Displaying publications 1 - 20 of 419 in total

Abstract:
Sort:
  1. elvira pederes de lara-tuprio, Varayu boonpogkrong
    Sains Malaysiana, 2017;46:2549-2554.
    n this paper, transformation and differentiation of Henstock-Wiener integrals are discussed. The approach is by Riemann sums. The idea is more transparent than that of classical Wiener integral.
    Matched MeSH terms: Cell Differentiation
  2. Zulkifli A, Ahmad RE, Krishnan S, Kong P, Nam HY, Kamarul T
    Tissue Cell, 2023 Jun;82:102075.
    PMID: 37004269 DOI: 10.1016/j.tice.2023.102075
    Tendon injuries account up to 50% of all musculoskeletal problems and remains a challenge to treat owing to the poor intrinsic reparative ability of tendon tissues. The natural course of tendon healing is very slow and often leads to fibrosis and disorganized tissues with inferior biomechanical properties. Mesenchymal stem cells (MSC) therapy is a promising alternative strategy to augment tendon repair due to its proliferative and multilineage differentiation potential. Hypoxic conditioning of MSC have been shown to enhance their tenogenic differentiation capacity. However, the mechanistic pathway by which this is achieved is yet to be fully defined. A key factor involved in this pathway is hypoxia-inducible factor-1-alpha (HIF-1α). This review aims to discuss the principal mechanism underlying the enhancement of MSC tenogenic differentiation by hypoxic conditioning, particularly the central role of HIF-1α in mediating activation of tenogenic pathways in the MSC. We focus on the interaction between HIF-1α with fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta 1 (TGF-β1) in regulating MSC tenogenic differentiation pathways in hypoxic conditions. Strategies to promote stabilization of HIF-1α either through direct manipulation of oxygen tension or the use of hypoxia mimicking agents are therefore beneficial in increasing the efficacy of MSC therapy for tendon repair.
    Matched MeSH terms: Cell Differentiation
  3. Zhou X, Li Y, Wang W, Wang S, Hou J, Zhang A, et al.
    Theranostics, 2020;10(21):9443-9457.
    PMID: 32863938 DOI: 10.7150/thno.46078
    Objective: Esophageal squamous cell carcinoma (ESCC) is one of the most commonly diagnosed cancer types in China. Recent genomic sequencing analysis indicated the over-activation of Hippo/YAP signaling might play important roles for the carcinogenic process and progression for ESCC patients. However, little is known about the molecular mechanisms that controls Hippo signaling activity in ESCC. Our previous studies indicated that PLCE1-an important risk factor for ESCC-linked to ESCC progression through snail signaling, during this period, we found PARK2 was an important downstream target of PLCE1-snail axis. PARK2 was decreased in ESCC human samples, and correlated with good prognosis in ESCC patients. Further research showed that PARK2 could inhibit YAP, which functions as key downstream effectors of the Hippo pathway. Here, we aim to reveal the molecular mechanisms of PARK2 modulated Hippo pathway in ESCC. Methods: To evaluate the function of PARK2 in ESCC, we used a tissue microarray (TMA) of 223 human ESCC patients and immunohistochemistry to analyze the correlation between PARK2 expression and clinicopathologic variables. Depletion of endogenous PARK2 and YAP from ESCC cells using CRISPR/Cas9 technologies. Flow cytometry and EdU cell proliferation assay were used to detect proliferation of ESCC cells. Nude mice subcutaneous injection and Ki-67 staining were used to evaluate tumor growth in vivo. Migration and invasion assays were performed. In addition, lung metastasis models in mice were used to validate the function of PARK2 in vivo. Identification of PARK2 involved in hippo pathway was achieved by expression microarray screening, double immunofluorescence staining and co-immunoprecipitation assays. The RNA-seq analysis results were validated through quantitative real-time PCR (qRT-PCR) analysis. The protein half-life of YAP was analyzed by Cycloheximide assay, and the TEAD activity was detected by Luciferase reporter assays. Results: Clinical sample of ESCC revealed that low PARK2 expression correlated with late tumor stage (P < 0.001), poor differentiation (P < 0.04), lymph node (P < 0.001) and distant metastasis (P = 0.0087). Multivariate Cox proportional regression analysis further revealed that PARK2 expression (P = 0.032) is an independent prognostic factor for the overall survival of ESCC patients. Besides, the immunohistochemistry results showed that PARK2 negatively correlated with YAP protein level (P < 0.001). PARK2 depletion promotes ESCC progression both through Hippo/YAP axis, while PARK2 overexpression suppresses ESCC tumor progression by Hippo signaling. Co-IP and ubiquitination assays revealed that PARK2 could interact with YAP in the cytosol and promotes YAP K48-linked ubiquitination at K90 sites. Conclusion: Clinical sample analysis and mechanistic study have validated PARK2 as a tumor suppressor for ESCC. Multivariate Cox proportional regression analysis further revealed that PARK2 is an independent prognostic factor for the overall survival of ESCC patients. Cellular and molecular mechanisms in this study showed that PARK2 associated with YAP protein in the cytosol, promoted YAP ubiquitination and proteasome-dependent degradation in ESCC cells. Therefore, as a novel modulator for Hippo signaling, modulation of PARK2 activity or gene expression level could be an appealing strategy to treat esophageal.
    Matched MeSH terms: Cell Differentiation/genetics
  4. Zawawi MS, Dharmapatni AA, Cantley MD, McHugh KP, Haynes DR, Crotti TN
    Biochem Biophys Res Commun, 2012 Oct 19;427(2):404-9.
    PMID: 23000414 DOI: 10.1016/j.bbrc.2012.09.077
    Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the calcineurin-NFAT signalling cascade to suppress key mediators of the ITAM pathway during late stage osteoclast differentiation and this is associated with a reduction in both osteoclast differentiation and activity.
    Matched MeSH terms: Cell Differentiation/drug effects; Cell Differentiation/physiology*
  5. Zaman WS, Makpol S, Santhapan S, Chua KH
    Med J Malaysia, 2008 Jul;63 Suppl A:61-2.
    PMID: 19024984
    It is crucial to know whether stem cells retain its stemnness properties after advance in vitro manipulation. The objective of this study was to investigate the stemness gene expression of human adipose tissue derived stem cells (ADSCs) in long-term culture using quantitative RT-PCR technique. Our data showed that the expression level of Sox-2, Rex-1, FGF-4, Nanog, Nestin, BST-1, FZD-9 and Oct-4 were decreased gradually in long-term culture. This could mean that the ability of ADSCs to differentiate into other cell lineages reduce after extensive culture.
    Matched MeSH terms: Cell Differentiation
  6. Zakaria N, Yusoff NM, Zakaria Z, Lim MN, Baharuddin PJ, Fakiruddin KS, et al.
    BMC Cancer, 2015;15:84.
    PMID: 25881239 DOI: 10.1186/s12885-015-1086-3
    Despite significant advances in staging and therapies, lung cancer remains a major cause of cancer-related lethality due to its high incidence and recurrence. Clearly, a novel approach is required to develop new therapies to treat this devastating disease. Recent evidence indicates that tumours contain a small population of cells known as cancer stem cells (CSCs) that are responsible for tumour maintenance, spreading and resistant to chemotherapy. The genetic composition of CSCs so far is not fully understood, but manipulation of the specific genes that maintain their integrity would be beneficial for developing strategies to combat cancer. Therefore, the goal of this study isto identify the transcriptomic composition and biological functions of CSCs from non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Cell Differentiation/genetics
  7. Zakaria N, Satar NA, Abu Halim NH, Ngalim SH, Yusoff NM, Lin J, et al.
    Front Oncol, 2017;7:80.
    PMID: 28529925 DOI: 10.3389/fonc.2017.00080
    Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC), which is one of two types of lung cancer, accounts for 85-90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs) because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.
    Matched MeSH terms: Cell Differentiation
  8. Zainul Azlan N, Mohd Yusof YA, Alias E, Makpol S
    Oxid Med Cell Longev, 2019;2019:3520789.
    PMID: 31281573 DOI: 10.1155/2019/3520789
    Sarcopenia is characterized by the loss of muscle mass, strength, and function with ageing. With increasing life expectancy, greater attention has been given to counteracting the effects of sarcopenia on the growing elderly population. Chlorella vulgaris, a microscopic, unicellular, green alga with the potential for various pharmaceutical uses, has been widely studied in this context. This study is aimed at determining the effects of C. vulgaris on promoting muscle regeneration by evaluating myoblast regenerative capacity in vitro. Human skeletal myoblast cells were cultured and underwent serial passaging into young and senescent phases and were then treated with C. vulgaris, followed by the induction of differentiation. The ability of C. vulgaris to promote myoblast differentiation was analysed through cellular morphology, real-time monitoring, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation, myogenin expression, and cell cycle profiling. The results obtained showed that senescent myoblasts exhibited an enlarged and flattened morphology, with increased SA-β-gal expression, reduced myogenic differentiation, decreased expression of myogenin, and an increased percentage of cells in the G0/G1 phase. Treatment with C. vulgaris resulted in decreased SA-β-gal expression and promotion of myogenic differentiation, as observed via an increased fusion index, maturation index, myotube size, and surface area and an increased percentage of cells that stained positive for myogenin. In conclusion, C. vulgaris improves the regenerative capacity of young and senescent myoblasts and promotes myoblast differentiation, indicating its potential to promote muscle regeneration.
    Matched MeSH terms: Cell Differentiation
  9. Zainul Azlan N, Mohd Yusof YA, Alias E, Makpol S
    PMID: 31428175 DOI: 10.1155/2019/8394648
    Background: Loss of skeletal muscle mass, strength, and function due to gradual decline in the regeneration of skeletal muscle fibers was observed with advancing age. This condition is known as sarcopenia. Myogenic regulatory factors (MRFs) are essential in muscle regeneration as its activation leads to the differentiation of myoblasts to myofibers. Chlorella vulgaris is a coccoid green eukaryotic microalga that contains highly nutritious substances and has been reported for its pharmaceutical effects. The aim of this study was to determine the effect of C. vulgaris on the regulation of MRFs and myomiRs expression in young and senescent myoblasts during differentiation in vitro.

    Methods: Human skeletal muscle myoblast (HSMM) cells were cultured and serial passaging was carried out to obtain young and senescent cells. The cells were then treated with C. vulgaris followed by differentiation induction. The expression of Pax7, MyoD1, Myf5, MEF2C, IGF1R, MYOG, TNNT1, PTEN, and MYH2 genes and miR-133b, miR-206, and miR-486 was determined in untreated and C. vulgaris-treated myoblasts on Days 0, 1, 3, 5, and 7 of differentiation.

    Results: The expression of Pax7, MyoD1, Myf5, MEF2C, IGF1R, MYOG, TNNT1, and PTEN in control senescent myoblasts was significantly decreased on Day 0 of differentiation (p<0.05). Treatment with C. vulgaris upregulated Pax7, Myf5, MEF2C, IGF1R, MYOG, and PTEN in senescent myoblasts (p<0.05) and upregulated Pax7 and MYOG in young myoblasts (p<0.05). The expression of MyoD1 and Myf5 in young myoblasts however was significantly decreased on Day 0 of differentiation (p<0.05). During differentiation, the expression of these genes was increased with C. vulgaris treatment. Further analysis on myomiRs expression showed that miR-133b, miR-206, and miR-486 were significantly downregulated in senescent myoblasts on Day 0 of differentiation which was upregulated by C. vulgaris treatment (p<0.05). During differentiation, the expression of miR-133b and miR-206 was significantly increased with C. vulgaris treatment in both young and senescent myoblasts (p<0.05). However, no significant change was observed on the expression of miR-486 with C. vulgaris treatment.

    Conclusions: C. vulgaris demonstrated the modulatory effects on the expression of MRFs and myomiRs during proliferation and differentiation of myoblasts in culture. These findings may indicate the beneficial effect of C. vulgaris in muscle regeneration during ageing thus may prevent sarcopenia in the elderly.

    Matched MeSH terms: Cell Differentiation
  10. Zainol Abidin IZ, Manogaran T, Abdul Wahab RM, Karsani SA, Yazid MD, Yazid F, et al.
    Curr Stem Cell Res Ther, 2023;18(3):417-428.
    PMID: 35762553 DOI: 10.2174/1574888X17666220627145424
    BACKGROUND: Proteomic is capable of elucidating complex biological systems through protein expression, function, and interaction under a particular condition.

    OBJECTIVE: This study aimed to determine the potential of ascorbic acid alone in inducing differentially expressed osteoblast-related proteins in dental stem cells via the liquid chromatography-mass spectrometry/ mass spectrometry (LC-MS/MS) approach.

    METHODS: The cells were isolated from deciduous (SHED) and permanent teeth (DPSC) and induced with 10 μg/mL of ascorbic acid. Bone mineralisation and osteoblast gene expression were determined using von Kossa staining and reverse transcriptase-polymerase chain reaction. The label-free protein samples were harvested on days 7 and 21, followed by protein identification and quantification using LC-MS/MS. Based on the similar protein expressed throughout treatment and controls for SHED and DPSC, overall biological processes followed by osteoblast-related protein abundance were determined using the PANTHER database. STRING database was performed to determine differentially expressed proteins as candidates for SHED and DPSC during osteoblast development.

    RESULTS: Both cells indicated brownish mineral stain and expression of osteoblast-related genes on day 21. Overall, a total of 700 proteins were similar among all treatments on days 7 and 21, with 482 proteins appearing in the PANTHER database. Osteoblast-related protein abundance indicated 31 and 14 proteins related to SHED and DPSC, respectively. Further analysis by the STRING database identified only 22 and 11 proteins from the respective group. Differential expressed analysis of similar proteins from these two groups revealed ACTN4 and ACTN1 as proteins involved in both SHED and DPSC. In addition, three (PSMD11/RPN11, PLS3, and CLIC1) and one (SYNCRIP) protein were differentially expressed specifically for SHED and DPSC, respectively.

    CONCLUSION: Proteome differential expression showed that ascorbic acid alone could induce osteoblastrelated proteins in SHED and DPSC and generate specific differentially expressed protein markers.

    Matched MeSH terms: Cell Differentiation
  11. Zainal Ariffin SH, Kermani S, Zainol Abidin IZ, Megat Abdul Wahab R, Yamamoto Z, Senafi S, et al.
    Stem Cells Int, 2013;2013:250740.
    PMID: 24348580 DOI: 10.1155/2013/250740
    Dental pulp tissue contains dental pulp stem cells (DPSCs). Dental pulp cells (also known as dental pulp-derived mesenchymal stem cells) are capable of differentiating into multilineage cells including neuron-like cells. The aim of this study was to examine the capability of DPSCs to differentiate into neuron-like cells without using any reagents or growth factors. DPSCs were isolated from teeth extracted from 6- to 8-week-old mice and maintained in complete medium. The cells from the fourth passage were induced to differentiate by culturing in medium without serum or growth factors. RT-PCR molecular analysis showed characteristics of Cd146(+) , Cd166(+) , and Cd31(-) in DPSCs, indicating that these cells are mesenchymal stem cells rather than hematopoietic stem cells. After 5 days of neuronal differentiation, the cells showed neuron-like morphological changes and expressed MAP2 protein. The activation of Nestin was observed at low level prior to differentiation and increased after 5 days of culture in differentiation medium, whereas Tub3 was activated only after 5 days of neuronal differentiation. The proliferation of the differentiated cells decreased in comparison to that of the control cells. Dental pulp stem cells are induced to differentiate into neuron-like cells when cultured in serum- and growth factor-free medium.
    Matched MeSH terms: Cell Differentiation
  12. Zainal Ariffin SH, Lim KW, Megat Abdul Wahab R, Zainal Ariffin Z, Rus Din RD, Shahidan MA, et al.
    PeerJ, 2022;10:e14174.
    PMID: 36275474 DOI: 10.7717/peerj.14174
    BACKGROUND: There have been promising results published regarding the potential of stem cells in regenerative medicine. However, the vast variety of choices of techniques and the lack of a standard approach to analyse human osteoblast and osteoclast differentiation may reduce the utility of stem cells as a tool in medical applications. Therefore, this review aims to systematically evaluate the findings based on stem cell differentiation to define a standard gene expression profile approach.

    METHODS: This review was performed following the PRISMA guidelines. A systematic search of the study was conducted by retrieving articles from the electronic databases PubMed and Web of Science to identify articles focussed on gene expression and approaches for osteoblast and osteoclast differentiation.

    RESULTS: Six articles were included in this review; there were original articles of in vitro human stem cell differentiation into osteoblasts and osteoclasts that involved gene expression profiling. Quantitative polymerase chain reaction (qPCR) was the most used technique for gene expression to detect differentiated human osteoblasts and osteoclasts. A total of 16 genes were found to be related to differentiating osteoblast and osteoclast differentiation.

    CONCLUSION: Qualitative information of gene expression provided by qPCR could become a standard technique to analyse the differentiation of human stem cells into osteoblasts and osteoclasts rather than evaluating relative gene expression. RUNX2 and CTSK could be applied to detect osteoblasts and osteoclasts, respectively, while RANKL could be applied to detect both osteoblasts and osteoclasts. This review provides future researchers with a central source of relevant information on the vast variety of gene expression approaches in analysing the differentiation of human osteoblast and osteoclast cells. In addition, these findings should enable researchers to conduct accurately and efficiently studies involving isolated human stem cell differentiation into osteoblasts and osteoclasts.

    Matched MeSH terms: Cell Differentiation/genetics
  13. Zainal Abidin S, Abbaspourbabaei M, Ntimi CM, Siew WH, Pike-See C, Rosli R, et al.
    Malays J Med Sci, 2014 Dec;21(Spec Issue):27-33.
    PMID: 25941460 MyJurnal
    MicroRNAs (miRNAs) have a crucial role in gene expression regulation and protein synthesis, especially in the central nervous system. In developing mouse embryos a novel miRNA, miR-3099, is highly expressed, particularly in the central nervous system. This study aims to determine the expression of miR-3099 during cellular differentiation of 46C mouse embryonic stem cells after neural induction with N2/B27 medium.
    Matched MeSH terms: Cell Differentiation
  14. Zahari W, Hashim SN, Yusof MF, Osman ZF, Kannan TP, Mokhtar KI, et al.
    Curr Stem Cell Res Ther, 2017;12(3):197-206.
    PMID: 27306400 DOI: 10.2174/1574888X11666160614103404
    Mesenchymal stem cells (MSCs) are stromal origin cells with multilineage differentiation capacity. The immunoregulatory properties of MSCs can be interfered effectively by cytokines. Cytokines, produced by a broad range of cells, act at the systemic level to influence biological phenomena such as inflammation, wound healing, organogenesis and oncogenesis. Cytokines also play vital roles in the differentiation of MSCs into several cell lineages. This review summarizes on how cytokines can affect MSCs differentiation and their relative signaling pathways, which may serve to understand the possible underlying mechanisms. Also, this review reveals the potential clinical use of MSCs as promising therapeutic agents due to their special characteristics such as multipotent differentiation, immunomodulatory properties, and selfrestoration.
    Matched MeSH terms: Cell Differentiation
  15. Yusoff NH, Alshehadat SA, Azlina A, Kannan TP, Hamid SS
    Trop Life Sci Res, 2015 Apr;26(1):21-9.
    PMID: 26868590 MyJurnal
    In the past decade, the field of stem cell biology is of major interest among researchers due to its broad therapeutic potential. Stem cells are a class of undifferentiated cells that are able to differentiate into specialised cell types. Stem cells can be classified into two main types: adult stem cells (adult tissues) and embryonic stem cells (embryos formed during the blastocyst phase of embryological development). This review will discuss two types of adult mesenchymal stem cells, dental stem cells and amniotic stem cells, with respect to their differentiation lineages, passage numbers and animal model studies. Amniotic stem cells have a greater number of differentiation lineages than dental stem cells. On the contrary, dental stem cells showed the highest number of passages compared to amniotic stem cells. For tissue regeneration based on animal studies, amniotic stem cells showed the shortest time to regenerate in comparison with dental stem cells.
    Matched MeSH terms: Cell Differentiation
  16. Yusoff NA, Abd Hamid Z, Chow PW, Shuib S, Taib IS, Budin SB
    Methods Mol Biol, 2024;2736:65-76.
    PMID: 36749486 DOI: 10.1007/7651_2022_477
    Hematopoiesis is maintained throughout life from the hematopoietic stem cell niche in which hematopoietic stem cells and lineage-specific hematopoietic progenitors (HSPCs) reside and regulate hematopoiesis. Meanwhile, HSPCs behavior is modulated by both cell intrinsic (e.g., transcriptional factors) and cell extrinsic (e.g., cytokines) factors. Dysregulation of these factors can alter HSPCs function, leading to disrupted hematopoiesis, cellular changes, and subsequent hematological diseases and malignancies. Moreover, it has been reported that chromosomal aberration (CA) in HSPCs following exposure to carcinogenic or genotoxic agents can initiate leukemia stem cells (LSCs) formation which lays a fundamental mechanism in leukemogenesis. Despite reported studies concerning the chromosomal integrity in HSPCs, CA analysis in lineage-specific HSPCs remains scarce. This indicates a need for a laboratory technique that allows the study of CA in specific HSPCs subpopulations comprising differential hematopoietic lineages. Thus, this chapter focuses on the structural (clastogenicity) and numerical (aneugenicity) form of CA analysis in lineage-specific HSPCs comprised of myeloid, erythroid and lymphoid lineages.In this protocol, we describe how to perform CA analysis in lineage-specific HSPCs derived from freshly isolated mouse bone marrow cells (MBMCs) using the combined techniques of colony-forming unit (CFU) and karyotyping. Prior to CA analysis, lineage-specific HSPCs for myeloid, erythroid, and lymphoid were enriched through colony-forming unit (CFU) assay. CFU assay assesses the proliferative ability and differentiation potential of an individual HSPC within a sample. About 6 to 14 days of cultures are required depending on the type of HSPCs lineage. The optimal duration is crucial to achieve sufficient colony growth that is needed for accurate CFU analysis via morphological identification and colony counting. Then, the CA focusing on clastogenicity and aneugenicity anomalies in respective HSPCs lineage for myeloid, erythroid and Pre-B lymphoid were investigated. The resulted karyotypes were classified according to the types of CA known as Robertsonian (Rb) translocation, hyperploidy or complex. We believe our protocol offers a significant contribution to be utilized as a reference method for chromosomal analysis in lineage-specific HSPCs subpopulations.
    Matched MeSH terms: Cell Differentiation
  17. Yusof MFH, Zahari W, Hashim SNM, Osman ZF, Chandra H, Kannan TP, et al.
    J Oral Biol Craniofac Res, 2017 10 19;8(1):48-53.
    PMID: 29556464 DOI: 10.1016/j.jobcr.2017.10.003
    Manipulation of dental stem cells (DSCs) using current technologies in tissue engineering unveil promising prospect in regenerative medicine. DSCs have shown to possess angiogenic and osteogenic potential in both in vivo and in vitro. Neural crest derived DSCs can successfully be isolated from various dental tissues, exploiting their intrinsic great differentiation potential. In this article, researcher team intent to review the characteristics of DSCs, with focus on their angiogenic and osteogenic differentiation lineage. Clinical data on DSCs are still lacking to prove their restorative abilities despite extensive contemporary literature, warranting research to further validate their application for bone tissue engineering.
    Matched MeSH terms: Cell Differentiation
  18. Yuan JC, Yogarajah T, Lim SK, Yvonne Tee GB, Khoo BY
    Mol Med Rep, 2020 05;21(5):2063-2072.
    PMID: 32323762 DOI: 10.3892/mmr.2020.11012
    Excessive adipose tissue accumulation is an increasing health problem worldwide. The present study aimed to determine differentially expressed genes (DEGs) that are associated with the excessive accumulation of adipose tissues by PCR arrays in an excess dietary intake animal model. For this purpose, male Sprague Dawley rats were randomly assigned to 2 groups: Control (given an ordinary diet) and experimental (given twice the amount of the ordinary diet). After 2 months of feeding, the abdominal cavities of the rats from each group were opened, then subcutaneous and visceral adipose tissues were removed. The adipose tissues collected were then used for total RNA extraction and then reverse transcribed to cDNA, which was then used as a template to identify the DEGs of 84 transcripts for rat obesity by RT2 Profiler PCR Arrays. The results showed significant downregulation of bombesin‑like receptor 3 (BRS3) and uncoupling protein 1 (UCP1) in visceral adipose tissues of experimental rats compared with those of the control rats, and differential gene expression analysis showed an association with fat cell differentiation and regulation of triglyceride sequestration, as well as fatty acid binding. The gene expression patterns observed in the present study, which may be associated with peroxisome proliferator‑activated receptor‑γ (PPARG) on excessive visceral adipose tissue accumulation, may be useful in identifying a group of surrogate biomarkers for the early diet‑induced accumulation of visceral adipose tissue detection in humans. The biomarkers can also be the specific targets for drug development to reduce excessive visceral adipose tissue accumulation in the body and its associated diseases.
    Matched MeSH terms: Cell Differentiation/genetics
  19. Yousuf R, Mustafa AN, Ho SL, Tang YL, Leong CF
    Asian J Transfus Sci, 2017 3 21;11(1):62-64.
    PMID: 28316444 DOI: 10.4103/0973-6247.200770
    The G antigen of Rh blood group system is present in almost all D-positive or C-positive red cells but absent from red cells lacking D and C antigens. The differentiation of anti-D and anti-C from anti-G is not necessary for routine transfusion; however, during pregnancy, it is important because anti-G can masquerade as anti-D and anti-C with initial antibody testing. The false presence of anti-D will exclude the patient from receiving anti-D immunoglobulin (RhIG) when the patient actually is a candidate for RhIG prophylaxis. Moreover, patients with positive anti-D or anti-G are at risk of developing hemolytic disease of the fetus and newborn and need close monitoring. Thus, proper identification allows the clinicians to manage patients properly. This case report highlights a rare case of anti-G together with anti-D and anti-C in a pregnant woman. This report disseminates knowledge on identification of anti-G and its importance in pregnant women.
    Matched MeSH terms: Cell Differentiation
  20. Yong KW, Wan Safwani WK, Xu F, Wan Abas WA, Choi JR, Pingguan-Murphy B
    Biopreserv Biobank, 2015 Aug;13(4):231-9.
    PMID: 26280501 DOI: 10.1089/bio.2014.0104
    Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.
    Matched MeSH terms: Cell Differentiation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links