Displaying publications 1 - 20 of 107 in total

Abstract:
Sort:
  1. Mahmood RI, Abbass AK, Razali N, Al-Saffar AZ, Al-Obaidi JR
    Int J Biol Macromol, 2021 Aug 01;184:636-647.
    PMID: 34174302 DOI: 10.1016/j.ijbiomac.2021.06.144
    The second most predominant cancer in the world and the first among women is breast cancer. We aimed to study the protein abundance profiles induced by lectin purified from the Agaricus bisporus mushroom (ABL) and conjugated with CaCO3NPs in the MCF-7 breast cancer cell line. Two-dimensional electrophoresis (2-DE) and orbitrap mass spectrometry techniques were used to reveal the protein abundance pattern induced by lectin. Flow cytometric analysis showed the accumulation of ABL-CaCO3NPs treated cells in the G1 phase than the positive control. Thirteen proteins were found different in their abundance in breast cancer cells after 24 h exposure to lectin conjugated with CaCO3NPs. Most of the identified proteins were showing a low abundance in ABL-CaCO3NPs treated cells in comparison to the positive and negative controls, including V-set and immunoglobulin domain, serum albumin, actin cytoplasmic 1, triosephosphate isomerase, tropomyosin alpha-4 chain, and endoplasmic reticulum chaperone BiP. Hornerin, tropomyosin alpha-1 chain, annexin A2, and protein disulfide-isomerase were up-regulated in comparison to the positive. Bioinformatic analyses revealed the regulation changes of these proteins mainly affected the pathways of 'Bcl-2-associated athanogene 2 signalling pathway', 'Unfolded protein response', 'Caveolar-mediated endocytosis signalling', 'Clathrin-mediated endocytosis signalling', 'Calcium signalling' and 'Sucrose degradation V', which are associated with breast cancer. We concluded that lectin altered the abundance in molecular chaperones/heat shock proteins, cytoskeletal, and metabolic proteins. Additionally, lectin induced a low abundance of MCF-7 cancer cell proteins in comparison to the positive and negative controls, including; V-set and immunoglobulin domain, serum albumin, actin cytoplasmic 1, triosephosphate isomerase, tropomyosin alpha-4 chain, and endoplasmic reticulum chaperone BiP.
    Matched MeSH terms: Cell Cycle/drug effects
  2. Dinh TN, Parat MO, Ong YS, Khaw KY
    Pharmacol Res, 2021 07;169:105666.
    PMID: 33989764 DOI: 10.1016/j.phrs.2021.105666
    Benzyl isothiocyanate (BITC) is one of the common isothiocyanates found in cruciferous vegetables such as broccoli, cabbage or watercress. Preclinical studies report of its effectiveness in the prevention and treatment against several cancers. This review aims to report and discuss findings on anticancer activities of BITC and its modes of action against 14 types of cancer. A literature search was conducted using the keywords "BITC" and "anticancer" from PubMed, Google Scholar and CINAHL Plus to obtain relevant research articles. This review highlights the anticancer efficacy of BITC through modulation of various signaling pathways involved in apoptosis, cell proliferation, cell cycle arrest, metastasis, angiogenesis, autophagy and the effects of BITC in combination with other drugs. With the available pharmacology evidence, we conclude that further studies are needed to validate its effectiveness in humans for further development and translation into prophylaxis or therapy by promoting optimal therapeutic effects and minimizing toxicity in cancer treatment.
    Matched MeSH terms: Cell Cycle/drug effects
  3. Latifah SY, Gopalsamy B, Abdul Rahim R, Manaf Ali A, Haji Lajis N
    Molecules, 2021 Mar 12;26(6).
    PMID: 33808969 DOI: 10.3390/molecules26061554
    BACKGROUND: This study reports on the cytotoxic properties of nordamnacanthal and damnacanthal, isolated from roots of Morinda elliptica on T-lymphoblastic leukaemia (CEM-SS) cell lines.

    METHODS: MTT assay, DNA fragmentation, ELISA and cell cycle analysis were carried out.

    RESULTS: Nordamnacanthal and damnacanthal at IC50 values of 1.7 μg/mL and10 μg/mL, respectively. At the molecular level, these compounds caused internucleosomal DNA cleavage producing multiple 180-200 bp fragments that are visible as a "ladder" on the agarose gel. This was due to the activation of the Mg2+/Ca2+-dependent endonuclease. The induction of apoptosis by nordamnacanthal was different from the one induced by damnacanthal, in a way that it occurs independently of ongoing transcription process. Nevertheless, in both cases, the process of dephosphorylation of protein phosphates 1 and 2A, the ongoing protein synthesis and the elevations of the cytosolic Ca2+ concentration were not needed for apoptosis to take place. Nordamnacanthal was found to have a cytotoxic effect by inducing apoptosis, while damnacanthal caused arrest at the G0/G1 phase of the cell cycle.

    CONCLUSION: Damnacanthal and nordamnacanthal have anticancer properties, and could act as potential treatment for T-lymphoblastic leukemia.

    Matched MeSH terms: Cell Cycle/drug effects
  4. Abdul Satar N, Ismail MN, Yahaya BH
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670440 DOI: 10.3390/molecules26041056
    Cancer stem cells (CSCs) represent a small subpopulation within a tumour. These cells possess stem cell-like properties but also initiate resistance to cytotoxic agents, which contributes to cancer relapse. Natural compounds such as curcumin that contain high amounts of polyphenols can have a chemosensitivity effect that sensitises CSCs to cytotoxic agents such as cisplatin. This study was designed to investigate the efficacy of curcumin as a chemo-sensitiser in CSCs subpopulation of non-small cell lung cancer (NSCLC) using the lung cancer adenocarcinoma human alveolar basal epithelial cells A549 and H2170. The ability of curcumin to sensitise lung CSCs to cisplatin was determined by evaluating stemness characteristics, including proliferation activity, colony formation, and spheroid formation of cells treated with curcumin alone, cisplatin alone, or the combination of both at 24, 48, and 72 h. The mRNA level of genes involved in stemness was analysed using quantitative real-time polymerase chain reaction. Liquid chromatography-mass spectrometry was used to evaluate the effect of curcumin on the CSC niche. A combined treatment of A549 subpopulations with curcumin reduced cellular proliferation activity at all time points. Curcumin significantly (p < 0.001) suppressed colonies formation by 50% and shrank the spheroids in CSC subpopulations, indicating inhibition of their self-renewal capability. This effect also was manifested by the down-regulation of SOX2, NANOG, and KLF4. Curcumin also regulated the niche of CSCs by inhibiting chemoresistance proteins, aldehyde dehydrogenase, metastasis, angiogenesis, and proliferation of cancer-related proteins. These results show the potential of using curcumin as a therapeutic approach for targeting CSC subpopulations in non-small cell lung cancer.
    Matched MeSH terms: Cell Cycle/drug effects
  5. Al-Masawa ME, Wan Kamarul Zaman WS, Chua KH
    Sci Rep, 2020 12 09;10(1):21583.
    PMID: 33299022 DOI: 10.1038/s41598-020-78395-y
    The scarcity of chondrocytes is a major challenge for cartilage tissue engineering. Monolayer expansion is necessary to amplify the limited number of chondrocytes needed for clinical application. Growth factors are often added to improve monolayer culture conditions, promoting proliferation, and enhancing chondrogenesis. Limited knowledge on the biosafety of the cell products manipulated with growth factors in culture has driven this study to evaluate the impact of growth factor cocktail supplements in chondrocyte culture medium on chondrocyte genetic stability and tumorigenicity. The growth factors were basic fibroblast growth factor (b-FGF), transforming growth factor β2 (TGF β2), insulin-like growth factor 1 (IGF-1), insulin-transferrin-selenium (ITS), and platelet-derived growth factor (PD-GF). Nasal septal chondrocytes cultured in growth factor cocktail exhibited a significantly high proliferative capacity. Comet assay revealed no significant DNA damage. Flow cytometry showed chondrocytes were mostly at G0-G1 phase, exhibiting normal cell cycle profile with no aneuploidy. We observed a decreased tumour suppressor genes' expression (p53, p21, pRB) and no TP53 mutations or tumour formation after 6 months of implantation in nude mice. Our data suggest growth factor cocktail has a low risk of inducing genotoxic and tumorigenic effects on chondrocytes up to passage 6 with 16.6 population doublings. This preclinical tumorigenicity and genetic instability evaluation is crucial for further clinical works.
    Matched MeSH terms: Cell Cycle/drug effects
  6. Halder A, Jethwa M, Mukherjee P, Ghosh S, Das S, Helal Uddin ABM, et al.
    Artif Cells Nanomed Biotechnol, 2020 Nov 17;48(1):1362-1371.
    PMID: 33284038 DOI: 10.1080/21691401.2020.1850465
    Cancer management presents multifarious problems. Triple negative breast cancer (TNBC) is associated with inaccurate prognosis and limited chemotherapeutic options. Betulinic acid (BA) prevents angiogenesis and causes apoptosis of TNBC cells. NIH recommends BA for rapid access in cancer chemotherapy because of its cell-specific toxicity. BA however faces major challenges in therapeutic practices due to its limited solubility and cellular entree. We report lactoferrin (Lf) attached BA nanoparticles (Lf-BAnp) for rapid delivery in triple negative breast (MDA-MB-231) and laryngeal (HEp-2) cancer cell types. Lf association was confirmed by SDS-PAGE and FT-IR analysis. Average hydrodynamic size of Lf-BAnp was 147.7 ± 6.20 nm with ζ potential of -28.51 ± 3.52 mV. BA entrapment efficiency was 75.38 ± 2.70% and the release mechanism followed non-fickian pattern. Impact of Lf-BAnp on cell cycle and cytotoxicity of triple negative breast cancer and its metastatic site laryngeal cancer cell lines were analyzed. Lf-BAnp demonstrated strong anti-proliferative and cytotoxic effects, along with increased sub-G1 population and reduced number of cells in G1 and G2/M phases of the cell cycle, confirming reduced cell proliferation and significant cell death. Speedy intracellular entry of Lf-BAnp occurred within 30 min. Lf-BAnp design was explored for the first time as safer chemotherapeutic arsenals against complex TNBC conditions.
    Matched MeSH terms: Cell Cycle/drug effects
  7. Solanki N, Mehta M, Chellappan DK, Gupta G, Hansbro NG, Tambuwala MM, et al.
    Future Med Chem, 2020 11;12(22):2019-2034.
    PMID: 33124483 DOI: 10.4155/fmc-2020-0083
    Aim: In the present study boswellic acids-loaded chitosan nanoparticles were synthesized using ionic gelation technique. The influence of independent variables were studied and optimized on dependent variables using central composite design. Methodology & results: The designed nanoparticles were observed spherical in shape with an average size of 67.5-187.2 nm and have also shown an excellent entrapment efficiency (80.06 ± 0.48). The cytotoxicity assay revealed enhanced cytotoxicity for drug-loaded nanoparticles in contrast to the free drug having an IC50 value of 17.29 and 29.59 μM, respectively. Flow cytometry confirmed that treatment of cells with 40 μg/ml had arrested 22.75 ± 0.3% at SubG0 phase of the cell cycle when compared with untreated A459 cells. The observed results justified the boswellic acids-loaded chitosan nanoparticles were effective due to greater cellular uptake, sustained intercellular drug retention and enhanced antiproliferative effect by inducing apoptosis.
    Matched MeSH terms: Cell Cycle/drug effects
  8. Khor CY, Khoo BY
    Biotechnol Lett, 2020 Aug;42(8):1581-1595.
    PMID: 32385743 DOI: 10.1007/s10529-020-02904-2
    OBJECTIVE: This study aimed to examine the metabolising effect of chrysin by investigating the mRNA expression levels of PPARα and its related cellular mechanisms in HCT116 cells.

    RESULTS: The mRNA expression of PPARα was significantly induced in HCT116 cells following treatment with chrysin for 36 h, but the mRNA expression of PPARα was inhibited, when the cells were treated with a combination of chrysin and MK886 (PPARα inhibitor). This phenomenon proved that the incorporation of MK886 lowers the expression levels of PPARα, thus enabling us to study the function of PPARα. The cell population of the G0/G1 phase significantly increased in chrysin-treated cells, which was accompanied by a decrease in the percentage of S phase cell population after 12 h of treatment. However, treatments of HCT116 cells with chrysin only or a combination of chrysin and MK886 did not show the opposite situation in the G0/G1 and S phase cell populations, indicating that the expression of PPARα may not be associated with the cell cycle in the treated cells. The migration rate in chrysin-treated HCT116 cells was reduced significantly after 24 and 36 h of treatments. However, the activity was revived, when the expression of PPARα was inhibited, indicating that the migration activity of chrysin-treated cells is likely correlated with the expression of PPARα. Comparison of the CYP2S1 and CYP1B1 mRNA expression in chrysin only treated, and a combination of chrysin and MK886-treated HCT116 cells for 24 and 36 h showed a significant difference in the expression levels, indicating that PPARα inhibitor could also modify the expression of CYP2S1 and CYP1B1.

    CONCLUSION: The study indicates that PPARα may play an essential role in regulating the migration activity, and the expression of CYP2S1 and CYP1B1 in chrysin-treated colorectal cancer cells.

    Matched MeSH terms: Cell Cycle/drug effects
  9. Hasan M, Kumolosasi E, Jasamai M, Jamal JA, Azmi N, Rajab NF
    Daru, 2020 Jun;28(1):97-108.
    PMID: 31912375 DOI: 10.1007/s40199-019-00320-0
    BACKGROUND: Phytoestrogens are plant compounds that are structurally similar to estrogen and that possess anti-cancer properties. Previous studies have reported that coumestrol, daidzein and genistein could induce cell death by reducing Annexin A1 protein in leukemic cell lines. Annexin A1 (ANXA1) is involved in cell progression, metastasis, and apoptosis in several types of cancer cells. The present study sought to investigate if the effects of phytoestrogens on apoptosis, cell cycle arrest and phagocytosis in ANXA1-knockdown leukemic cells are mediated through ANXA1 or occurred independently.

    METHODS: Transfection of ANXA1 siRNA was conducted to downregulate ANXA1 expression in Jurkat, K562 and U937 cells. Apoptosis and cell cycle assays were conducted using flow cytometry. Western blot was performed to evaluate ANXA1, caspases and Bcl-2 proteins expression. Phagocytosis was determined using hematoxylin and eosin staining.

    RESULTS: The expression of ANXA1 after the knockdown was significantly downregulated in all cell lines. Genistein significantly induced apoptosis associated with an upregulation of procaspase-3, -9, and - 1 in Jurkat cells. The Bcl-2 expression showed no significant difference in Jurkat, K562 and U937 cells. Treatment with phytoestrogens increased procaspase-1 expression in Jurkat and U937 cells while no changes were detected in K562 cells. Flow cytometry analysis demonstrated that after ANXA1 knockdown, coumestrol and genistein caused cell cycle arrest at G2/M phase in selected type of cells. The percentage of phagocytosis and phagocytosis index increased after the treatment with phytoestrogens in all cell lines.

    CONCLUSION: Phytoestrogens induced cell death in ANXA1-knockdown leukemia cells, mediated by Annexin A1 proteins. Graphical abstract.

    Matched MeSH terms: Cell Cycle/drug effects
  10. Hitora Y, Takada K, Ise Y, Woo SP, Inoue S, Mori N, et al.
    Bioorg Med Chem, 2020 01 15;28(2):115233.
    PMID: 31848114 DOI: 10.1016/j.bmc.2019.115233
    New sesquiterpene quinones, metachromins X (1) and Y (2), together with the known metachromins C (3), J (4), and T (5), were isolated as inhibitors of cell cycle progression in the HeLa/Fucci2 cells. The structure of 1 was assigned by spectroscopic data and confirmed by a total synthesis. The planar structure of 2 was determined by interpretation of spectroscopic data, whereas its absolute configuration was analyzed by a combination of chiral HPLC and CD spectroscopy. Metachromins X (1) and C (3) arrested the cell cycle progression of HeLa/Fucci2 cells at S/G2/M phase.
    Matched MeSH terms: Cell Cycle/drug effects
  11. Naaz F, Ahmad F, Lone BA, Pokharel YR, Fuloria NK, Fuloria S, et al.
    Bioorg Chem, 2020 01;95:103519.
    PMID: 31884140 DOI: 10.1016/j.bioorg.2019.103519
    A set of two series of 1,3,4-oxadiazole (11a-n) and 1,2,4-Triazole (12a, c, e, g, h, j-n) based topsentin analogues were prepared by replacing imizadole moiety of topsentin through a multistep synthesis starting from indole. All the compounds synthesized were submitted for single dose (10 µM) screening against a NCI panel of 60-human cancer cell lines. Among all cancer cell lines, colon (HCC-2998) and Breast (MCF-7, T-47D) cancer cell lines were found to be more susceptible for this class of compounds. Among the compounds tested, compounds 11a, 11d, 11f, 12e and 12h, were exhibited good anti-proliferative activity against various cancer cell lines. Compounds 11d, 12e and 12h demonstrated better activity with IC50 2.42 µM, 3.06 µM, and 3.30 µM respectively against MCF-7 human cancer cell line than that of the standard drug doxorubicin IC50 6.31 µM. Furthermore, 11d induced cell cycle arrest at G0/G1 phase and also disrupted mitochondrial membrane potential with reducing cell migration potential of MCF-7 cells in dose dependent manner. In vitro microtubule polymerization assays found that compound 11d disrupt tubulin dynamics by inhibiting tubulin polymerization with IC50 3.89 μM compared with standard nocodazole (IC50 2.49 μM). In silico docking studies represented that 11d was binding at colchicine binding site of β-tubulin. Compound 11d emerged as lead molecule from the library of compounds tested and this may serve as a template for further drug discovery.
    Matched MeSH terms: Cell Cycle/drug effects
  12. Tai L, Huang CJ, Choo KB, Cheong SK, Kamarul T
    Int J Med Sci, 2020;17(4):457-470.
    PMID: 32174776 DOI: 10.7150/ijms.38832
    Oxidative stress has been linked to senescence and tumorigenesis via modulation of the cell cycle. Using a hydrogen peroxide (H2O2)-induced oxidative stress-induced premature senescence (OSIPS) model previously reported by our group, this study aimed to investigate the effects of oxidative stress on microRNA (miRNA) expression in relation to the G1-to-S-phase (G1/S) transition of the cell cycle and cell proliferation. On global miRNA analysis of the OSIPS cells, twelve significantly up- or down-regulated miRNAs were identified, the target genes of which are frequently associated with cancers. Four down-regulated miR-17 family miRNAs are predicted to target key pro- and anti-proliferative proteins of the p21/cyclin D-dependent kinase (CDK)/E2F1 pathway to modulate G1/S transition. Two miR-17 miRNAs, miR-20-5p and miR-106-5p, were confirmed to be rapidly and stably down-regulated under oxidative stress. While H2O2 treatment hampered G1/S transition and suppressed DNA synthesis, miR-20b-5p/miR-106a-5p over-expression rescued cells from growth arrest in promoting G1/S transition and DNA synthesis. Direct miR-20b-5p/miR-106a-5p regulation of p21, CCND1 and E2F1 was demonstrated by an inverse expression relationship in miRNA mimic-transfected cells. However, under oxidative stress, E2F1 expression was down-regulated, consistent with hampered G1/S transition and suppressed DNA synthesis and cell proliferation. To explain the observed E2F1 down-regulation under oxidative stress, a scheme is proposed which includes miR-20b-5p/miR-106a-5p-dependent regulation, miRNA-E2F1 autoregulatory feedback and E2F1 response to repair oxidative stress-induced DNA damages. The oxidative stress-modulated expression of miR-17 miRNAs and E2F1 may be used to develop strategies to retard or reverse MSC senescence in culture, or senescence in general.
    Matched MeSH terms: Cell Cycle/drug effects
  13. Kadir MFA, Othman S, Nellore K
    Curr Pharm Biotechnol, 2020;21(15):1654-1665.
    PMID: 32525770 DOI: 10.2174/1389201021666200611113734
    BACKGROUND: The re-emerging of targeting Dihydroorotate Dehydrogenase (DHODH) in cancer treatment particularly Acute Myelogenous Leukemia (AML) has corroborated the substantial role of DHODH in cancer and received the attention of many pharmaceutical industries.

    OBJECTIVE: The effects of Brequinar Sodium (BQR) and 4SC-101 on lymphoblastoid cell lines were investigated.

    METHODS: DHODH expression and cell proliferation inhibition of lymphoblastoid and lymphoma cell lines were analyzed using Western blot analysis and XTT assay, respectively. JC-1 probe and ATP biochemiluminescence kit were used to evaluate the mitochondrial membrane potential and ATP generation in these cell lines. Furthermore, we explored the cell cycle progression using Muse™ Cell Cycle Kit.

    RESULTS: Ramos, SUDHL-1 and RPMI-1788 cells are fast-growing cells with equal expression of DHODH enzyme and sensitivity to DHODH inhibitors that showed that the inhibition of DHODH was not cancer-specific. In ATP depletion assay, the non-cancerous RPMI-1788 cells showed only a minor ATP reduction compared to Ramos and SUDHL-1 (cancer) cells. In the mechanistic impact of DHODH inhibitors on non-cancerous vs cancerous cells, the mitochondrial membrane potential assay revealed that significant depolarization and cytochrome c release occurred with DHODH inhibitors treatment in Ramos but not in the RPMI-1788 cells, indicating a different mechanism of proliferation inhibition in normal cells.

    CONCLUSION: The findings of this study provide evidence that DHODH inhibitors perturb the proliferation of non-cancerous cells via a distinct mechanism compared to cancerous cells. These results may lead to strategies for overcoming the impact on non-cancerous cells during treatment with DHODH inhibitors, leading to a better therapeutic window in patients.

    Matched MeSH terms: Cell Cycle/drug effects
  14. Yusof KM, Makpol S, Fen LS, Jamal R, Wan Ngah WZ
    J Nat Med, 2019 Sep;73(4):745-760.
    PMID: 31177355 DOI: 10.1007/s11418-019-01323-6
    Our previous study reported that combined treatment of γ-tocotrienol with 6-gingerol showed promising anticancer effects by synergistically inhibiting proliferation of human colorectal cancer cell lines. This study aimed to identify and elucidate molecular mechanisms involved in the suppression of SW837 colorectal cancer cells modulated by combined treatment of γ-tocotrienol and 6-gingerol. Total RNA from both untreated and treated cells was prepared for transcriptome analysis using RNA sequencing techniques. We performed high-throughput sequencing at approximately 30-60 million coverage on both untreated and 6G + γT3-treated cells. The results showed that cancer-specific differential gene expression occurred and functional enrichment pathway analysis suggested that more than one pathway was modulated in 6G + γT3-treated cells. Combined treatment with 6G + γT3 augmented its chemotherapeutic effect by interfering with the cell cycle process, downregulating the Wnt signalling pathway and inducing apoptosis mainly through caspase-independent programmed cell death through mitochondrial dysfunction, activation of ER-UPR, disruption of DNA repair mechanisms and inactivation of the cell cycle process through the downregulation of main genes in proliferation such as FOXM1 and its downstream genes. The combined treatment exerted its cytotoxic effect through upregulation of genes in stress response activation and cytostatic effects demonstrated by downregulation of main regulator genes in the cell cycle. Selected genes involved in particular pathways including ATF6, DDIT3, GADD34, FOXM1, CDK1 and p21 displayed concordant patterns of gene expression between RNA sequencing and RT-qPCR. This study provides new insights into combined treatment with bioactive compounds not only in terms of its pleiotropic effects that enhance multiple pathways but also specific target genes that could be exploited for therapeutic purposes, especially in suppressing cancer cell growth.
    Matched MeSH terms: Cell Cycle/drug effects*
  15. Yee PS, Zainal NS, Gan CP, Lee BKB, Mun KS, Abraham MT, et al.
    Target Oncol, 2019 04;14(2):223-235.
    PMID: 30806895 DOI: 10.1007/s11523-019-00626-8
    BACKGROUND: Given that aberrant activation of epidermal growth factor receptor family receptors (ErbB) is a common event in oral squamous cell carcinoma, and that high expression of these receptor proteins is often associated with poor prognosis, this rationalizes the approach of targeting ErbB signaling pathways to improve the survival of patients with oral squamous cell carcinoma. However, monotherapy with the ErbB blocker afatinib has shown limited survival benefits.

    OBJECTIVES: This study was performed to identify mechanisms of afatinib resistance and to explore potential afatinib-based combination treatments with other targeted inhibitors in oral squamous cell carcinoma.

    METHODS: We determined the anti-proliferative effects of afatinib on a panel of oral squamous cell carcinoma cell lines using a crystal violet-growth inhibition assay, click-iT 5-ethynyl-2'-deoxyuridine staining, and cell-cycle analysis. Biochemical assays were performed to study the underlying mechanism of drug treatment as a single agent or in combination with the MEK inhibitor trametinib. We further evaluated and compared the anti-tumor effects of single agent and combined treatment by using oral squamous cell carcinoma xenograft models.

    RESULTS: In this study, we showed that afatinib inhibited oral squamous cell carcinoma cell proliferation via cell-cycle arrest at the G0/G1 phase, and inhibited tumor growth in xenograft mouse models. Interestingly, we demonstrated reactivation of the mitogen-activated protein kinase (ERK1/2) pathway in vitro, which possibly reduced the effects of ErbB inhibition. Concomitant treatment of oral squamous cell carcinoma cells with afatinib and trametinib synergized the anti-tumor effects in oral squamous cell carcinoma-bearing mouse models.

    CONCLUSIONS: Our findings provide insight into the molecular mechanism of resistance to afatinib and support further clinical evaluation into the combination of afatinib and MEK inhibition in the treatment of oral squamous cell carcinoma.

    Matched MeSH terms: Cell Cycle/drug effects
  16. Haron NH, Md Toha Z, Abas R, Hamdan MR, Azman N, Khairuddean M, et al.
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):601-609.
    PMID: 30806066
    Objective: This study was conducted to investigate the antiproliferative activity of extracts of Clinacanthus nutans
    leaves against human cervical cancer (HeLa) cells. Methods: C. nutans leaves were subjected to extraction using 80%
    methanol or water. The methanol extract was further extracted to obtain hexane, dichloromethane (DCM), and aqueous
    fractions. The antiproliferative activity of the extracts against HeLa cells was determined. The most cytotoxic extract
    was furthered analyzed by apoptosis and cell cycle assays, and the phytochemical constituents were screened by gas
    chromatography-mass spectrometry (GC-MS). Results: All of the extracts were antiproliferative against HeLa cells, and
    the DCM fraction had the lowest IC50 value of 70 μg/mL at 48 h. Microscopic studies showed that HeLa cells exposed
    to the DCM fraction exhibited marked morphological features of apoptosis. The flow cytometry study also confirmed
    that the DCM fraction induced apoptosis in HeLa cells, with cell cycle arrest at the S phase. GC-MS analysis revealed
    the presence of at least 28 compounds in the DCM fraction, most of which were fatty acids. Conclusion: The DCM
    fraction obtained using the extraction method described herein had a lower IC50 value than those reported in previous
    studies that characterized the anticancer activity of C. nutans against HeLa cells.
    Matched MeSH terms: Cell Cycle/drug effects
  17. Jalal TK, Khan AYF, Natto HA, Abdull Rasad MSB, Arifin Kaderi M, Mohammad M, et al.
    Nutr Cancer, 2019;71(5):792-805.
    PMID: 30614285 DOI: 10.1080/01635581.2018.1516790
    Nine phenolic compounds were identified and quantified in Artocarpus altilia fruit. One of the main compounds was quercetin, which is the major class of flavonoids has been identified and quantified in pulp part of A. altilis fruit of methanol extract. The aim of this study was to evaluate in vitro cytotoxic assay. Inhibitory concentration 50% concentration was determined using trypan blue exclusion assay. Apoptosis induction and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell cycle-related regulatory genes were assessed by RT-qPCR study of the methanol extract of pulp part on human lung carcinoma (A549) cell line. A significant increase of cells at G2/M phases was detected (P 
    Matched MeSH terms: Cell Cycle/drug effects*
  18. Yap HM, Lee YZ, Harith HH, Tham CL, Cheema MS, Shaari K, et al.
    Sci Rep, 2018 11 09;8(1):16640.
    PMID: 30413753 DOI: 10.1038/s41598-018-34847-0
    Increased airway smooth muscle (ASM) mass is a prominent hallmark of airway remodeling in asthma. Inhaled corticosteroids and long-acting beta2-agonists remain the mainstay of asthma therapy, however are not curative and ineffective in attenuating airway remodeling. The geranyl acetophenone 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), an in-house synthetic non-steroidal compound, attenuates airway hyperresponsiveness and remodeling in murine models of asthma. The effect of tHGA upon human ASM proliferation, migration and survival in response to growth factors was assessed and its molecular target was determined. Following serum starvation and induction with growth factors, proliferation and migration of human bronchial smooth muscle cells (hBSMCs) treated with tHGA were significantly inhibited without any significant effects upon cell survival. tHGA caused arrest of hBSMC proliferation at the G1 phase of the cell cycle with downregulation of cell cycle proteins, cyclin D1 and diminished degradation of cyclin-dependent kinase inhibitor (CKI), p27Kip1. The inhibitory effect of tHGA was demonstrated to be related to its direct inhibition of AKT phosphorylation, as well as inhibition of JNK and STAT3 signal transduction. Our findings highlight the anti-remodeling potential of this drug lead in chronic airway disease.
    Matched MeSH terms: Cell Cycle/drug effects
  19. Tan YJ, Lee YT, Yeong KY, Petersen SH, Kono K, Tan SC, et al.
    Future Med Chem, 2018 Sep 01;10(17):2039-2057.
    PMID: 30066578 DOI: 10.4155/fmc-2018-0052
    AIM: This study aims to investigate the mode of action of a novel sirtuin inhibitor (BZD9L1) and its associated molecular pathways in colorectal cancer (CRC) cells.

    MATERIALS & METHODS: BZD9L1 was tested against metastatic CRC cell lines to evaluate cytotoxicity, cell cycle and apoptosis, senescence, apoptosis related genes and protein expressions, as well as effect against major cancer signaling pathways.

    RESULTS & CONCLUSION: BZD9L1 reduced the viability, cell migration and colony forming ability of both HCT 116 and HT-29 metastatic CRC cell lines through apoptosis. BZD9L1 regulated major cancer pathways differently in CRC with different mutation profiles. BZD9L1 exhibited anticancer activities as a cytotoxic drug in CRC and as a promising therapeutic strategy in CRC treatment.

    Matched MeSH terms: Cell Cycle/drug effects
  20. Chowchaikong N, Nilwarangkoon S, Laphookhieo S, Tanunyutthawongse C, Watanapokasin R
    Int J Oncol, 2018 Jun;52(6):2031-2040.
    PMID: 29620273 DOI: 10.3892/ijo.2018.4353
    Colorectal cancer, which is the third most common type of cancer diagnosed in both men and women, is the leading cause of cancer-related deaths worldwide. Cowanin is a pure compound extracted from Garcinia cowa Roxb., a tree species present in Thailand, Malaysia and Myanmar. The crude extract has been demonstrated to have antitumor activity, inflammation induction, antibacterial activity, anti-inflammatory activity and antimalarial activity. In the present study, the effects of cowanin on apoptosis induction and on the apoptosis-related and mitogen-activated protein kinase (MAPK) pathways were investigated in the LoVo human colorectal cancer cell line. The cytotoxicity of cowanin in LoVo cells was determined by MTT assay. Hoechst 33342 and JC‑1 staining were used to determine nuclear morphological changes and mitochondrial membrane potential, respectively. The expression levels of BCL2 apoptosis regulator (Bcl‑2) family, MAPK and AKT serine/threonine kinase 1 (Akt) pathway proteins following cowanin treatment were determined by western blot analysis. The results demonstrated that cowanin inhibited cell proliferation and induced cell death via the apoptosis pathway. Cowanin treatment increased BCL2 associated X (Bax) and decreased Bcl‑2 expression. In addition, cowanin activated caspase‑9, -7 and poly-ADP-ribose-polymerase expression. Furthermore, cowanin decreased the levels of phosphorylated extracellular signal-regulated kinase (p‑ERK), p‑Akt, p‑3‑phosphoinositide‑dependent protein kinase‑1, while it increased p‑p38 expression, thus resulting in the induction of apoptosis. In conclusion, cowanin inhibited cell proliferation and induced apoptosis of LoVo cells via the MAPK and Akt signaling pathways. Notably, inhibition of p38 by using a p38 inhibitor (SB203580) prevented the cowanin-induced apoptosis in LoVo cells. These results suggested that cowanin may be a potential candidate for the treatment of colorectal cancer and provided important information on the molecular mechanisms underlying its antitumor activity.
    Matched MeSH terms: Cell Cycle/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links