Displaying publications 1 - 20 of 84 in total

Abstract:
Sort:
  1. Khan S, Zakariah M, Palaniappan S
    Tumour Biol., 2016 Aug;37(8):10805-13.
    PMID: 26874727 DOI: 10.1007/s13277-016-4970-9
    Cancer has long been assumed to be a genetic disease. However, recent evidence supports the enigmatic connection of bacterial infection with the growth and development of various types of cancers. The cause and mechanism of the growth and development of prostate cancer due to Mycoplasma hominis remain unclear. Prostate cancer cells are infected and colonized by enteroinvasive M. hominis, which controls several factors that can affect prostate cancer growth in susceptible persons. We investigated M. hominis proteins targeting the nucleus of host cells and their implications in prostate cancer etiology. Many vital processes are controlled in the nucleus, where the proteins targeting M. hominis may have various potential implications. A total of 29/563 M. hominis proteins were predicted to target the nucleus of host cells. These include numerous proteins with the capability to alter normal growth activities. In conclusion, our results emphasize that various proteins of M. hominis targeted the nucleus of host cells and were involved in prostate cancer etiology through different mechanisms and strategies.
    Matched MeSH terms: Cell Division
  2. Nesaretnam K, Jin Lim E, Reimann K, Lai LC
    Toxicology, 2000 Oct 26;151(1-3):117-26.
    PMID: 11074306
    Breast cancer is the most common cancer in women worldwide. The growth of breast cancer cells is either hormone-dependent or hormone-independent. Both types are represented in vitro by the estrogen-receptor positive (ER+) MCF-7 and the estrogen-receptor negative (ER-) MDA-MB-231 cell lines, respectively. The pS2 gene is an estrogen-regulated gene and serves as a marker for the ER+ tumours. Carotenoids are pigments with anti-cancer properties besides having pro-vitamin A, antioxidant and free-radical quenching effects. This study was designed firstly, to compare the effect of palm oil carotene concentrate with retinoic acid on the growth of the ER+ MCF-7 and the ER- MDA-MB-231 cells; and secondly to evaluate the effect of the palm oil carotene concentrate on the regulation of pS2 mRNA. The growth experiments were performed with monolayer cells seeded in phenol red free RPMI 1640 culture media and subsequently treated with varying concentrations of either retinoic acid or palm oil carotenoids. The cell numbers were determined at the start of each experiment and then at successive time intervals. The results showed that the palm oil carotene concentrate caused dose-dependent inhibition of estradiol-stimulated growth of MCF-7 cells but did not affect the proliferation of MDA-MB-231 cells. Retinoic acid caused similar, albeit more potent effects, as significant inhibition was observed at lower concentrations than the palm oil carotenoids. In the pS2 gene expression experiment, cell monolayers were treated with the carotene concentrate (10(-6) M), either with or without supplemented estradiol (10(-8) M), and subsequently the RNA was extracted. Northern blotting was performed and the regulation of pS2 mRNA determined using a 32P-labelled pS2 cDNA probe. The results showed that the palm oil carotene concentrate did not affect the expression of pS2 mRNA and are therefore independent of the estrogen-regulated pathway.
    Matched MeSH terms: Cell Division/drug effects
  3. Ibrahim AM, Kayat FB, Hussin ZE, Susanto D, Ariffulah M
    ScientificWorldJournal, 2014;2014:284342.
    PMID: 24757416 DOI: 10.1155/2014/284342
    Kenaf (Hibiscus cannabinus L.) is one of the important species of Hibiscus cultivated for fiber. Availability of homozygous parent lines is prerequisite to the use of the heterosis effect reproducible in hybrid breeding. The production of haploid plants by anther culture followed by chromosome doubling can be achieved in short period compared with inbred lines by conventional method that requires self pollination of parent material. In this research, the effects of the microspore developmental stage, time of flower collection, various pretreatments, different combinations of hormones, and culture condition on anther culture of KB6 variety of Kenaf were studied. Young flower buds with immature anthers at the appropriate stage of microspore development were sterilized and the anthers were carefully dissected from the flower buds and subjected to various pretreatments and different combinations of hormones like NAA, 2,4-D, Kinetin, BAP, and TDZ to induce callus. The best microspore development stage of the flower buds was about 6-8 mm long collected 1-2 weeks after flower initiation. At that stage, the microspores were at the uninucleate stage which was suitable for culture. The best callus induction frequency was 90% in the optimized semisolid MS medium fortified with 3.0 mg/L BAP + 3.0 mg/L NAA.
    Matched MeSH terms: Cell Division/drug effects; Cell Division/physiology
  4. Uyub AM, Anuar AK
    PMID: 11485102
    A study was carried out on 49 H. pylori-positive and 11 H. pylori-negative patients to determine the reactivity of peripheral blood lymphocytes (PBL) to phytohemagglutinin (PHA) and acid glycine extract (AGE) of H. pylori, and to identify cells responsible for imunosuppression. Based on response to PHA stimulation, cell-mediated immunity of all patients were competent. In some patients, however, response to AGE of H. pylori was suppressed by plastic adherent cells. This study provided evidence of the presence of plastic adherent suppressor cells which suppressed PBL response to AGE of H. pylori but not to PHA suggesting that immunosuppression is antigen specific. There is also an indication that immunosuppression may be species-specific as PBL devoid of plastic adherent cells only responded to stimulation by AGE of H. pylori but not that to AGE of C. jejuni.
    Matched MeSH terms: Cell Division*
  5. Phang MY, Ng MH, Tan KK, Aminuddin BS, Ruszymah BH, Fauziah O
    Med J Malaysia, 2004 May;59 Suppl B:198-9.
    PMID: 15468886
    Tricalcium phosphate/hydroxyapatite (TCP/HA), hydroxyapatite (HA), chitosan and calcium sulphate (CaSO4) were studied and evaluated for possible bone tissue engineered construct acting as good support for osteogenic cells to proliferate, differentiate, and eventually spread and integrate into the scaffold. Surface morphology visualized by SEM showed that scaffold materials with additional fibrin had more cell densities attached than those without, depicting that the presence of fibrin and collagen fibers were truly a favourite choice of cells to attach. In comparison of various biomaterials used incorporated with fibrin, TCP/HA had the most cluster of cells attached.
    Matched MeSH terms: Cell Division/physiology
  6. Shamsul BS, Aminuddin BS, Ng MH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:196-7.
    PMID: 15468885
    Bone marrow harvested by aspiration contains connective tissue progenitor cells which can be selectively isolated and induced to express bone phenotype in vitro. The osteoblastic progenitor can be estimated by counting the number of cells attach using the haemacytometer. This study was undertaken to test the hypothesis that human aging is associated with a significant change on the number of osteoblastic progenitors in the bone marrow. Bone marrow aspirates were harvested from 38 patients, 14 men (age 11-70) and 24 women (age 10-70) and cultured in F12: DMEM (1:1). In total 15 bone marrow samples have been isolated from patients above 40 years old (men/women) of age. Fourteen (93.3%) of this samples failed to proliferate. Only one (6.7%) bone marrow sample from a male patient, aged 59 years old was successfully cultured. Seventy percent (16/23) of the samples from patient below than 40 years old were successfully cultured. However, our observation on the survival rate for cells of different gender from patient below 40 years old does not indicate any significant difference. From this study, we conclude that the growth of bone marrow stromal cells possibly for bone engineering is better from bone marrow aspirates of younger patient.
    Matched MeSH terms: Cell Division/physiology*
  7. Annuar N, Spier RE
    Med J Malaysia, 2004 May;59 Suppl B:204-5.
    PMID: 15468889
    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.
    Matched MeSH terms: Cell Division/physiology*
  8. Muhd Fakhruddin BH, Aminuddin BS, Mazlyzam AL, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:182-3.
    PMID: 15468878
    Skin is the largest organ in human system and plays a vital role as a barrier against environment and pathogens. Skin regeneration is important in tissue engineering especially in cases of chronic wounds. With the tissue engineering technology, these skins equivalent have been use clinically to repair burns and wounds. Consented redundant skin samples were obtained from patients aged 9 to 65 years old. Skin samples were digested with dispase, thus separating the epidermis and the dermis layer. The epidermis layer was trypsinized and cultured in DKSFM in 6-well plate at 37 degrees C and 5% CO2. Once confluent, the culture were trypsinized and the cells were pooled. Cells were counted using haemacytometer. Doubling time and viability were calculated and analysed. From the result, we conclude that doubling time and viability of in vitro keratinocytes cultured in DKSFM media is not age dependant.
    Matched MeSH terms: Cell Division/physiology
  9. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:194-5.
    PMID: 15468884
    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.
    Matched MeSH terms: Cell Division/physiology
  10. Saim L, Aminuddin BS, Munirah S, Chua KH, Izuddin Fahmy A, Fuzina NH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:192-3.
    PMID: 15468883
    To date there is no optimal approach to reconstruct an external ear. However, advances in tissue engineering technologies have indicated that in vitro autologous elastic cartilage might be of great importance in the future treatment of these patients. The aim of this study was to observe monolayer expansion of auricular cartilage and to evaluate engineered cartilage using standard histochemical study.
    Matched MeSH terms: Cell Division/physiology
  11. Mai-Ngam K, Seetapan N, Sagnella S
    Med J Malaysia, 2004 May;59 Suppl B:172-3.
    PMID: 15468873
    Matched MeSH terms: Cell Division/drug effects
  12. Hashim N, Sabudin S, Ibrahim S, Zin NM, Bakar SH, Fazan F
    Med J Malaysia, 2004 May;59 Suppl B:103-4.
    PMID: 15468839
    Hydroxyapatite (HA; Ca10(PO4)6(OH)2), is one of the significant implant materials used in Orthopaedics and Dental applications. However, synthetically produced HA may not be stable under ionic environment, which it will unavoidably encounter during its applications. In this paper, the in vitro effects of three HA materials derived from different resources, i.e. commercial HA (HAC), synthesised HA from pure chemicals (HAS) and synthesised HA from kapur sireh; derived traditionally from natural limestone (HAK), were studied. The HA disc samples were prepared and immersed in simulated body fluid (SBF) for 31-day period. The evaluation conducted focuses on the changes of the pH and the Calcium ion (Ca-ion) and Phosphate ion (P-ion) concentrations in the SBF solution, as well as the XRD and SEM data representing the reactions on the HA materials. From the XRD, it was found that HAK has the smallest crystallite sizes, which in turn affect the pH of the SBF during immersion. The Ca and P-ion concentrations generally decrease over time at different rates for different HA. Upon 1-day immersion in SBF, apatite growth was observed onto all three surfaces, which became more pronounced after 3-day immersion. However, the appetites formed were observed to be different in shapes and sizes. The reasons for the difference in the apatite-crystals and their subsequent effects on cells are still being investigated.
    Matched MeSH terms: Cell Division/drug effects*
  13. Najafpour HD, Suzina AH, Nizam A, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:121-2.
    PMID: 15468848
    There was a significant increased in Absolute Contact Length measurements of endosteal bone growth along the Nickel-Titanium (NiTi) implant coated with the natural coral powder and Hydroxyapatite (HA) compared to the non-calcium coated implants. This study demonstrated that coated implants seemed to show earlier and higher osseointergration phenomena compared to non coated ones. Furthermore, there was significantly greater bone-to-implant contact at the apical 1/3rd of the coated implants.
    Matched MeSH terms: Cell Division/physiology
  14. Kannan RY, Sales KM, Salacinski HJ, Butler PE, Seifalian AM
    Med J Malaysia, 2004 May;59 Suppl B:107-8.
    PMID: 15468841
    Matched MeSH terms: Cell Division/physiology
  15. Philip R, Dinsuhaimi S, Rosdan S, Samsudin AR, Shamsuria O, Mohd Zaki S, et al.
    Med J Malaysia, 2004 May;59 Suppl B:95-6.
    PMID: 15468835
    Matched MeSH terms: Cell Division/drug effects*
  16. Santin M, Morris C, Harrison M, Mikhalovska L, Lloyd AW, Mikhalovsky S
    Med J Malaysia, 2004 May;59 Suppl B:93-4.
    PMID: 15468834
    In-stent restenosis is caused by the proliferation of the smooth muscle cells (SMCs) following a host response towards the implanted device. However, the precise biochemical and cellular mechanisms are still not completely understood. In this paper, the behaviour of SMCs has been investigated by an in vitro model where the cells were stimulated by platelet derived growth factor (PDGF) on tissue-like substrates as well as on biomaterials such as stainless steel (St) and diamond-like carbon (DLC)-coated St. The results demonstrated that SMCs have a completely different adhesion mode on St and become particularly prone to proliferation and pro-inflammatory cytokine secretion under PDGF stimulus. This would suggest that restenosis may caused by the accidental contact of the SMC with the St substrate under an inflammatory insult.
    Matched MeSH terms: Cell Division/physiology*
  17. Tan KK, Aminuddin BS, Tan GH, Sabarul Afian M, Ng MH, Fauziah O, et al.
    Med J Malaysia, 2004 May;59 Suppl B:43-4.
    PMID: 15468810
    The strategy used to generate tissue-engineered bone construct, in view of future clinical application is presented here. Osteoprogenitor cells from periosteum of consenting scoliosis patients were isolated. Growth factors viz TGF-B2, bFGF and IGF-1 were used in concert to increase cell proliferation during in vitro cell expansion. Porous tricalcium phosphate (TCP)-hydroxyapatite (HA) scaffold was used as the scaffold to form 3D bone construct. We found that the addition of growth factors, greatly increased cell growth by 2 to 7 fold. TCP/HA proved to be the ideal scaffold for cell attachment and proliferation. Hence, this model will be further carried out on animal trial.
    Matched MeSH terms: Cell Division/physiology
  18. Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:30-1.
    PMID: 15468804
    Patient own fibrin may act as the safest, cheapest and immediate available biodegradable scaffold material in clinical 1 tissue engineering. This study investigated the feasibility of using patient own fibrin isolated from whole blood to construct a new human cartilage, skin and bone. Constructed in vitro tissues were implanted on the dorsal part of the nude mice for in vivo maturation. After 8 weeks of implantation, the engineered tissues were removed for histological analysis. Our results demonstrated autologous fibrin has great potential as clinical scaffold material to construct various human tissues.
    Matched MeSH terms: Cell Division/physiology
  19. Goh JC, Ouyang HW, Toh SL, Lee EH
    Med J Malaysia, 2004 May;59 Suppl B:47-8.
    PMID: 15468812
    Matched MeSH terms: Cell Division/physiology
  20. Azmi B, Aminuddin BS, Sharaf I, Samsudin OC, Munirah S, Chua KH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:13-4.
    PMID: 15468795
    Animal serum is commonly used in chondrocytes culture expansion to promote cell proliferation and shorten the time lag before new tissue reconstruction is possible. However, animal serum is not suitable for regeneration of clinical tissue because it has potential risk of viral and prion related disease transmission particularly mad cow disease and foreign protein contamination that can stimulate immune reaction leading to graft rejection. In this context, human serum as homologous supplement has a greater potential as growth promoting agents for human chondrocytes culture.
    Matched MeSH terms: Cell Division/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links