Displaying publications 1 - 20 of 84 in total

Abstract:
Sort:
  1. Balam SK, Soora Harinath J, Krishnammagari SK, Gajjala RR, Polireddy K, Baki VB, et al.
    ACS Omega, 2021 May 04;6(17):11375-11388.
    PMID: 34056293 DOI: 10.1021/acsomega.1c00360
    A series of 3-amino-2-hydroxybenzofused 2-phosphalactones (4a-l) has been synthesized from the Kabachnik-Fields reaction via a facile route from a one-pot three-component reaction of diphenylphosphite with various 2-hydroxybenzaldehyes and heterocyclic amines in a new way of expansion. The in vitro anti-cell proliferation studies by MTT assay have revealed them as potential Panc-1, Miapaca-2, and BxPC-3 pancreatic cell growth inhibitors, and the same is supported by molecular docking, QSAR, and ADMET studies. The MTT assay of their SAHA derivatives against the same cell lines evidenced them as potential HDAC inhibitors and identified 4a, 4b, and 4k substituted with 1,3-thiazol, 1,3,4-thiadiazol, and 5-sulfanyl-1,3,4-thiadiazol moieties on phenyl and diethylamino phenyl rings as potential ones. Additionally, the flow cytometric analyses of 4a, 4b, and 4k against BxPC-3 cells revealed compound 4k as a lead compound that arrests the S phase cell cycle growth at low micromolar concentrations. The ADMET properties have ascertained their inherent pharmacokinetic potentiality, and the wholesome results prompted us to report it as the first study on anti-pancreatic cancer activity of cyclic α-aminophosphonates. Ultimately, this study serves as a good contribution to update the existing knowledge on the anticancer organophosphorus heterocyclic compounds and elevates the scope for generation of new anticancer drugs. Further, the studies like QSAR, drug properties, toxicity risks, and bioactivity scores predicted for them have ascertained the synthesized compounds as newer and potential drug candidates. Hence, this study had augmented the array of α-aminophosphonates by adding a new collection of 3-amino-2-hydroxybenzofused 2-phosphalactones, a class of cyclic α-aminophosphonates, to it, which proved them as potential anti-pancreatic cancer agents.
    Matched MeSH terms: Cell Division
  2. Zheng WQ, Zhan RZ
    Anal. Quant. Cytol. Histol., 1998 Feb;20(1):1-6.
    PMID: 9513685
    To clarify the correlation between apoptosis and tumor cell proliferative activity in human breast cancer and to investigate their relevance to p53 protein.
    Matched MeSH terms: Cell Division
  3. Rashid NN, Yusof R, Watson RJ
    Anticancer Res, 2014 Nov;34(11):6557-63.
    PMID: 25368258
    It is well-established that HPV E7 proteins, encoded by human papillomavirus (HPV) genes, frequently associated with cervical cancers bind avidly to the retinoblastoma (RB) family of pocket proteins and disrupt their association with members of the E2F transcription factor family. Our previous study showed that the repressive p130-dimerization partner, RB-like, E2F and multi-vulval class (DREAM) complex was disrupted by HPV16 E7 proteins in order to maintain the viral replication in CaSki cells. However, we would like to address whether the activator B-myb-DREAM complex is critical in regulating the replication and mitosis phase since our previous study showed increased B-myb-DREAM expression in HPV-transformed cell lines when compared to control cells.
    Matched MeSH terms: Cell Division/physiology*
  4. Elsadig RE, Reimann K, Yip CH, Lai LC
    Anticancer Res, 2001 Jul-Aug;21(4A):2693-6.
    PMID: 11724341
    Oestrone sulphate is a major source of active oestrogens in the breast. It is converted to oestrone by oestrone sulphatase. Breast cyst fluid (BCF) is a rich source of sex hormones and growth factors. BCF obtained from British women has been shown to inhibit oestrone sulphatase activity in the MCF-7 oestrogen-receptor-positive breast cancer cell line. The aim of the present study was to assess whether BCF obtained from Malaysian women inhibited oestrone sulphatase activity in the MCF-7 and MDA-MB-231 breast cancer cell lines. The cell lines were grown in supplemented Dulbecco's Modified Eagle Medium for 3 days, following which a 3-day incubation with sterilised BCF was carried out. At the end of the treatment period the cell monolayers were assayed for oestrone sulphatase activity and the number of cell nuclei counted on a Coulter Counter. BCF was also fractionated on a Bio-Sil SEC 125-5 column by HPLC and the effects of the fractions collected on oestrone sulphatase activity in the MDA-MB-231 cell line were assessed. All 18 samples of BCF tested inhibited cell growth in the MDA-MB-231 cell line while 8 out of 10 samples inhibited MCF-7 cell growth; 15 out of 18 BCF samples inhibited oestrone sulphatase activity in the MDA-MB-231 cell line whereas 5 out of 10 samples stimulated oestrone sulphatase activity in the MCF-7 cell line. HPLC fractions corresponding to molecular weights of > 158 kDa and 28 kDa were found to inhibit oestrone sulphatase activity in the MDA-MB-231 cell line. Further work is required to fully characterise these substances as they may have roles to play in the prevention of breast cancer.
    Matched MeSH terms: Cell Division/physiology
  5. Hawariah A, Stanslas J
    Anticancer Res, 1998 Nov-Dec;18(6A):4383-6.
    PMID: 9891496
    Previous studies have shown that a styrylpyrone derivative (SPD) from a local tropical plant had antiprogestin and antiestrogenic effects in early pregnant mice models (Azimahtol et al. 1991). Antiprogestins and antiestrogens can be exploited as a therapeutic approach to breast cancer treatment and thus the antitumor activity of SPD was tested in three different human breast cancer cell lines that is: MCF- 7, T47D and MDA-MB-231, employing, the antiproliferative assay of Lin and Hwang (1991) slightly modified. SPD (10(-10) - 10(-6) M) exhibited strong antiproliferative activity in estrogen and progestin-dependent MCF-7 cells (EC50 = 2.24 x 10(-7) M) and in hormone insensitive MDA-MB-231 (EC50 = 5.62 x 10(-7) M), but caused only partial inhibition of the estrogen- insensitive T47D cells (EC50 = 1.58 x 10(-6) M). However, tamoxifen showed strong inhibition of MCF-7 cells (EC50 = 1.41 x 10(-6) M) and to a lesser extent the T47D cells (EC50 = 2.5 x 10(-6) M) but did not affect the MDA-MB-231 cells. SPD at 1 microM exerted a beffer antiestrogenic activity than 1 microM tamoxifen in suppressing the growth of MCF-7 cells stimulated by 1 nM estradiol. Combined treatment of both SPD and tamoxifen at 1 microM showed additional inhibition on the growth of MCF-7 cells in culture. The antiproliferative properties of SPD are effective on both receptor positive and receptor negative mammary cancer cells, and thus appear to be neither dependent on cellular receptor status nor cellular hormone responses. This enhances in vivo approaches as tumors are heterogenous masses with varying receptor status.
    Matched MeSH terms: Cell Division/drug effects
  6. Pihie AH, Stanslas J, Din LB
    Anticancer Res, 1998 May-Jun;18(3A):1739-43.
    PMID: 9673398
    The antiproliferative activity of a styrylpyrone derivative (SPD) plant extract, was studied in three different human breast cancer cell lines in culture, and was compared with tamoxifen. The number of living cells was evaluated by Methylene Blue staining technique. SPD showed strong antiproliferative activity in estrogen receptor (ER) and progestin receptor (PgR) positive MCF-7 cells (EC50 = 6.30 x 10(-7) M) and receptor-negative MDA-MB-231 (EC50 = 5.62 x 10(-7) M), but it partially inhibited the high progestin receptor positive T47D cells (EC50 = 1.58 x 10(-6) M). Whereas tamoxifen, a nonsteroidal antiestrogen exhibited strong inhibition on MCF-7 cells (EC50 = 1.41 x 10(-6) M) and partial inhibition on T47D cells (EC50 = 2.5 x 10(-6) M), but did not affect the MDA-MB-231 cells in the concentration range 0.1 nM-1 microM (EC50 = 5.01 microM). At the same concentration range SPD and tamoxifen did not inhibit the proliferation of normal human liver cell line CCL 13 and normal bovine kidney MDBK; whereas adriamycin, a common chemotherapy drug for the treatment of advance cancer, caused 95% inhibition at 10(-6) M. Competitive binding studies showed SPD had no ability to inhibit the binding of [3H]estradiol and [3H]progesterone to ER and PgR, respectively but, tamoxifen exhibited affinity for ER. Therefore, it can be concluded that the antiproliferative activity of SPD was selective towards breast cancer cell lines and not mediated by ER or PgR.
    Matched MeSH terms: Cell Division/drug effects
  7. Teoh LO, Ishikawa H, Liebmann JM, Ritch R
    Arch. Ophthalmol., 2000 Jul;118(7):989-90.
    PMID: 10900117
    Matched MeSH terms: Cell Division
  8. Roychoudhury PK, Gomes J, Bhattacharyay SK, Abdulah N
    Artif Cells Blood Substit Immobil Biotechnol, 1999 Sep-Nov;27(5-6):399-402.
    PMID: 10595439
    Studies were carried out in T-flasks and bioreactor to produce urokinase enzyme using HT 1080 human kidney cell line. While growing the cell line it has been observed that the lag phase is reduced considerably in the bioreactor as compared to T-flask culture. The HT 1080 cell adhesion rate and urokinase production were observed to be the function of serum concentration in the medium. The maximum urokinase activity of 3.1 x 10(-4) unit ml(-1) was achieved in the bioreactor at around 65 h of batch culture. Since HT 1080 is an anchorage dependent cell line, therefore, the hydrodynamic effects on the cell line were investigated.
    Matched MeSH terms: Cell Division
  9. King M, King D
    Aust. J. Biol. Sci., 1975 Feb;28(1):89-108.
    PMID: 1164258
    The karyotypes have been determined of 16 of the 32 species of the genus Varanus, including animals from Africa, Israel, Malaya and Australia. A constant chromosome number of 2n = 40 was observed. The karyotype is divided into eight pairs of large chromosomes and 12 paris of microchromosomes. A series of chromosomal rearrangements have become established in both size groups of the karyotype and are restricted to centromers shifts, probably caused by pericentric inversion. Species could be placed in one of six distinct karyotype groups which are differentiated by these rearrangements and whose grouping does not always correspond with the current taxonomy. An unusual sex chromosome system of the ZZ/ZW type was present in a number of the species examined. The evolutionary significance of these chromosomal rearrangements, their origin and their mode of establishment are discussed and related to the current taxonomic groupings. The most likely phylogenetic model based on chromosome morphology, fossil evidence and the current distribution of the genus Varanus is presented.
    Matched MeSH terms: Cell Division
  10. Abdullah D, Ford TR, Papaioannou S, Nicholson J, McDonald F
    Biomaterials, 2002 Oct;23(19):4001-10.
    PMID: 12162333
    Biocompatibility of two variants of accelerated Portland cement (APC) were investigated in vitro by observing the cytomorphology of SaOS-2 osteosarcoma cells in the presence of test materials and the effect of these materials on the expression of markers of bone remodelling. Glass ionomer cement (GIC), mineral trioxide aggregate (MTA) and unmodified Portland cement (RC) were used for comparison. A direct contact assay was undertaken in four samples of each test material, collected at 12, 24, 48 and 72 h. Cell morphology was observed using scanning electron microscopy (SEM) and scored. Culture media were collected for cytokine quantification using enzyme-linked immunosorbent assay (ELISA). On SEM evaluation, healthy SaOS-2 cells were found adhering onto the surfaces of APC variant, RC and MTA. In contrast, rounded and dying cells were observed on GIC. Using ELISA, levels of interleukin (IL)-1beta, IL-6, IL-18 and OC were significantly higher in APC variants compared with controls and GIC (p<0.01), but these levels of cytokines were not statistically significant compared with MTA. The results of this study provide evidence that both APC variants are non-toxic and may have potential to promote bone healing. Further development of APC is indicated to produce a viable dental restorative material and possibly a material for orthopaedic
    Matched MeSH terms: Cell Division
  11. Vairappan CS
    Biomol. Eng., 2003 Jul;20(4-6):255-9.
    PMID: 12919806
    Red algae genus Laurencia (Rhodomelaceae, Ceramiales) are known to produce a wide range of chemically interesting secondary halogenated metabolites. This investigation delves upon extraction, isolation, structural elucidation and antibacterial activity of inherently available secondary metabolites of Laurencia majuscula Harvey collected from two locations in waters of Sabah, Malaysia. Two major halogenated compounds, identified as elatol (1) and iso-obtusol (2) were isolated. Structures of these compounds were determined from their spectroscopic data such as IR, 1H-NMR, 13C-NMR and optical rotation. Antibacterial bioassay against human pathogenic bacteria was conducted using disc diffusion (Kirby-Bauer) method. Elatol (1) inhibited six species of bacteria, with significant antibacterial activities against Staphylococcus epidermis, Klebsiella pneumonia and Salmonella sp. while iso-obtusol (2) exhibited antibacterial activity against four bacterial species with significant activity against K. pneumonia and Salmonella sp. Elatol (1) showed equal and better antibacterial activity compared with tested commercial antibiotics while iso-obtusol (2) only equaled the potency of commercial antibiotics against K. pneumonia and Salmonella sp. Further tests conducted using dilution method showed both compounds as having bacteriostatic mode of action against the tested bacteria.
    Matched MeSH terms: Cell Division/drug effects; Cell Division/physiology
  12. Teoh, Chul Peng, Koh, Soon Peng, Clemente Michael Wong Vui Ling
    MyJurnal
    Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. It has an optimal growth in yeast peptone dextrose (YPD) and yeast mould (YM) broth media but not in potato dextrose (PD) broth medium. Early phase G. antarctica PI12 cells had elongated-shape and became oval-shaped as they aged. G. antarctica PI12 exhibited bipolar budding and formed a chain of cells during the lag and early exponential phases. The number of chains decreased as the yeast aged. It appeared mainly as a single cell at the stationary phase, and a small number of them still produced buds. Some cells at the stationary phase entered the quiescence state (G0) as a longterm survival strategy. The G. antarctica PI12 cell size decreased when they entered the stationary phase. G. antarctica PI12 was found to produce hydrolytic enzymes, chitinase, cellulase, mannanase, and xylanase. A higher glucose concentration of 2% in the PD agar medium inhibited the activities of chitinase but not the cellulase, mananase and xylanase.
    Matched MeSH terms: Cell Division
  13. Aye Aye Wynn, Nang Khin Mya
    MyJurnal
    Telomeres are specialized DNA complexes found at the end of all chromosomes. Human, as a member of eukaryotic cells, requires telomeres to maintain the length and the stability of chromosomes. Telomeres lose their non-coding DNA sequence to protect the genetic information on the chromosomes. Shortening of telomeres occurs in most somatic cells after sufficient cell division in a human lifetime. Normal haemopoietic cells or stem cells possess telomerase enzyme to restore telomeres and allow further replication. Telomere dysfunction is the origin of several degenerative disorders and also predispose to cancer. Roles of telomere in carcinogenesis and ageing related disorders are reviewed.
    Matched MeSH terms: Cell Division
  14. Chan KM, Rajab NF, Ishak MH, Ali AM, Yusoff K, Din LB, et al.
    Chem Biol Interact, 2006 Feb 1;159(2):129-40.
    PMID: 16297902
    Restenosis represents a major impediment to the success of coronary angioplasty. Abnormal proliferation of vascular smooth muscle cells (VSMCs) has been shown to be an important process in the pathogenesis of restenosis. A number of agents, particularly rapamycin and paclitaxel, have been shown to impact on this process. This study was carried out to determine the mechanisms of cytotoxicity of goniothalamin (GN) on VSMCs. Results from MTT cytotoxicity assay showed that the IC(50) for GN was 4.4 microg/ml (22 microM), which was lower compared to the clinically used rapamycin (IC(50) of 25 microg/ml [27.346 microM]). This was achieved primarily via apoptosis where up to 25.83 +/- 0.44% of apoptotic cells were detected after 72 h treatment with GN. In addition, GN demonstrated similar effects as rapamycin in inhibiting VSMCs proliferation using bromodeoxyuridine (BrdU) cell proliferation assay after 72 h treatment at IC(50) concentration (p > 0.05). In order to understand the mechanisms of GN, DNA damage detection using comet assay was determined at 2h post-treatment with GN. Our results showed that there was a concentration-dependent increase in DNA damage in VSMCs prior to cytotoxicity. Moreover, GN effects were comparable to rapamycin. In conclusion, our data show that GN initially induces DNA damage which subsequently leads to cytotoxicity primarily via apoptosis in VSMCs.
    Matched MeSH terms: Cell Division
  15. Jalal T, Natto HA, Wahab RA
    PMID: 33653245 DOI: 10.2174/1386207324666210302095557
    In recent biomedical research, the area of cancer and infectious diseases has a leading position in the utilization of medicinal plants as a source of drug discovery. Malaysia has a diversity and a large number of underutilized fruits that are rich in phenolic compounds. Artoarpus altilis consider an underutilized fruit that is rich in phenolic compounds. Methanol extracts of A. altilis have been previously found to contain a high content of antioxidant phytochemicals. The purpose of the study was to evaluate the cytotoxicity and toxicological effect of methanol fruit extracts against MCF-7 cells. To determine the least concentration that might kill or suppress the growth of the cancer cells was in a concentration-dependent manner approach. The variation in the cytotoxic activity among the extracts was indicated by determining the IC50 of each extract against cells at 72 h. The IC50 of the samples was measured using a trypan blue exclusion assay. The methanol extract of the pulp part showed the least inhibition concentration of 15.40±0.91 μg/mL on MCF-7 cells. In the study, the molecular mechanism of methanol extracts-induced apoptosis and cell cycle arrested in human cancer cells were investigated in a time-dependent-manners approach by using flow cytometry. The treated cells were stained with nexin to detect early and late apoptosis and with propidium iodide (PI) for cell cycle arrest associated with the DNA fragmentation, various cell arrests occurred at G1/S, S, and G2/M phases. Lastly, the gene expression analysis by (RT-qPCR) method was carried out by analyzing the expression of the gene of interest for the quantification of mRNA levels. Results after cells treated with IC50 were revealed by upregulating anti-apoptotic genes/downregulated of pro-apoptotic BCL-2 gene expressions were triggered the treated cells into CASPASE-3, intrinsic and extrinsic pathways. These findings suggest that the methanol extracts of three parts of A. altilis fruit have potential anticancer activity against MCF-7 cells mainly the pulp part of the fruit.
    Matched MeSH terms: Cell Division
  16. Wong YH, Abdul Kadir H, Ling SK
    PMID: 22203865 DOI: 10.1155/2012/164689
    Leea indica is a medicinal plant used traditionally to cure cancer. In this study, the cytotoxic compounds of L. indica were isolated using bioassay-guided approach. Two cycloartane triterpenoid glycosides, mollic acid arabinoside (MAA) and mollic acid xyloside (MAX), were firstly isolated from L. indica. They inhibited the growth of Ca Ski cervical cancer cells with IC(50) of 19.21 μM (MAA) and 33.33 μM (MAX). MRC5 normal cell line was used to calculate selectivity index. MAA and MAX were about 8 and 4 times more cytotoxic to Ca Ski cells compared to MRC5. The cytotoxicity of MAA was characterized by both cytostatic and cytocidal effects. MAA decreased the expression of proliferative cell nuclear antigen, increased sub-G1 cells, and arrested cells in S and G2/M phases. This study provides the evidence for the ethnomedicinal use of L. indica and paves the way for future mechanism studies on the anticancer effects of MAA.
    Matched MeSH terms: Cell Division
  17. Khazaei S, Abdul Hamid R, Ramachandran V, Mohd Esa N, Pandurangan AK, Danazadeh F, et al.
    PMID: 29250124 DOI: 10.1155/2017/1468957
    Breast cancer is the second leading cause of cancer death among women and despite significant advances in therapy, it remains a critical health problem worldwide. Allium atroviolaceum is an herbaceous plant, with limited information about the therapeutic capability. We aimed to study the anticancer effect of flower extract and the mechanisms of action in MCF-7 and MDA-MB-231. The extract inhibits the proliferation of the cells in a time- and dose-dependent manner. The underlying mechanism involved the stimulation of S and G2/M phase arrest in MCF-7 and S phase arrest in MDA-MB-231 associated with decreased level of Cdk1, in a p53-independent pathway. Furthermore, the extract induces apoptosis in both cell lines, as indicated by the percentage of sub-G0 population, the morphological changes observed by phase contrast and fluorescent microscopy, and increase in Annexin-V-positive cells. The apoptosis induction was related to downregulation of Bcl-2 and also likely to be caspase-dependent. Moreover, the combination of the extract and tamoxifen exhibits synergistic effect, suggesting that it can complement current chemotherapy. LC-MS analysis displayed 17 major compounds in the extract which might be responsible for the observed effects. Overall, this study demonstrates the potential applications of Allium atroviolaceum extract as an anticancer drug for breast cancer treatment.
    Matched MeSH terms: Cell Division
  18. Vadivelu RK, Yeap SK, Ali AM, Hamid M, Alitheen NB
    PMID: 23056140 DOI: 10.1155/2012/251362
    Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC) is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC(50) of 3.8 μg/mL significantly (P < 0.05). Nevertheless, betulinic acid exhibited G(1) cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24 h of treatment. In conclusion, betulinic acid induced G(1) cell cycle arrest and dose-dependent DNA damage on VSMC.
    Matched MeSH terms: Cell Division
  19. Saberbaghi T, Abbasian F, Mohd Yusof YA, Makpol S
    PMID: 23573154 DOI: 10.1155/2013/780504
    In this study, the effects of Chlorella vulgaris (CV) on replicative senescence of human diploid fibroblasts (HDFs) were investigated. Hot water extract of CV was used to treat HDFs at passages 6, 15, and 30 which represent young, presenescence, and senescence ages, respectively. The level of DNA damage was determined by comet assay while apoptosis and cell cycle profile were determined using FACSCalibur flow cytometer. Our results showed direct correlation between increased levels of damaged DNA and apoptosis with senescence in untreated HDFs (P < 0.05). Cell cycle profile showed increased population of untreated senescent cells that enter G0/G1 phase while the cell population in S phase decreased significantly (P < 0.05). Treatment with CV however caused a significant reduction in the level of damaged DNA and apoptosis in all age groups of HDFs (P < 0.05). Cell cycle analysis showed that treatment with CV increased significantly the percentage of senescent HDFs in S phase and G2/M phases but decreased the population of cells in G0/G1 phase (P < 0.05). In conclusion, hot water extract of Chlorella vulgaris effectively decreased the biomarkers of ageing, indicating its potential as an antiageing compound.
    Matched MeSH terms: Cell Division
  20. Mahkamova K, Latar NM, Aspinall S, Meeson A
    Exp Cell Res, 2019 01 01;374(1):104-113.
    PMID: 30465733 DOI: 10.1016/j.yexcr.2018.11.012
    Comparison of studies of cells derived from normal and pathological tissues of the same organ can be fraught with difficulties, particular with cancer where a number of different diseases are considered cancer within the same tissue. In the thyroid, there are 4 main types of cancer, three of which arise from follicular epithelial cells; papillary and follicular which are classified as differentiated, and anaplastic which is classified as undifferentiated. One assay that can be utilised for isolation of cancer stem cells is the side population (SP) assay. However, SP studies have been limited in part due to lack of optimal isolation strategies and in the case of anaplastic thyroid cancer (ATC) are further compounded by lack of access to ATC tumors. We have used thyroid cell lines to determine the optimal conditions to isolate viable SP cells. We then compared SP cells and NSP cells (bulk tumour cells without the SP) of a normal thyroid cell line N-thy ori-3-1 and an anaplastic thyroid cancer cell line SW1736 and showed that both SP cell populations displayed higher levels of stem cell characteristics than the NSP. When we compared SP cells of the N-thy ori-3-1 and the SW1736, the SW1736 SP had a higher colony forming potential, expressed higher levels of stem cell markers and CXCR4 and where more migratory and invasive, invasiveness increasing in response to CXCL12. This is the first report showing functional differences between ATC SP and normal thyroid SP and could lead to the identification of new therapeutic targets to treat ATC.
    Matched MeSH terms: Asymmetric Cell Division/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links