EL, Md Noh UK, Bastion MC
    Asia Pac J Ophthalmol (Phila), 2017;6(4):318-325.
    PMID: 28581284 DOI: 10.22608/APO.2016206
    PURPOSE: To study the effects of intracameral phenylephrine 1.5% on corneal endothelial cell loss and morphological changes in patients who had uneventful phacoemulsification surgery.

    DESIGN: A double-blind randomized controlled trial.

    METHODS: This study comprised 295 patients who were randomized into the intracameral (ICM) mydriatic group or topical mydriatic group. Central corneal endothelial cell density (ECD), coefficient of variation (CV), and percentage of hexagonal cells were measured preoperatively and postoperatively at 1 week, 6 weeks, and 3 months with specular microscope.

    RESULTS: There was no significant difference in endothelial cell density and endothelial cell loss between the topical and ICM mydriatic groups. At 3 months, the mean endothelial cell density in the ICM group was 2129.76 ± 423.53 cells/mm2 and 2100.54 ± 393.00 cells/mm2 in the topical group (P = 0.539). The endothelial cell loss was 18.60 ± 12.79% in the IC M group and 19.44 ± 11.24% in the topical group (P = 0.550). No significant difference was seen in the percentage of hexagonal cells and coefficient of variation of patients between the 2 groups.

    CONCLUSIONS: Intracameral phenylephrine was not associated with increased risk of postoperative endothelial cell loss or morphological changes. It can be safely injected into the anterior chamber for pupil dilatation before phacoemulsification cataract surgery.

    Matched MeSH terms: Cell Count
  9. Canfield PJ, Best FG, Fairburn AJ, Purdie J, Gilham M
    Aust. Vet. J., 1984 Mar;61(3):89-93.
    PMID: 6743148
    Blood samples were collected from 24 immature male, 55 immature female and 99 mature female water buffalo kept at an experimental farm in the Northern Territory. Haematological analysis was performed on blood collected in dipotassium--ethylene diamine tetra acetic acid while biochemical analysis was performed on serum and plasma (for glucose) samples. Haematological values of mature buffalo were similar to those recorded for swamp buffalo in Malaysia. Blood cell appearances were similar to those reported for adult Indian river buffalo though values recorded for red cell components were higher. Statistical analysis revealed no significant differences between immature male and female buffalo. Red cell components, eosinophils, total plasma and serum proteins, albumin, gamma globulins, inorganic phosphate and the enzyme gamma-glutamyl transferase were significantly higher for mature female buffalo when compared to immature females. Reasons for the differences were not fully determined but the effect of age and nutritional status in combination with a variable period of domestication were considered.
    Matched MeSH terms: Blood Cell Count/veterinary*
  10. Nordin F, Idris MRM, Mahdy ZA, Wahid SFA
    BMC Pregnancy Childbirth, 2020 Jul 10;20(1):399.
    PMID: 32650736 DOI: 10.1186/s12884-020-03084-7
    BACKGROUND: Umbilical cord blood (UCB) has been proposed as the potential source of haematopoietic stem cells (HSC) for allogeneic transplantation. However, few studies have shown that a common disease in pregnancy such as preeclampsia would affect the quality of UCB-HSC. Total nucleated cell count (TNC) is an important parameter that can be used to predict engraftment including UCB banking. Colony forming unit (CFU) assay is widely used as an indicator to predict the success of engraftment, since direct quantitative assay for HSC proliferation is unavailable. The aim of this study is to investigate the effects of preeclampsia in pregnancy on the stemness and differentiation potency of UCB-HSC.

    METHODS: Mononuclear cells (MNC) were isolated from UCB and further enriched for CD34+ cells using immune-magnetic method followed by CFU assay. A panel of HSC markers including differentiated haematopoietic markers were used to confirm the differentiation ability of UCB-HSC by flow cytometry analysis.

    RESULTS/ DISCUSSION: The HSC progenitor's colonies from the preeclampsia group were significantly lower compared to the control. This correlates with the low UCB volume, TNC and CD34+ cells count. In addition, the UCB-enriched CD34+ population were lymphoid progenitors and capable to differentiate into natural killer cells and T-lymphocytes.

    CONCLUSION: These findings should be taken into consideration when selecting UCB from preeclamptic mothers for banking and predicting successful treatment related to UCB transplant.

    Matched MeSH terms: Cell Count
  11. Mohamed MI, Mohammad MK, Abdul Razak HR, Abdul Razak K, Saad WM
    Biomed Res Int, 2015;2015:183525.
    PMID: 26075217 DOI: 10.1155/2015/183525
    Emerging syntheses and findings of new metallic nanoparticles (MNPs) have become an important aspect in various fields including diagnostic imaging. To date, iodine has been utilized as a radiographic contrast medium. However, the raise concern of iodine threats on iodine-intolerance patient has led to search of new contrast media with lower toxic level. In this animal modeling study, 14 nm iron oxide nanoparticles (IONPs) with silane-polyethylene glycol (SiPEG) and perchloric acid have been assessed for toxicity level as compared to conventional iodine. The nanotoxicity of IONPs was evaluated in liver biochemistry, reactive oxygen species production (ROS), lipid peroxidation mechanism, and ultrastructural evaluation using transmission electron microscope (TEM). The hematological analysis and liver function test (LFT) revealed that most of the liver enzymes were significantly higher in iodine-administered group as compared to those in normal and IONPs groups (P < 0.05). ROS production assay and lipid peroxidation indicator, malondialdehyde (MDA), also showed significant reductions in comparison with iodine group (P < 0.05). TEM evaluation yielded the aberration of nucleus structure of iodine-administered group as compared to those in control and IONPs groups. This study has demonstrated the less toxic properties of IONPs and it may postulate that IONPs are safe to be applied as radiographic contrast medium.
    Matched MeSH terms: Blood Cell Count
  12. Tiong KH, Chang JK, Pathmanathan D, Hidayatullah Fadlullah MZ, Yee PS, Liew CS, et al.
    Biotechniques, 2018 12;65(6):322-330.
    PMID: 30477327 DOI: 10.2144/btn-2018-0072
    We describe a novel automated cell detection and counting software, QuickCount® (QC), designed for rapid quantification of cells. The Bland-Altman plot and intraclass correlation coefficient (ICC) analyses demonstrated strong agreement between cell counts from QC to manual counts (mean and SD: -3.3 ± 4.5; ICC = 0.95). QC has higher recall in comparison to ImageJauto, CellProfiler and CellC and the precision of QC, ImageJauto, CellProfiler and CellC are high and comparable. QC can precisely delineate and count single cells from images of different cell densities with precision and recall above 0.9. QC is unique as it is equipped with real-time preview while optimizing the parameters for accurate cell count and needs minimum hands-on time where hundreds of images can be analyzed automatically in a matter of milliseconds. In conclusion, QC offers a rapid, accurate and versatile solution for large-scale cell quantification and addresses the challenges often faced in cell biology research.
    Matched MeSH terms: Cell Count/economics; Cell Count/methods*
  13. Chen DC, Chen LY, Ling QD, Wu MH, Wang CT, Suresh Kumar S, et al.
    Biomaterials, 2014 May;35(14):4278-87.
    PMID: 24565521 DOI: 10.1016/j.biomaterials.2014.02.004
    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes.
    Matched MeSH terms: Cell Count
  14. Feng Z, Ishiguro Y, Fujita K, Kosawada T, Nakamura T, Sato D, et al.
    Biomaterials, 2015 Oct;67:365-81.
    PMID: 26247391 DOI: 10.1016/j.biomaterials.2015.07.038
    In this paper, we present a general, fibril-based structural constitutive theory which accounts for three material aspects of crosslinked filamentous materials: the single fibrillar force response, the fibrillar network model, and the effects of alterations to the fibrillar network. In the case of the single fibrillar response, we develop a formula that covers the entropic and enthalpic deformation regions, and introduce the relaxation phase to explain the observed force decay after crosslink breakage. For the filamentous network model, we characterize the constituent element of the fibrillar network in terms its end-to-end distance vector and its contour length, then decompose the vector orientation into an isotropic random term and a specific alignment, paving the way for an expanded formalism from principal deformation to general 3D deformation; and, more important, we define a critical core quantity over which macroscale mechanical characteristics can be integrated: the ratio of the initial end-to-end distance to the contour length (and its probability function). For network alterations, we quantitatively treat changes in constituent elements and relate these changes to the alteration of network characteristics. Singular in its physical rigor and clarity, this constitutive theory can reproduce and predict a wide range of nonlinear mechanical behavior in materials composed of a crosslinked filamentous network, including: stress relaxation (with dual relaxation coefficients as typically observed in soft tissues); hysteresis with decreasing maximum stress under serial cyclic loading; strain-stiffening under uniaxial tension; the rupture point of the structure as a whole; various effects of biaxial tensile loading; strain-stiffening under simple shearing; the so-called "negative normal stress" phenomenon; and enthalpic elastic behaviors of the constituent element. Applied to compacted collagen gels, the theory demonstrates that collagen fibrils behave as enthalpic elasticas with linear elasticity within the gels, and that the macroscale nonlinearity of the gels originates from the curved fibrillar network. Meanwhile, the underlying factors that determine the mechanical properties of the gels are clarified. Finally, the implications of this study on the enhancement of the mechanical properties of compacted collagen gels and on the cellular mechanics with this model tissue are discussed.
    Matched MeSH terms: Cell Count
  15. Alias MA, Buenzli PR
    Biophys J, 2017 Jan 10;112(1):193-204.
    PMID: 28076811 DOI: 10.1016/j.bpj.2016.11.3203
    The growth of several biological tissues is known to be controlled in part by local geometrical features, such as the curvature of the tissue interface. This control leads to changes in tissue shape that in turn can affect the tissue's evolution. Understanding the cellular basis of this control is highly significant for bioscaffold tissue engineering, the evolution of bone microarchitecture, wound healing, and tumor growth. Although previous models have proposed geometrical relationships between tissue growth and curvature, the role of cell density and cell vigor remains poorly understood. We propose a cell-based mathematical model of tissue growth to investigate the systematic influence of curvature on the collective crowding or spreading of tissue-synthesizing cells induced by changes in local tissue surface area during the motion of the interface. Depending on the strength of diffusive damping, the model exhibits complex growth patterns such as undulating motion, efficient smoothing of irregularities, and the generation of cusps. We compare this model with in vitro experiments of tissue deposition in bioscaffolds of different geometries. By including the depletion of active cells, the model is able to capture both smoothing of initial substrate geometry and tissue deposition slowdown as observed experimentally.
    Matched MeSH terms: Cell Count
  16. Darah I, Sumathi G, Jain K, Lim SH
    Bioprocess Biosyst Eng, 2011 Sep;34(7):795-801.
    PMID: 21347668 DOI: 10.1007/s00449-011-0529-8
    The ability of immobilized cell cultures of Aspergillus niger FETL FT3 to produce extracellular tannase was investigated. The production of enzyme was increased by entrapping the fungus in scouring mesh cubes compared to free cells. Using optimized parameters of six scouring mesh cubes and inoculum size of 1 × 10(6) spores/mL, the tannase production of 3.98 U/mL was obtained from the immobilized cells compared to free cells (2.81 U/mL). It was about 41.64% increment. The immobilized cultures exhibited significant tannase production stability of two repeated runs.
    Matched MeSH terms: Cell Count
  17. Imaizumi Y, Nagao N, Yusoff FM, Taguchi S, Toda T
    Bioresour Technol, 2014 Jun;162:53-9.
    PMID: 24747382 DOI: 10.1016/j.biortech.2014.03.123
    To determine the optimum light intensity per cell required for rapid growth regardless of cell density, continuous cultures of the microalga Chlorella zofingiensis were grown with a sufficient supply of nutrients and CO2 and were subjected to different light intensities in the range of 75-1000 μE m(-2) s(-1). The cell density of culture increased over time for all light conditions except for the early stage of the high light condition of 1000 μE m(-2) s(-1). The light intensity per cell required for the high specific growth rate of 0.5 day(-1) was determined to be 28-45 μE g-ds(-1) s(-1). The specific growth rate was significantly correlated to light intensity (y=0.721×x/(66.98+x), r(2)=0.85, p<0.05). A high specific growth rate was maintained over a range of light intensities (250-1000 μE m(-2) s(-1)). This range of light intensities suggested that effective production of C. zofingiensis can be maintained outdoors under strong light by using the optimum specific light intensity.
    Matched MeSH terms: Cell Count
  18. Atta M, Idris A, Bukhari A, Wahidin S
    Bioresour Technol, 2013 Nov;148:373-8.
    PMID: 24063820 DOI: 10.1016/j.biortech.2013.08.162
    Light quality and the intensity are key factors which render microalgae as a potential source of biodiesel. In this study the effects of various intensities of blue light and its photoperiods on the growth and lipid content of Chlorella vulgaris were investigated by using LED (Light Emitting Diode) in batch culture. C. vulgaris was grown for 13 days at three different light intensities (100, 200 and 300 μmol m(-2)s(-1)). Effect of three different light and dark regimes (12:12, 16:08 and 24:00 h Light:Dark) were investigated for each light intensity at 25°C culture temperature. Maximum lipid content (23.5%) was obtained due to high efficiency and deep penetration of 200 μmol m(-2)s(-1) of blue light (12:12 L:D) with improved specific growth (1.26 d(-1)) within reduced cultivation time of 8 days. White light could produce 20.9% lipid content in 10 days at 16:08 h L:D.
    Matched MeSH terms: Cell Count
  19. Cha TS, Chen JW, Goh EG, Aziz A, Loh SH
    Bioresour Technol, 2011 Nov;102(22):10633-40.
    PMID: 21967717 DOI: 10.1016/j.biortech.2011.09.042
    This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (p<0.05) oil content at nitrate ranging from 0.18 to 0.66 mM with C. vulgaris produced 10.20-11.34% dw, while C. sorokiniana produced 15.44-17.32% dw. The major fatty acids detected include C16:0, C18:0, C18:1, C18:2 and C18:3. It is interesting to note that both species displayed differentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions.
    Matched MeSH terms: Cell Count
  20. Yee W
    Bioresour Technol, 2015 Nov;196:1-8.
    PMID: 26210717 DOI: 10.1016/j.biortech.2015.07.033
    In order to assess the feasibility of various carbon sources and plant materials in increasing the growth rate and biomass productivity of Monoraphidium griffithii, ten carbon sources as well as six plant materials were tested in mixotrophic cultures with or without aeration. It was found that glucose, fructose, maltose, sodium acetate and mannitol were potential carbon sources for growth enhancement of M. griffithii. Supplementation of culture medium with these carbon sources resulted in approximately 1-4-fold increase in cell density compared to control in a small scale culture. In a larger scale mixotrophic culture with aeration, 0.05% mannitol and 0.1% fructose resulted in a decent 1-1.5-fold increase in final cell density, approximately 2-fold increase in growth rate and 0.5-1-fold increase in dry biomass weight. Findings from this study suggests that glucose, fructose, maltose and mannitol were potential organic carbon sources for mixotrophic culture of M. griffithii.
    Matched MeSH terms: Cell Count
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links