Displaying publications 1 - 20 of 216 in total

Abstract:
Sort:
  1. 'Aizat Norhisham D, Md Saad N, Ahmad Usuldin SR, Vayabari DAG, Ilham Z, Ibrahim MF, et al.
    Bioengineered, 2023 Dec;14(1):2262203.
    PMID: 37791464 DOI: 10.1080/21655979.2023.2262203
    The versatility of a well-known fibrous crop, Hibiscus cannabinus (kenaf) is still relatively new to many. Kenaf's potential applications, which can be extended even into critical industries such as pharmaceutical and food industries, have always been overshadowed by its traditionally grown fiber. Therefore, this study aimed to venture into the biotechnological approach in reaping the benefits of kenaf through plant cell suspension culture to maximize the production of kenaf callus biomass (KCB) and exopolysaccharide (EPS), which is deemed to be more sustainable. A growth curve was established which indicates that cultivating kenaf callus in suspension culture for 22 days gives the highest KCB (9.09 ± 1.2 g/L) and EPS (1.1 ± 0.02 g/L). Using response surface methodology (RSM), it was found that sucrose concentration, agitation speed, and naphthalene acetic acid (NAA) concentration can affect the production of KCB and EPS significantly (p cell suspension culture of kenaf callus serve as the blueprint for any sustainable large-scale production in the future and provide an alternative cultivating method to kenaf traditional farming.
    Matched MeSH terms: Cell Culture Techniques
  2. Koh B, Sulaiman N, Fauzi MB, Law JX, Ng MH, Yuan TL, et al.
    Int J Mol Sci, 2023 Feb 13;24(4).
    PMID: 36835154 DOI: 10.3390/ijms24043745
    Xeno-free three-dimensional cultures are gaining attention for mesenchymal stem cell (MSCs) expansion in clinical applications. We investigated the potential of xeno-free serum alternatives, human serum and human platelet lysate, to replace the current conventional use of foetal bovine serum for subsequent MSCs microcarrier cultures. In this study, Wharton's Jelly MSCs were cultured in nine different media combinations to identify the best xeno-free culture media for MSCs culture. Cell proliferation and viability were identified, and the cultured MSCs were characterised in accordance with the minimal criteria for defining multipotent mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT). The selected culture media was then used in the microcarrier culture of MSCs to determine the potential of a three-dimensional culture system in the expansion of MSCs for future clinical applications, and to identify the immunomodulatory potential of cultured MSCs. Low Glucose DMEM (LG) + Human Platelet (HPL) lysate media appeared to be good candidates for replacing conventional MSCs culture media in our monolayer culture system. MSCs cultured in LG-HPL achieved high cell yield, with characteristics that remained as described by ISCT, although the overall mitochondrial activity of the cells was lower than the control and the subsequent effects remained unknown. MSC microcarrier culture, on the other hand, showed comparable cell characteristics with monolayer culture, yet had stagnated cell proliferation, which is potentially due to the inactivation of FAK. Nonetheless, both the MSCs monolayer culture and the microcarrier culture showed high suppressive activity on TNF-α, and only the MSC microcarrier culture has a better suppression of IL-1 secretion. In conclusion, LG-HPL was identified as a good xeno-free media for WJMSCs culture, and although further mechanistic research is needed, the results show that the xeno-free three-dimensional culture maintained MSC characteristics and improved immunomodulatory activities, suggesting the potential of translating the monolayer culture into this culture system in MSC expansion for future clinical application.
    Matched MeSH terms: Cell Culture Techniques/methods
  3. Chua P, Lim WK
    Cell Biol Int, 2023 Feb;47(2):367-373.
    PMID: 36423248 DOI: 10.1002/cbin.11966
    The culture of adherent mammalian cells involves adhesion to the tissue culture vessel. This requires attachment factors from serum and/or a suitable substrate on the vessel surface. Some cells require collagen or other substrates to promote neurite outgrowth, differentiation or growth. However, laboratories often lack guidance on the selection and/or optimisation of collagen. We model such selection/optimisation work in the PC12 neuronal cell line. PC12 (NS-1 variant) cells require a substrate for adherence. Comparing cell attachment against a series of substrates, we found collagen IV to be optimal. We show by comparison of morphology against a range of concentrations that 10 µg/ml is sufficient for supporting cell attachment, and also differentiation. PC12 cells from Riken Cell Bank do not require a substrate for routine culturing but only for differentiation. As all substrates supported attachment equally well, we used a novel serum-free approach and identified collagen IV as its preferred substrate. For these cells, Dulbecco's modified eagle's medium but not Roswell Park Memorial Institute (RPMI) media supports normal cell attachment. However, coating with collagen IV enabled the cells to grow equally well in RPMI. Hence the strategic use of collagen is essential in laboratories working with anchorage-dependent cell lines.
    Matched MeSH terms: Cell Culture Techniques
  4. Thuy DTB, Nguyen A, Khoo KS, Chew KW, Cnockaert M, Vandamme P, et al.
    Bioengineered, 2021 12;12(1):54-62.
    PMID: 33350336 DOI: 10.1080/21655979.2020.1857626
    This study was aimed to identify and optimize the culture conditions for gamma-aminobutyric acid (GABA) production by a lactic acid bacterium strain isolated from mam nem, a fermented fish sauce. Among the six isolates obtained from mam nem, the MN12 had the most potent GABA-producing capability. The strain was then identified to be Pedioccocus pentosaceus by employing MALDI-TOF-MS and phenylalanyl-tRNA synthase sequencing methods. The initial cell density of 5.106 CFU/mL, monosodium glutamate concentration of 60 mM, initial pH of 7, temperature of 45°C and cultivation time of 72 h were found to be the optimal culture conditions for highest production of GABA, reaching 27.9 ± 0.42 mM, by this strain. The cultivation conditions for GABA production by P. pentosaceus MN12 have been successfully optimized, providing a foundation for the development of fermented foods enriched with GABA.
    Matched MeSH terms: Cell Culture Techniques
  5. Trang NTH, Tang DYY, Chew KW, Linh NT, Hoang LT, Cuong NT, et al.
    Mol Biotechnol, 2021 Nov;63(11):1004-1015.
    PMID: 34185249 DOI: 10.1007/s12033-021-00362-3
    Various studies showed that the suppression of α-glucosidase activity can impede the glucose absorption in our body, and therefore, it can be used to treat type 2 diabetes. Hence, the compounds with anti-α-glucosidase have gained considerable attention because of their potential application in diabetes treatment. In previous literature studies, these anti-α-glucosidase compounds were extracted from plants and fungus. Less studies are being conducted to identify the anti-α-glucosidase compounds in the microbial community. In this study, 23 marine bacterial strains were screened for their potential to suppress the α-glucosidase activity. The highest inhibitory activity was exhibited by isolated L06 which was identified as Oceanimonas smirnovii EBL6. The cultivation conditions, such as temperature and pH, were optimized to increase the production of α-glucosidase inhibitors by Oceanimonas smirnovii EBL6 strain. The result findings showed that the highest yield of α-glucosidase inhibitors can be obtained at the culture time of 120 h, fermentation temperature of 30 °C, and pH 4.6. Under these conditions, the inhibitory activity of α-glucosidase can reach 81%. The IC50 of n-butanol extract was 13.89 μg/ml, while standard acarbose was 31.16 μg/ml. Overall, these findings suggest that Oceanimonas smirnovii produces α-glucosidase inhibitors and could been applied in the biochemical and medicinal fields in the future.
    Matched MeSH terms: Cell Culture Techniques/methods
  6. Yap WH, Teoh ML, Tang YQ, Goh BH
    Biochem Mol Biol Educ, 2021 09;49(5):685-691.
    PMID: 34291546 DOI: 10.1002/bmb.21562
    This study presents an evaluation of integrating virtual laboratory simulations in assessment design of a biotechnology course at Taylor's University in Malaysia before, during and post-COVID recovery phases. The purpose was to investigate how virtual laboratory simulations were integrated as part of the assessments of a practical-embedded course-the aim being to evaluate students' acceptance and perception of using virtual simulation. A total of 46 students, across three different study cohorts (August 2019, March 2020, and August 2020) were evaluated different educational aspects of using virtual laboratory cases in a 4-week course within Animal Biotechnology. Overall, students regarded virtual laboratory simulation useful as part of their learning, and there is a significant increase in the level of acceptance before, during and post-COVID recovery phases. The study showed that across the different study cohorts, students perceived their confidence level in laboratory skills have been enhanced and that they can apply the skills in real-life situation. Interestingly, students (March and August 2020 cohort) who have not been exposed to the related laboratory session still perceived that the simulated activity provides clear explanation and realistic experience. Furthermore, it had been highlighted across the study cohorts that the quiz questions helped to enhance their understanding on the underlying principles of the laboratory techniques. The overall conclusion of this study was that structured simulation-based activities which provide clear instructions and explanation would support significant improvements in students learning.
    Matched MeSH terms: Cell Culture Techniques*
  7. Teh JL, Abdul Rahman SF, Domnic G, Satiyasilan L, Chear NJY, Singh D, et al.
    BMC Res Notes, 2021 Aug 13;14(1):310.
    PMID: 34389056 DOI: 10.1186/s13104-021-05727-0
    OBJECTIVE: The spheroid model provides a physiological platform to study cancer cell biology and drug sensitivity. Usage of bovine collagen I for spheroid assays is costly especially when experiments are conducted in 24-well plates, as high volume of bovine collagen I is needed. The aim of the study was to downsize spheroid assays to a microfluidic 3D cell culture chip and compare the growth, invasion and response to drug/compound of spheroids embedded in the 3D chip to spheroids embedded in 24-well plates.

    RESULTS: Spheroids generated from nasopharyngeal carcinoma cell line HK-1 continuously grew and invaded into collagen matrix in a 24-well plate. Similar observations were noticed with spheroids embedded in the 3D chip. Large spheroids in both 24-well plate and the 3D chip disintegrated and invaded into the collagen matrix. Preliminary drug sensitivity assays showed that the growth and invasion of spheroids were inhibited when spheroids were treated with combination of cisplatin and paynantheine at high concentrations, in a 24-well plate. Comparable findings were obtained when spheroids were treated with the same drug combination in the 3D chip. Moving forward, spheroid assays could be performed in the 3D chip in a more high-throughput manner with minimal time and cost.

    Matched MeSH terms: Cell Culture Techniques*
  8. Zambry NS, Rusly NS, Awang MS, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2021 Jul;44(7):1577-1592.
    PMID: 33687550 DOI: 10.1007/s00449-021-02543-5
    The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.
    Matched MeSH terms: Batch Cell Culture Techniques/methods
  9. Ooi TC, Yaacob M, Rajab NF, Shahar S, Sharif R
    Saudi J Biol Sci, 2021 May;28(5):2987-2994.
    PMID: 34025176 DOI: 10.1016/j.sjbs.2021.02.039
    Oxidative stress, DNA damage, and unresolved inflammation are the predisposing factors of many chronic and degenerative diseases, including cancer. Stingless bee honey (SBH) is recognized to have high medicinal value by traditional medicine practitioners and has been used to treat various illnesses traditionally. This study aimed to determine the antioxidant, anti-inflammatory, and genoprotective effects of SBH by using in vitro cell culture models. The sugar content, total phenolic content, radical scavenging activity, and ferric reducing antioxidant power (FRAP) of SBH were determined in this study. Then, the protective effect of SBH against hydrogen peroxide (H2O2)-induced cell death and DNA damage was studied by using WIL2-NS human lymphoblastoid cell line, while the lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages cell line was used to study the anti-inflammatory effects of SBH. Results from this present study showed that the major sugar contents of SBH were fructose (19.39 + 0.01%) and glucose (14.03 ± 0.03%). Besides, the total phenolic content, the radical scavenging activity, and the FRAP value of SBH were 15.38 ± 0.02 mg GAE/100 g of honey, 34.04 ± 0.21%, and 206.77 + 1.76 μM AAE/100 g honey respectively. Pretreatment with SBH protected WIL2-NS cells from H2O2-induced cell death and DNA damage (p cells (p 
    Matched MeSH terms: Cell Culture Techniques
  10. Bakhsheshi-Rad HR, Hamzah E, Ying WS, Razzaghi M, Sharif S, Ismail AF, et al.
    Materials (Basel), 2021 Apr 12;14(8).
    PMID: 33921460 DOI: 10.3390/ma14081930
    Magnesium has been recognized as a groundbreaking biodegradable biomaterial for implant applications, but its use is limited because it degrades too quickly in physiological solutions. This paper describes the research on the influence of polycaprolactone (PCL)/chitosan (CS)/zinc oxide (ZnO) composite coating (PCL/CS/ZnO) on the corrosion resistance and antibacterial activity of magnesium. The PCL/CS film presented a porous structure with thickness of about 40-50 μm, while after incorporation of ZnO into the PCL/CS, a homogenous film without pores and defects was attained. The ZnO embedded in PCL/CS enhanced corrosion resistance by preventing corrosive ions diffusion in the magnesium substrate. The corrosion, antibacterial, and cell interaction mechanism of the PCL/CS/ZnO composite coating is discussed in this study. In vitro cell culture revealed that the PCL/CS coating with low loaded ZnO significantly improved cytocompatibility, but coatings with high loaded ZnO were able to induce some cytotoxicity osteoblastic cells. It was also found that enhanced antibacterial activity of the PCL/CS/ZnO coating against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, while less significant antibacterial activity was detected for uncoated Mg and PCL/CS coating. Based on the results, the PCL/CS coatings loaded with low ZnO content may be recommended as a candidate material for biodegradable Mg-based orthopedic implant applications.
    Matched MeSH terms: Cell Culture Techniques
  11. Liu Y, Liaw YM, Teo CH, Cápal P, Wada N, Fukui K, et al.
    Sci Rep, 2021 Mar 30;11(1):7160.
    PMID: 33785802 DOI: 10.1038/s41598-021-86130-4
    Although plants and animals are evolutionarily distant, the structure and function of their chromosomes are largely conserved. This allowed the establishment of a human-Arabidopsis hybrid cell line in which a neo-chromosome was formed by insertion of segments of Arabidopsis chromosomes into human chromosome 15. We used this unique system to investigate how the introgressed part of a plant genome was maintained in human genetic background. The analysis of the neo-chromosome in 60- and 300-day-old cell cultures by next-generation sequencing and molecular cytogenetics suggested its origin by fusion of DNA fragments of different sizes from Arabidopsis chromosomes 2, 3, 4, and 5, which were randomly intermingled rather than joined end-to-end. The neo-chromosome harbored Arabidopsis centromeric repeats and terminal human telomeres. Arabidopsis centromere wasn't found to be functional. Most of the introgressed Arabidopsis DNA was eliminated during the culture, and the Arabidopsis genome in 300-day-old culture showed significant variation in copy number as compared with the copy number variation in the 60-day-old culture. Amplified Arabidopsis centromere DNA and satellite repeats were localized at particular loci and some fragments were inserted into various positions of human chromosome. Neo-chromosome reorganization and behavior in somatic cell hybrids between the plant and animal kingdoms are discussed.
    Matched MeSH terms: Cell Culture Techniques/methods
  12. Liau LL, Hassan MNFB, Tang YL, Ng MH, Law JX
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525349 DOI: 10.3390/ijms22031269
    Osteoarthritis (OA) is a degenerative joint disease that affects a lot of people worldwide. Current treatment for OA mainly focuses on halting or slowing down the disease progress and to improve the patient's quality of life and functionality. Autologous chondrocyte implantation (ACI) is a new treatment modality with the potential to promote regeneration of worn cartilage. Traditionally, foetal bovine serum (FBS) is used to expand the chondrocytes. However, the use of FBS is not ideal for the expansion of cells mean for clinical applications as it possesses the risk of animal pathogen transmission and animal protein transfer to host. Human platelet lysate (HPL) appears to be a suitable alternative to FBS as it is rich in biological factors that enhance cell proliferation. Thus far, HPL has been found to be superior in promoting chondrocyte proliferation compared to FBS. However, both HPL and FBS cannot prevent chondrocyte dedifferentiation. Discrepant results have been reported for the maintenance of chondrocyte redifferentiation potential by HPL. These differences are likely due to the diversity in the HPL preparation methods. In the future, more studies on HPL need to be performed to develop a standardized technique which is capable of producing HPL that can maintain the chondrocyte redifferentiation potential reproducibly. This review discusses the in vitro expansion of chondrocytes with FBS and HPL, focusing on its capability to promote the proliferation and maintain the chondrogenic characteristics of chondrocytes.
    Matched MeSH terms: Cell Culture Techniques
  13. Ahmad Mulyadi Lai HI, Chou SJ, Chien Y, Tsai PH, Chien CS, Hsu CC, et al.
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525682 DOI: 10.3390/ijms22031320
    Angiotensin-converting enzyme 2 (ACE2) was identified as the main host cell receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent infection. In some coronavirus disease 2019 (COVID-19) patients, it has been reported that the nervous tissues and the eyes were also affected. However, evidence supporting that the retina is a target tissue for SARS-CoV-2 infection is still lacking. This present study aimed to investigate whether ACE2 expression plays a role in human retinal neurons during SARS-CoV-2 infection. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids and monolayer cultures derived from dissociated retinal organoids were generated. To validate the potential entry of SARS-CoV-2 infection in the retina, we showed that hiPSC-derived retinal organoids and monolayer cultures endogenously express ACE2 and transmembrane serine protease 2 (TMPRSS2) on the mRNA level. Immunofluorescence staining confirmed the protein expression of ACE2 and TMPRSS2 in retinal organoids and monolayer cultures. Furthermore, using the SARS-CoV-2 pseudovirus spike protein with GFP expression system, we found that retinal organoids and monolayer cultures can potentially be infected by the SARS-CoV-2 pseudovirus. Collectively, our findings highlighted the potential of iPSC-derived retinal organoids as the models for ACE2 receptor-based SARS-CoV-2 infection.
    Matched MeSH terms: Cell Culture Techniques
  14. Wan Afifudeen CL, Loh SH, Aziz A, Takahashi K, Effendy AWM, Cha TS
    Sci Rep, 2021 01 11;11(1):381.
    PMID: 33431982 DOI: 10.1038/s41598-020-79711-2
    Bioprospecting for biodiesel potential in microalgae primarily involves a few model species of microalgae and rarely on non-model microalgae species. Therefore, the present study determined changes in physiology, oil accumulation, fatty acid composition and biodiesel properties of a non-model microalga Messastrum gracile SE-MC4 in response to 12 continuous days of nitrate-starve (NS) and nitrate-replete (NR) conditions respectively. Under NS, the highest oil content (57.9%) was achieved despite reductions in chlorophyll content, biomass productivity and lipid productivity. However, under both NS and NR, palmitic acid and oleic acid remained as dominant fatty acids thus suggesting high potential of M. gracile for biodiesel feedstock consideration. Biodiesel properties analysis returned high values of cetane number (CN 61.9-64.4) and degree of unsaturation (DU 45.3-57.4) in both treatments. The current findings show the possibility of a non-model microalga to inherit superior ability over model species in oil accumulation for biodiesel development.
    Matched MeSH terms: Cell Culture Techniques
  15. Abu ML, Mohammad R, Oslan SN, Salleh AB
    Prep Biochem Biotechnol, 2021;51(4):350-360.
    PMID: 32940138 DOI: 10.1080/10826068.2020.1818256
    A thermostable bacterial lipase from Geobacillus zalihae was expressed in a novel yeast Pichia sp. strain SO. The preliminary expression was too low and discourages industrial production. This study sought to investigate the optimum conditions for T1 lipase production in Pichia sp. strain SO. Seven medium conditions were investigated and optimized using Response Surface Methodology (RSM). Five responding conditions namely; temperature, inoculum size, incubation time, culture volume and agitation speed observed through Plackett-Burman Design (PBD) method had a significant effect on T1 lipase production. The medium conditions were optimized using Box-Behnken Design (BBD). Investigations reveal that the optimum conditions for T1 lipase production and Biomass concentration (OD600) were; Temperature 31.76 °C, incubation time 39.33 h, culture volume 132.19 mL, inoculum size 3.64%, and agitation speed of 288.2 rpm with a 95% PI low as; 12.41 U/mL and 95% PI high of 13.65 U/mL with an OD600 of; 95% PI low as; 19.62 and 95% PI high as; 22.62 as generated by the software was also validated. These predicted parameters were investigated experimentally and the experimental result for lipase activity observed was 13.72 U/mL with an OD600 of 24.5. At these optimum conditions, there was a 3-fold increase on T1 lipase activity. This study is the first to develop a statistical model for T1 lipase production and biomass concentration in Pichia sp. Strain SO. The optimized production of T1 lipase presents a choice for its industrial application.
    Matched MeSH terms: Cell Culture Techniques/methods
  16. Ahmad R, Lim CK, Marzuki NF, Goh YK, Azizan KA, Goh YK, et al.
    Molecules, 2020 Dec 16;25(24).
    PMID: 33339375 DOI: 10.3390/molecules25245965
    In solving the issue of basal stem rot diseases caused by Ganoderma, an investigation of Scytalidium parasiticum as a biological control agent that suppresses Ganoderma infection has gained our interest, as it is more environmentally friendly. Recently, the fungal co-cultivation has emerged as a promising method to discover novel antimicrobial metabolites. In this study, an established technique of co-culturing Scytalidium parasiticum and Ganoderma boninense was applied to produce and induce metabolites that have antifungal activity against G. boninense. The crude extract from the co-culture media was applied to a High Performance Liquid Chromatography (HPLC) preparative column to isolate the bioactive compounds, which were tested against G. boninense. The fractions that showed inhibition against G. boninense were sent for a Liquid Chromatography-Time of Flight-Mass Spectrometry (LC-TOF-MS) analysis to further identify the compounds that were responsible for the microbicidal activity. Interestingly, we found that eudistomin I, naringenin 7-O-beta-D-glucoside and penipanoid A, which were present in different abundances in all the active fractions, except in the control, could be the antimicrobial metabolites. In addition, the abundance of fatty acids, such as oleic acid and stearamide in the active fraction, also enhanced the antimicrobial activity. This comprehensive metabolomics study could be used as the basis for isolating biocontrol compounds to be applied in oil palm fields to combat a Ganoderma infection.
    Matched MeSH terms: Batch Cell Culture Techniques
  17. Katayama T, Nagao N, Kasan NA, Khatoon H, Rahman NA, Takahashi K, et al.
    J Biotechnol, 2020 Nov 10;323:113-120.
    PMID: 32768414 DOI: 10.1016/j.jbiotec.2020.08.001
    We isolated fifty-two strains from the marine aquaculture ponds in Malaysia that were evaluated for their lipid production and ammonium tolerance and four isolates were selected as new ammonium tolerant microalgae with high-lipid production: TRG10-p102 Oocystis heteromucosa (Chlorophyceae); TRG10-p103 and TRG10-p105 Thalassiosira weissflogii (Bacillariophyceae); and TRG10-p201 Amphora coffeiformis (Bacillariophyceae). Eicosapentenoic acid (EPA) in three diatom strain was between 2.6 and 18.6 % of total fatty acids, which were higher than in O. heteromucosa. Only A. coffeiformi possessed arachidonic acid. Oocystis heteromucosa naturally grew at high ammonium concentrations (1.4-10 mM), whereas the growth of the other strains, T. weissflogii and A. coffeiformi, were visibly inhibited at high ammonium concentrations (>1.4 mM-NH4). However, two strains of T. weissflogii were able to grow at up to 10 mM-NH4 by gradually acclimating to higher ammonium concentrations. The ammonium tolerant strains, especially T. weissflogii which have high EPA contents, were identified as a valuable candidate for biomass production utilizing NH4-N media, such as ammonium-rich wastewater.
    Matched MeSH terms: Cell Culture Techniques/methods
  18. Johan CAC, Zainathan SC
    Vet World, 2020 Nov;13(11):2565-2577.
    PMID: 33363355 DOI: 10.14202/vetworld.2020.2565-2577
    Iridoviruses, especially megalocytiviruses, are related to severe disease resulting in high economic losses in the aquaculture industry worldwide. The ornamental fish industry has been affected severely due to Megalocytivirus infections. Megalocytivirus is a DNA virus that has three genera; including red sea bream iridovirus, infectious spleen and kidney necrosis virus, and turbot reddish body iridovirus. Megalocytivirus causes non-specific clinical signs in ornamental fish. Cell culture, histology, immunofluorescence test, polymerase chain reaction (PCR) assay, and loop-mediated isothermal amplification assay have been used to diagnose megalocytiviruses. Risk factors such as temperature, transportation (export and import), and life stages of ornamental fish have been reported for the previous cases due to Megalocytivirus infections. In addition, other prevention and control methods also have been practiced in farms to prevent Megalocytivirus outbreaks. This is the first review of megalocytiviruses in ornamental fish since its first detection in 1989. This review discusses the occurrences of Megalocytivirus in ornamental fish, including the history, clinical signs, detection method, risk factors, and prevention measures.
    Matched MeSH terms: Cell Culture Techniques
  19. Rengganaten V, Huang CJ, Tsai PH, Wang ML, Yang YP, Lan YT, et al.
    Int J Mol Sci, 2020 Oct 23;21(21).
    PMID: 33114016 DOI: 10.3390/ijms21217864
    Spheroidal cancer cell cultures have been used to enrich cancer stem cells (CSC), which are thought to contribute to important clinical features of tumors. This study aimed to map the regulatory networks driven by circular RNAs (circRNAs) in CSC-enriched colorectal cancer (CRC) spheroid cells. The spheroid cells established from two CRC cell lines acquired stemness properties in pluripotency gene expression and multi-lineage differentiation capacity. Genome-wide sequencing identified 1503 and 636 circRNAs specific to the CRC parental and spheroid cells, respectively. In the CRC spheroids, algorithmic analyses unveiled a core network of mRNAs involved in modulating stemness-associated signaling pathways, driven by a circRNA-microRNA (miRNA)-mRNA axis. The two major circRNAs, hsa_circ_0066631 and hsa_circ_0082096, in this network were significantly up-regulated in expression levels in the spheroid cells. The two circRNAs were predicted to target and were experimentally shown to down-regulate miR-140-3p, miR-224, miR-382, miR-548c-3p and miR-579, confirming circRNA sponging of the targeted miRNAs. Furthermore, the affected miRNAs were demonstrated to inhibit degradation of six mRNA targets, viz. ACVR1C/ALK7, FZD3, IL6ST/GP130, SKIL/SNON, SMAD2 and WNT5, in the CRC spheroid cells. These mRNAs encode proteins that are reported to variously regulate the GP130/Stat, Activin/Nodal, TGF-β/SMAD or Wnt/β-catenin signaling pathways in controlling various aspects of CSC stemness. Using the CRC spheroid cell model, the novel circRNA-miRNA-mRNA axis mapped in this work forms the foundation for the elucidation of the molecular mechanisms of the complex cellular and biochemical processes that determine CSC stemness properties of cancer cells, and possibly for designing therapeutic strategies for CRC treatment by targeting CSC.
    Matched MeSH terms: Cell Culture Techniques
  20. Jawan R, Abbasiliasi S, Tan JS, Mustafa S, Halim M, Ariff AB
    Microorganisms, 2020 Sep 23;8(10).
    PMID: 32977375 DOI: 10.3390/microorganisms8101454
    Antibacterial peptides or bacteriocins produced by many strains of lactic acid bacteria have been used as food preservatives for many years without any known adverse effects. Bacteriocin titres can be modified by altering the physiological and nutritional factors of the producing bacterium to improve the production in terms of yield and productivity. The effects of culture conditions (initial pH, inoculum age and inoculum size) and medium compositions (organic and inorganic nitrogen sources; carbon sources) were assessed for the production of bacteriocin-like inhibitory substances (BLIS) by Lactococcus lactis Gh1 in shake flask cultures. An inoculum of the mid-exponential phase culture at 1% (v/v) was the optimal age and size, while initial pH of culture media at alkaline and acidic state did not show a significant impact on BLIS secretion. Organic nitrogen sources were more favourable for BLIS production compared to inorganic sources. Production of BLIS by L. lactis Gh1 in soytone was 1.28-times higher as compared to that of organic nitrogen sources ((NH4)2SO4). The highest cell concentration (XmX = 0.69 ± 0.026 g·L-1) and specific growth rate (μmax = 0.14 h-1) were also observed in cultivation using soytone. By replacing carbon sources with fructose, BLIS production was increased up to 34.94% compared to BHI medium, which gave the biomass cell concentration and specific growth rate of 0.66 ± 0.002 g·L-1 and 0.11 h-1, respectively. It can be concluded that the fermentation factors have pronounced influences on the growth of L. lactis Gh1 and BLIS production. Results from this study could be used for subsequent application in process design and optimisation for improving BLIS production by L. lactis Gh1 at larger scale.
    Matched MeSH terms: Batch Cell Culture Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links