Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. AbdulQader ST, Kannan TP, Rahman IA, Ismail H, Mahmood Z
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:225-233.
    PMID: 25686943 DOI: 10.1016/j.msec.2014.12.070
    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300μm and 65% porosity were prepared from phosphoric acid (H2PO4) and calcium carbonate (CaCO3) sintered at 1000°C for 2h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration.
    Matched MeSH terms: Cell Differentiation/physiology
  2. Zawawi MS, Dharmapatni AA, Cantley MD, McHugh KP, Haynes DR, Crotti TN
    Biochem Biophys Res Commun, 2012 Oct 19;427(2):404-9.
    PMID: 23000414 DOI: 10.1016/j.bbrc.2012.09.077
    Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the calcineurin-NFAT signalling cascade to suppress key mediators of the ITAM pathway during late stage osteoclast differentiation and this is associated with a reduction in both osteoclast differentiation and activity.
    Matched MeSH terms: Cell Differentiation/physiology*
  3. Govindasamy V, Abdullah AN, Ronald VS, Musa S, Ab Aziz ZA, Zain RB, et al.
    J Endod, 2010 Sep;36(9):1504-15.
    PMID: 20728718 DOI: 10.1016/j.joen.2010.05.006
    Lately, several new stem cell sources and their effective isolation have been reported that claim to have potential for therapeutic applications. However, it is not yet clear which type of stem cell sources are most potent and best for targeted therapy. Lack of understanding of nature of these cells and their lineage-specific propensity might hinder their full potential. Therefore, understanding the gene expression profile that indicates their lineage-specific proclivity is fundamental to the development of successful cell-based therapies.
    Matched MeSH terms: Cell Differentiation/physiology*
  4. Bang LT, Ramesh S, Purbolaksono J, Long BD, Chandran H, Ramesh S, et al.
    Biomed Mater, 2015 Aug;10(4):045011.
    PMID: 26225725 DOI: 10.1088/1748-6041/10/4/045011
    Interconnected porous tricalcium phosphate ceramics are considered to be potential bone substitutes. However, insufficient mechanical properties when using tricalcium phosphate powders remain a challenge. To mitigate these issues, we have developed a new approach to produce an interconnected alpha-tricalcium phosphate (α-TCP) scaffold and to perform surface modification on the scaffold with a composite layer, which consists of hybrid carbonate apatite / poly-epsilon-caprolactone (CO3Ap/PCL) with enhanced mechanical properties and biological performance. Different CO3Ap combinations were tested to evaluate the optimal mechanical strength and in vitro cell response of the scaffold. The α-TCP scaffold coated with CO3Ap/PCL maintained a fully interconnected structure with a porosity of 80% to 86% and achieved an improved compressive strength mimicking that of cancellous bone. The addition of CO3Ap coupled with the fully interconnected microstructure of the α-TCP scaffolds coated with CO3Ap/PCL increased cell attachment, accelerated proliferation and resulted in greater alkaline phosphatase (ALP) activity. Hence, our bone substitute exhibited promising potential for applications in cancellous bone-type replacement.
    Matched MeSH terms: Cell Differentiation/physiology
  5. Gandhi S, Nor Rashid N, Mohamad Razif MF, Othman S
    Mol Biol Rep, 2021 Jun;48(6):5121-5133.
    PMID: 34169395 DOI: 10.1007/s11033-021-06509-4
    The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcription factors required for cell cycle progression. In view of this, the current study was conducted to investigate the mechanism by which transfection with HPV16/18 E7 leads to the deregulation of the host cell cycle, altering the localisation of p130, and expression of differentiation genes in Human Keratinocytes (HaCaT) cells. Co-immunoprecipitation, Western blot analysis, immunofluorescence microscopy, flow cytometry, quantitative-Polymerase Chain Reaction (qPCR), and the inhibition of p130 by MG132 inhibitor were employed to investigate the loss of p130 and its disruption in HPV 16/18 E7-transfected HaCaT cells. The HPV16- and HPV18-transformed cells, known as CaSki and HeLa, respectively, were also used to complement the ectopic expressions of E7 in HaCaT cells. Normal keratinocytes displayed higher level of p130 expression than HPV-transformed cells. In addition, the immunofluorescence analysis revealed that both HPV 16/18 E7-transfected HaCaT and HPV-transformed cells exhibited higher level of cytoplasmic p130 compared to nuclear p130. A significant increase in the number of S/G2 phase cells in HPV-transformed cells was also recorded since E7 has been shown to stimulate proliferation through the deactivation of Retinoblastoma Protein (pRB)-dependent G1/S checkpoint. Furthermore, the findings recorded the down-regulation of keratinocyte differentiation markers, namely p130, keratin10, and involucrin. The proteasomal degradation of the exported p130 confirmed the cellular localisation pattern of p130, which was commonly observed in cancerous cells. The findings provide strong evidence that the localisation of nuclear p130 nuclear was disrupted by HPV16/18 E7 led to the deregulation of the cell cycle and the impairment of cellular differentiation ultimately lead to cellular transformation.
    Matched MeSH terms: Cell Differentiation/physiology
  6. Man RC, Yong TK, Hwei NM, Halim WHWA, Zahidin AZM, Ramli R, et al.
    Mol Vis, 2017;23:810-822.
    PMID: 29225457
    Various clinical disorders and injuries, such as chemical, thermal, or mechanical injuries, may lead to corneal loss that results in blindness. PURPOSE: The aims of this study were to differentiate human buccal mucosa (BMuc) into corneal epithelial-like cells, to fabricate engineered corneal tissue using buccal mucosal epithelial cells, and to reconstruct a damaged corneal epithelium in a nude rat model.

    Methods: BMuc were subjected to 10 d of induction factors to investigate the potential of cells to differentiate into corneal lineages.

    Results: Corneal stem cell markers β1-integrin, C/EBPδ, ABCG2, p63, and CK3 were upregulated in the gene expression analysis in induced BMuc, whereas CK3 and p63 showed significant protein expression in induced BMuc compared to the uninduced cells. BMuc were then left to reach 80% confluency after differential trypsinization. The cells were harvested and cultivated on a commercially available untreated air-dried amniotic membrane (AM) in a Transwell system in induction medium. The corneal constructs were fabricated and then implanted into damaged rat corneas for up to 8 weeks. A significant improvement was detected in the treatment group at 8 weeks post-implantation, as revealed by slit lamp biomicroscopy analysis. The structure and thickness of the corneal layer were also analyzed using histological staining and time-domain optical coherence tomography scans and were found to resemble a native corneal layer. The protein expression for CK3 and p63 were continuously detected throughout the corneal epithelial layer in the corneal construct.

    Conclusions: In conclusion, human BMuc can be induced to express a corneal epithelial-like phenotype. The addition of BMuc improves corneal clarity, prevents vascularization, increases corneal thickness and stromal alignment, and appears to have no adverse effect on the host after implantation.

    Matched MeSH terms: Cell Differentiation/physiology
  7. Choong PF, Teh HX, Teoh HK, Ong HK, Choo KB, Sugii S, et al.
    Int J Med Sci, 2014;11(11):1154-60.
    PMID: 25170299 DOI: 10.7150/ijms.8281
    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.
    Matched MeSH terms: Cell Differentiation/physiology
  8. Duffy CR, Zhang R, How SE, Lilienkampf A, De Sousa PA, Bradley M
    Biomaterials, 2014 Jul;35(23):5998-6005.
    PMID: 24780167 DOI: 10.1016/j.biomaterials.2014.04.013
    Mesenchymal stems cells (MSCs) are currently the focus of numerous therapeutic approaches in tissue engineering/repair because of their wide multi-lineage potential and their ability to modulate the immune system response following transplantation. Culturing these cells, while maintaining their multipotency in vitro, currently relies on biological substrates such as gelatin, collagen and fibronectin. In addition, harvesting cells from these substrates requires enzymatic or chemical treatment, a process that will remove a multitude of cellular surface proteins, clearly an undesirable process if cells are to be used therapeutically. Herein, we applied a high-throughput 'hydrogel microarray' screening approach to identify thermo-modulatable substrates which can support hES-MP and ADMSC growth, permit gentle reagent free passaging, whilst maintaining multi-lineage potential. In summary, the hydrogel substrate identified, poly(AEtMA-Cl-co-DEAA) cross-linked with MBA, permitted MSCs to be maintained over 10 passages (each time via thermo-modulation), with the cells retaining expression of MSC associated markers and lineage potency. This chemically defined system allowed the passaging and maintenance of cellular phenotype of this clinically important cell type, in the absence of harsh passaging and the need for biological substrates.
    Matched MeSH terms: Cell Differentiation/physiology
  9. Safwani WK, Makpol S, Sathapan S, Chua KH
    Cell Tissue Bank, 2013 Jun;14(2):289-301.
    PMID: 22476937 DOI: 10.1007/s10561-012-9309-1
    Adipose tissue is a source of multipotent stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic and adipogenic cells. Most studies on human adipose-derived stem cells (ASCs) have been carried out at the early passages. For clinical usage, ASCs need to be expanded in vitro for a period of time to get sufficient cells for transplantation into patients. However, the impact of long-term culture on ASCs molecular characteristics has not been established yet. Several studies have also shown that osteogenic and adipogenic cells have the ability to switch pathways during in vitro culture as they share the same progenitor cells. This data is important to ensure their functionality and efficacy before being used clinically in the treatment of bone diseases. Therefore, we aim to investigate the effect of long-term culture on the adipogenic, stemness and osteogenic genes expression during osteogenic induction of ASCs. In this study, the molecular characteristics of ASCs during osteogenic induction in long-term culture was analysed by observing their morphological changes during induction, analysis of cell mineralization using Alizarin Red staining and gene expression changes using quantitative RT-PCR. Morphologically, cell mineralization at P20 was less compared to P5, P10 and P15. Adipogenesis was not observed as negative lipid droplets formation was recorded during induction. The quantitative PCR data showed that adipogenic genes expression e.g. LPL and AP2 decreased but PPAR-γ was increased after osteogenic induction in long-term culture. Most stemness genes decreased at P5 and P10 but showed no significant changes at P15 and P20. While most osteogenic genes increased after osteogenic induction at all passages. When compared among passages after induction, Runx showed a significant increased at P20 while BSP, OSP and ALP decreased at later passage (P15 and P20). During long-term culture, ASCs were only able to differentiate into immature osteogenic cells.
    Matched MeSH terms: Cell Differentiation/physiology
  10. Ruszymah BH, Lokman BS, Asma A, Munirah S, Chua K, Mazlyzam AL, et al.
    Int J Pediatr Otorhinolaryngol, 2007 Aug;71(8):1225-34.
    PMID: 17531328
    This study was aimed at regenerating autologous elastic cartilage for future use in pediatric ear reconstruction surgery. Specific attentions were to characterize pediatric auricular chondrocyte growth in a combination culture medium and to assess the possibility of elastic cartilage regeneration using human fibrin.
    Matched MeSH terms: Cell Differentiation/physiology
  11. Chong PP, Selvaratnam L, Abbas AA, Kamarul T
    J Orthop Res, 2012 Apr;30(4):634-42.
    PMID: 21922534 DOI: 10.1002/jor.21556
    The use of mesenchymal stem cells (MSCs) for cartilage repair has generated much interest owing to their multipotentiality. However, their significant presence in peripheral blood (PB) has been a matter of much debate. The objectives of this study are to isolate and characterize MSCs derived from PB and, compare their chondrogenic potential to MSC derived from bone marrow (BM). PB and BM derived MSCs from 20 patients were isolated and characterized. From 2 ml of PB and BM, 5.4 ± 0.6 million and 10.5 ± 0.8 million adherent cells, respectively, were obtained by cell cultures at passage 2. Both PB and BM derived MSCs were able to undergo tri-lineage differentiation and showed negative expression of CD34 and CD45, but positively expressed CD105, CD166, and CD29. Qualitative and quantitative examinations on the chondrogenic potential of PB and BM derived MSCs expressed similar cartilage specific gene (COMP) and proteoglycan levels, respectively. Furthermore, the s-GAG levels expressed by chondrogenic MSCs in cultures were similar to that of native chondrocytes. In conclusion, this study demonstrates that MSCs from PB maintain similar characteristics and have similar chondrogenic differentiation potential to those derived from BM, while producing comparable s-GAG expressions to chondrocytes.
    Matched MeSH terms: Cell Differentiation/physiology
  12. Simon C, Gan QF, Kathivaloo P, Mohamad NA, Dhamodharan J, Krishnan A, et al.
    Int J Mol Sci, 2019 Jan 29;20(3).
    PMID: 30699944 DOI: 10.3390/ijms20030568
    Parkinson's disease (PD) is a neurodegenerative disorder defined by progressive deterioration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Dental pulp stem cells (DPSCs) have been proposed to replace the degenerated dopaminergic neurons due to its inherent neurogenic and regenerative potential. However, the effective delivery and homing of DPSCs within the lesioned brain has been one of the many obstacles faced in cell-based therapy of neurodegenerative disorders. We hypothesized that DPSCs, delivered intranasally, could circumvent these challenges. In the present study, we investigated the therapeutic efficacy of intranasally administered DPSCs in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Human deciduous DPSCs were cultured, pre-labelled with PKH 26, and intranasally delivered into PD mice following MPTP treatment. Behavioural analyses were performed to measure olfactory function and sensorimotor coordination, while tyrosine hydroxylase (TH) immunofluorescence was used to evaluate MPTP neurotoxicity in SNpc neurons. Upon intranasal delivery, degenerated TH-positive neurons were ameliorated, while deterioration in behavioural performances was significantly enhanced. Thus, the intranasal approach enriched cell delivery to the brain, optimizing its therapeutic potential through its efficacious delivery and protection against dopaminergic neuron degeneration.
    Matched MeSH terms: Cell Differentiation/physiology
  13. Subramani B, Subbannagounder S, Ramanathanpullai C, Palanivel S, Ramasamy R
    Exp Biol Med (Maywood), 2017 03;242(6):645-656.
    PMID: 28092181 DOI: 10.1177/1535370216688568
    Redox homeostasis plays a crucial role in the regulation of self-renewal and differentiation of stem cells. However, the behavioral actions of mesenchymal stem cells in redox imbalance state remain elusive. In the present study, the effect of redox imbalance that was induced by either hydrogen peroxide (H2O2) or ascorbic acid on human cardiac-resident (hC-MSCs) and non-resident (umbilical cord) mesenchymal stem cells (hUC-MSCs) was evaluated. Both cells were sensitive and responsive when exposed to either H2O2 or ascorbic acid at a concentration of 400 µmol/L. Ascorbic acid pre-treated cells remarkably ameliorated the reactive oxygen species level when treated with H2O2. The endogenous antioxidative enzyme gene (Sod1, Sod2, TRXR1 and Gpx1) expressions were escalated in both MSCs in response to reactive oxygen species elevation. In contrast, ascorbic acid pre-treated hUC-MSCs attenuated considerable anti-oxidative gene (TRXR1 and Gpx1) expressions, but not the hC-MSCs. Similarly, the cardiogenic gene (Nkx 2.5, Gata4, Mlc2a and β-MHC) and ion-channel gene ( IKDR, IKCa, Ito and INa.TTX) expressions were significantly increased in both MSCs on the oxidative state. On the contrary, reduced environment could not alter the ion-channel gene expression and negatively regulated the cardiogenic gene expressions except for troponin-1 in both cells. In conclusion, redox imbalance potently alters the cardiac-resident and non-resident MSCs stemness, cardiogenic, and ion-channel gene expressions. In comparison with cardiac-resident MSC, non-resident umbilical cord-MSC has great potential to tolerate the redox imbalance and positively respond to cardiac regeneration. Impact statement Human mesenchymal stem cells (h-MSCs) are highly promising candidates for tissue repair in cardiovascular diseases. However, the retention of cells in the infarcted area has been a major challenge due to its poor viability and/or low survival rate after transplantation. The regenerative potential of mesenchymal stem cells (MSCs) repudiate and enter into premature senescence via oxidative stress. Thus, various strategies have been attempted to improve the MSC survival in 'toxic' conditions. Similarly, we investigated the response of cardiac resident MSC (hC-MSCs) and non-resident MSCs against the oxidative stress induced by H2O2. Supplementation of ascorbic acid (AA) into MSCs culture profoundly rescued the stem cells from oxidative stress induced by H2O2. Our data showed that the pre-treatment of AA is able to inhibit the cell death and thus preserving the viability and differentiation potential of MSCs.
    Matched MeSH terms: Cell Differentiation/physiology
  14. Ong ALC, Ramasamy TS
    Ageing Res Rev, 2018 May;43:64-80.
    PMID: 29476819 DOI: 10.1016/j.arr.2018.02.004
    Regulatory role of Sirtuin 1 (SIRT1), one of the most extensively studied members of its kind in histone deacetylase family in governing multiple cellular fates, is predominantly linked to p53 activity. SIRT1 deacetylates p53 in a NAD+-dependent manner to inhibit transcription activity of p53, in turn modulate pathways that are implicated in regulation of tissue homoeostasis and many disease states. In this review, we discuss the role of SIRT1-p53 pathway and its regulatory axis in the cellular events which are implicated in cellular aging, cancer and reprogramming. It is noteworthy that these cellular events share few common regulatory pathways, including SIRT1-p53-LDHA-Myc, miR-34a,-Let7 regulatory network, which forms a positive feedback loop that controls cell cycle, metabolism, proliferation, differentiation, epigenetics and many others. In the context of aging, SIRT1 expression is reduced as a protective mechanism against oncogenesis and for maintenance of tissue homeostasis. Interestingly, its activation in aged cells is evidenced in response to DNA damage to protect the cells from p53-dependent apoptosis or senescence, predispose these cells to neoplastic transformation. Importantly, the dual roles of SIRT1-p53 axis in aging and tumourigenesis, either as tumour suppressor or tumour promoter are determined by SIRT1 localisation and type of cells. Conceptualising the distinct similarity between tumorigenesis and cellular reprogramming, this review provides a perspective discussion on involvement of SIRT1 in improving efficiency in the induction and maintenance of pluripotent state. Further research in understanding the role of SIRT1-p53 pathway and their associated regulators and strategies to manipulate this regulatory axis very likely foster the development of therapeutics and strategies for treating cancer and aging-associated degenerative diseases.
    Matched MeSH terms: Cell Differentiation/physiology
  15. Rayagiri SS, Ranaldi D, Raven A, Mohamad Azhar NIF, Lefebvre O, Zammit PS, et al.
    Nat Commun, 2018 03 14;9(1):1075.
    PMID: 29540680 DOI: 10.1038/s41467-018-03425-3
    A central question in stem cell biology is the relationship between stem cells and their niche. Although previous reports have uncovered how signaling molecules released by niche cells support stem cell function, the role of the extra-cellular matrix (ECM) within the niche is unclear. Here, we show that upon activation, skeletal muscle stem cells (satellite cells) induce local remodeling of the ECM and the deposition of laminin-α1 and laminin-α5 into the basal lamina of the satellite cell niche. Genetic ablation of laminin-α1, disruption of integrin-α6 signaling or blocking matrix metalloproteinase activity impairs satellite cell expansion and self-renewal. Collectively, our findings establish that remodeling of the ECM is an integral process of stem cell activity to support propagation and self-renewal, and may explain the effect laminin-α1-containing supports have on embryonic and adult stem cells, as well as the regenerative activity of exogenous laminin-111 therapy.
    Matched MeSH terms: Cell Differentiation/physiology
  16. Thavagnanam S, Parker JC, McBrien ME, Skibinski G, Shields MD, Heaney LG
    PLoS One, 2014;9(1):e85802.
    PMID: 24475053 DOI: 10.1371/journal.pone.0085802
    Differentiated paediatric epithelial cells can be used to study the role of epithelial cells in asthma. Nasal epithelial cells are easier to obtain and may act as a surrogate for bronchial epithelium in asthma studies. We assessed the suitability of nasal epithelium from asthmatic children to be a surrogate for bronchial epithelium using air-liquid interface cultures.
    Matched MeSH terms: Cell Differentiation/physiology
  17. Yap FL, Cheong SK, Ammu R, Leong CF
    Malays J Pathol, 2009 Dec;31(2):113-20.
    PMID: 20514854 MyJurnal
    In this study, we evaluated the biological properties of human mesenchymal stem cells transfected (hMSC) with a plasmid vector expressing human cytokine interleukin-12 (IL-12). Surface markers were analysed by immunophenotyping using flow cytometry. Differentiation capability was evaluated towards adipogenesis and osteogenesis. We demonstrated that successfully transfected hMSC retained their surface immunophenotypes and differentiation potential into adipocytes and osteocytes. These results indicate that hMSC may be a suitable vehicle for gene transduction.
    Matched MeSH terms: Cell Differentiation/physiology
  18. Abdullah B, Shibghatullah AH, Hamid SS, Omar NS, Samsuddin AR
    Cell Tissue Bank, 2009 Aug;10(3):205-13.
    PMID: 18975136 DOI: 10.1007/s10561-008-9111-2
    This study was performed to determine the microscopic biological response of human nasal septum chondrocytes and human knee articular chondrocytes placed on a demineralized bovine bone scaffold. Both chondrocytes were cultured and seeded onto the bovine bone scaffold with seeding density of 1 x 105 cells per 100 microl/scaffold and incubated for 1, 2, 5 and 7 days. Proliferation and viability of the cells were measured by mitochondrial dehydrogenase activity (MTT assay), adhesion study was analyzed by scanning electron microscopy and differentiation study was analyzed by immunofluorescence staining and confocal laser scanning electron microscopy. The results showed good proliferation and viability of both chondrocytes on the scaffolds from day 1 to day 7. Both chondrocytes increased in number with time and readily grew on the surface and into the open pores of the scaffold. Immunofluorescence staining demonstrated collagen type II on the scaffolds for both chondrocytes. The results showed good cells proliferation, attachment and maturity of the chondrocytes on the demineralized bovine bone scaffold. The bovine bone being easily resourced, relatively inexpensive and non toxic has good potential for use as a three dimensional construct in cartilage tissue engineering.
    Matched MeSH terms: Cell Differentiation/physiology
  19. Ng AM, Westerman K, Kojima K, Kodoma S, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:7-8.
    PMID: 19024958
    Nerve stem cells have a unique characteristic in that they form spherical aggregates, also termed neurospheres, in vitro. The study demonstrated the successful derivation of these neurospheres from bone marrow culture. Their plasticity as nerve stem cells was confirmed. The findings further strengthens the pluripotency of cell populations within the bone marrow.
    Matched MeSH terms: Cell Differentiation/physiology
  20. Phang MY, Ng MH, Tan KK, Aminuddin BS, Ruszymah BH, Fauziah O
    Med J Malaysia, 2004 May;59 Suppl B:198-9.
    PMID: 15468886
    Tricalcium phosphate/hydroxyapatite (TCP/HA), hydroxyapatite (HA), chitosan and calcium sulphate (CaSO4) were studied and evaluated for possible bone tissue engineered construct acting as good support for osteogenic cells to proliferate, differentiate, and eventually spread and integrate into the scaffold. Surface morphology visualized by SEM showed that scaffold materials with additional fibrin had more cell densities attached than those without, depicting that the presence of fibrin and collagen fibers were truly a favourite choice of cells to attach. In comparison of various biomaterials used incorporated with fibrin, TCP/HA had the most cluster of cells attached.
    Matched MeSH terms: Cell Differentiation/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links