Displaying publications 1 - 20 of 903 in total

  1. Abd Hamid H, Mutazah R, Yusoff MM, Abd Karim NA, Abdull Razis AF
    Food Chem Toxicol, 2017 Oct;108(Pt B):451-457.
    PMID: 27725206 DOI: 10.1016/j.fct.2016.10.004
    Rhodomyrtus tomentosa (Aiton) Hassk. has a wide spectrum of pharmacological effects and has been used to treat wounds, colic diarrhoea, heartburns, abscesses and gynaecopathy. The potential antiproliferative activities of R. tomentosa extracts from different solvents were evaluated in vitro on HepG2, MCF-7 and HT 29 cell lines while antioxidant activity was monitored by radical scavenging assay (DPPH), copper reducing antioxidant capacity (CUPRAC) and β-carotene bleaching assay. Extracts from R. tomentosa show the viability of the cells in concentration-dependent manner. According to the IC50 obtained, the ethyl acetate extracts showed significant antiproliferative activity on HepG2 (IC50 11.47 ± 0.280 μg/mL), MCF-7 (IC50 2.68 ± 0.529 μg/mL) and HT 29 (IC50 16.18 ± 0.538 μg/mL) after 72 h of treatment. Bioassay guided fractionation of the ethyl acetate extract led to the isolation of lupeol. Methanol extracts show significant antioxidant activities in DPPH (EC50 110.25 ± 0.005 μg/ml), CUPRAC (EC50 53.84 ± 0.004) and β-carotene bleaching (EC50 58.62 ± 0.001) due to the presence of high total flavonoid and total phenolic content which were 110.822 ± 0.017 mg butylated hydroxytoluene (BHT)/g and 190.467 ± 0.009 mg gallic acid (GAE)/g respectively. Taken together, the results extracts show the R. tomentosa as a potential source of antioxidant and antiproliferative efficacy.
    Matched MeSH terms: Cell Line, Tumor
  2. Abd Rani NZ, Lam KW, Jalil J, Mohamad HF, Mat Ali MS, Husain K
    Molecules, 2021 Jan 28;26(3).
    PMID: 33525733 DOI: 10.3390/molecules26030695
    Phyllanthus amarus Schum. & Thonn. (Phyllanthaceae) is a medicinal plant that is commonly used to treat diseases such as asthma, diabetes, and anemia. This study aimed to examine the antiallergic activity of P. amarus extract and its compounds. The antiallergic activity was determined by measuring the concentration of allergy markers release from rat basophilic leukemia (RBL-2H3) cells with ketotifen fumarate as the positive control. As a result, P. amarus did not stabilize mast cell degranulation but exhibited antihistamine activity. The antihistamine activity was evaluated by conducting a competition radioligand binding assay on the histamine 1 receptor (H1R). Four compounds were identified from the high performance liquid chromatography (HPLC) analysis which were phyllanthin (1), hypophyllanthin (2), niranthin (3), and corilagin (4). To gain insights into the binding interactions of the most active compound hypophyllanthin (2), molecular docking was conducted and found that hypophyllanthin (2) exhibited favorable binding in the H1R binding site. In conclusion, P. amarus and hypophyllanthin (2) could potentially exhibit antiallergic activity by preventing the activation of the H1 receptor.
    Matched MeSH terms: Cell Line, Tumor
  3. Abd Rani NZ, Kumolosasi E, Jasamai M, Jamal JA, Lam KW, Husain K
    BMC Complement Altern Med, 2019 Dec 11;19(1):361.
    PMID: 31829185 DOI: 10.1186/s12906-019-2776-1
    BACKGROUND: Moringa oleifera Lam. is a commonly used plant in herbal medicine and has various reported bioactivities such as antioxidant, antimicrobial, anticancer and antidiabetes. It is rich in nutrients and polyphenols. The plant also has been traditionally used for alleviating allergic conditions. This study was aimed to examine the anti-allergic activity of M. oleifera extracts and its isolated compounds.

    METHOD: M. oleifera leaves, seeds and pods were extracted with 80% of ethanol. Individual compounds were isolated using a column chromatographic technique and elucidated based on the nuclear magnetic resonance (NMR) and electrospray ionisation mass spectrometry (ESIMS) spectral data. The anti-allergic activity of the extracts, isolated compounds and ketotifen fumarate as a positive control was evaluated using rat basophilic leukaemia (RBL-2H3) cells for early and late phases of allergic reactions. The early phase was determined based on the inhibition of beta-hexosaminidase and histamine release; while the late phase was based on the inhibition of interleukin (IL-4) and tumour necrosis factor (TNF-α) release.

    RESULTS: Two new compounds; ethyl-(E)-undec-6-enoate (1) and 3,5,6-trihydroxy-2-(2,3,4,5,6-pentahydroxyphenyl)-4H-chromen-4-one (2) together with six known compounds; quercetin (3), kaempferol (4), β-sitosterol-3-O-glucoside (5), oleic acid (6), glucomoringin (7), 2,3,4-trihydroxybenzaldehyde (8) and stigmasterol (9) were isolated from M. oleifera extracts. All extracts and the isolated compounds inhibited mast cell degranulation by inhibiting beta-hexosaminidase and histamine release, as well as the release of IL-4 and TNF-α at varying levels compared with ketotifen fumarate.

    CONCLUSION: The study suggested that M. oleifera and its isolated compounds potentially have an anti-allergic activity by inhibiting both early and late phases of allergic reactions.

    Matched MeSH terms: Cell Line, Tumor
  4. Abd Razak N, Yeap SK, Alitheen NB, Ho WY, Yong CY, Tan SW, et al.
    Integr Cancer Ther, 2020 8 25;19:1534735420935625.
    PMID: 32830560 DOI: 10.1177/1534735420935625
    Eupatorin is a polymethoxy flavone extracted from Orthosiphon stamineus and was reported to exhibit cytotoxic effects on several cancer cell lines. However, its effect as an anti-breast cancer agent in vivo has yet to be determined. This study aims to elucidate the potential of eupatorin as an anti-breast cancer agent in vivo using 4T1 challenged BALB/c mice model. In this article, BALB/c mice (20-22 g) challenged with 4T1 cells were treated with 5 mg/kg or 20 mg/kg eupatorin, while the untreated and healthy mice were fed with olive oil (vehicle) via oral gavage. After 28 days of experiment, the mice were sacrificed and blood was collected for serum cytokine assay, while tumors were harvested to extract RNA and protein for gene expression assay and hematoxylin-eosin staining. Organs such as spleen and lung were harvested for immune suppression and clonogenic assay, respectively. Eupatorin (20 mg/kg) was effective in delaying the tumor development and reducing metastasis to the lung compared with the untreated mice. Eupatorin (20 mg/kg) also enhanced the immunity as the population of NK1.1+ and CD8+ in the splenocytes and the serum interferon-γ were increased. Concurrently, eupatorin treatment also has downregulated the expression of pro-inflammatory and metastatic related genes (IL-1β. MMP9, TNF-α, and NF-κB). Thus, this study demonstrated that eupatorin at the highest dosage of 20 mg/kg body weight was effective in delaying the 4T1-induced breast tumor growth in the animal model.
    Matched MeSH terms: Cell Line, Tumor
  5. Abd-Aziz N, Stanbridge EJ, Shafee N
    J Gen Virol, 2016 Dec;97(12):3174-3182.
    PMID: 27902314 DOI: 10.1099/jgv.0.000623
    Newcastle disease virus (NDV) is a candidate agent for oncolytic virotherapy. Despite its potential, the exact mechanism of its oncolysis is still not known. Recently, we reported that NDV exhibited an increased oncolytic activity in hypoxic cancer cells. These types of cells negatively affect therapeutic outcome by overexpressing pro-survival genes under the control of the hypoxia-inducible factor (HIF). HIF-1 is a heterodimeric transcriptional factor consisting of a regulated α (HIF-1α) and a constitutive β subunit (HIF-1β). To investigate the effects of NDV infection on HIF-1α in cancer cells, the osteosarcoma (Saos-2), breast carcinoma (MCF-7), colon carcinoma (HCT116) and fibrosarcoma (HT1080) cell lines were used in the present study. Data obtained showed that a velogenic NDV infection diminished hypoxia-induced HIF-1α accumulation, leading to a decreased activation of its downstream target gene, carbonic anhydrase 9. This NDV-induced downregulation of HIF-1α occurred post-translationally and was partially abrogated by proteasomal inhibition. The process appeared to be independent of the tumour suppressor protein p53. These data revealed a correlation between NDV infection and HIF-1α downregulation, which highlights NDV as a promising agent to eliminate hypoxic cancer cells.
    Matched MeSH terms: Cell Line, Tumor
  6. Abdel Wahab SI, Abdul AB, Alzubairi AS, Mohamed Elhassan M, Mohan S
    J. Biomed. Biotechnol., 2009;2009:769568.
    PMID: 19343171 DOI: 10.1155/2009/769568
    Zerumbone (ZER), a potential anticancer compound, isolated from the fresh rhizomes of Zingiber zerumbet. In this investigation, the cytotoxic properties of ZER were evaluated, on cancer cells of human cervix (HeLa), breast and ovary, and normal cells of Chinese Hamster ovary, using MTT assay. Apoptogenic effects of ZER on HeLa were studied using fluorescence microscopy (AO/PI double staining), scanning and transmission electron microscopy (SEM and TEM), and colorimetric assay of the apoptosis promoter enzyme, caspase-3. The results of MTT assay showed that ZER has less effect on normal cells compared to cancer cells. The lowest IC(50) of ZER was observed on HeLa cells. Cytological observations showed nuclear and chromatin condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, holes, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double staining of AO/PI, SEM and TEM. Statistical analysis (two-tailed t-test) of differential counting of 200 cells under fluorescence microscope revealed significant difference in apoptotic cells populations between treated and untreated HeLa cells. In addition, ZER has increased the cellular level of caspase-3 on the treated HeLa cells. It could be concluded that ZER was able to produce distinctive morphological features of cell death that corresponds to apoptosis.
    Matched MeSH terms: Cell Line, Tumor
  7. Abdelgawad MA, Bakr RB, Ahmad W, Al-Sanea MM, Elshemy HAH
    Bioorg Chem, 2019 11;92:103218.
    PMID: 31536956 DOI: 10.1016/j.bioorg.2019.103218
    To enhance the cytotoxicity of benzimidazole and/or benzoxazole core, the benzimidazole/benzoxazole azo-pyrimidine were synthesized through diazo-coupling of 3-aminophenybenzimidazole (6a) or 3-aminophenylbenzoxazole (6b) with diethyl malonate. The new azo-molanates 6a&b mixed with urea in sodium ethoxide to afford the benzimidazolo/benzoxazolopyrimidine 7a&b. The structure elucidation of new synthesized targets was proved using spectroscopic techniques NMR, IR and elemental analysis. The cytoxicity screening had been carried out against five cancer cell lines: prostate cancer (PC-3), lung cancer (A-549), breast cancer (MCF-7), pancreas cancer (PaCa-2) and colon cancer (HT-29). Furthermore, the antioxidant activity, phospholipase A2-V and cyclooxygenases inhibitory activities of the target compounds 7a&b were evaluated and the new compounds showed potent activity (cytotoxicity IC50 range from 4.3 to 9.2 µm, antioxidant activity from 40% to 80%, COXs or LOX inhibitory activity from 1.92 µM to 8.21 µM). The docking of 7a&b was made to confirm the mechanism of action.
    Matched MeSH terms: Cell Line, Tumor
  8. Abdelwahab SI, Abdul AB, Mohan S, Taha MM, Syam S, Ibrahim MY, et al.
    Leuk. Res., 2011 Feb;35(2):268-71.
    PMID: 20708800 DOI: 10.1016/j.leukres.2010.07.025
    Zerumbone (ZER) is a potential anticancer natural compound, isolated from Zingiber zerumbet Smith. In this investigation, the anticancer properties of ZER were evaluated on cancer cells of T-acute lymphoblastic leukemia, CEM-ss. The results showed that ZER has cytotoxic effect against CEM-ss cells with an IC(50) of 8.4 ± 1.9 μg/ml (coefficient of variation < 30%). Comparatively, 5-fluorouracil (positive control), imposed an inhibitory effect on CEM-ss cells with an IC(50) of 1.94 ± 0.06 μg/ml. Scanning electron microscopy (SEM) results revealed abnormalities such as membrane blebbing, holes and cytoplasmic extrusions, all of which are characteristics of apoptosis. In addition, ZER has increased the number of TUNEL-positive stain and the cellular level of caspase-3, the hallmarks of apoptosis, on treated CEM-ss cells. It could be concluded that, ZER was able to produce apoptosis on T-acute lymphoblastic leukemia, CEM-ss. The current findings suggest that ZER might be helpful for improving the usefulness of anticancer agents in the therapy of leukemia.
    Matched MeSH terms: Cell Line, Tumor
  9. Abdelwahab SI, Abdul AB, Zain ZN, Hadi AH
    Int Immunopharmacol, 2012 Apr;12(4):594-602.
    PMID: 22330084 DOI: 10.1016/j.intimp.2012.01.014
    Interleukin-6 is one of the factors affecting sensitivity to cytotoxic agents. Therefore, the current study was designed to investigate the role of IL-6 and IL6 receptors in the cytotoxic effects of zerumbone in ovarian and cervical cancer cell lines (Caov-3 and HeLa, respectively). Exposure of both cancer cells to zerumbone or cisplatin demonstrated growth inhibition at a dose-dependent manner as determined by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,Sdiphenyltetrazolium bromide) reduction assay. Both laser scanning confocal microscopy and TUNEL assay showed typical apoptotic features in treated cells. The studies conducted seems to suggest that zerumbone induces cell death by stimulating apoptosis better than cisplatin, based on the significantly higher percentage of apoptotic cells in zerumbone's treated cancer cells as compared to cisplatin. In addition, zerumbone and cisplatin arrest cancer cells at G2/M phase as analyzed by flow cytometry. Our results indicated that zerumbone significantly decreased the levels of IL-6 secreted by both cancer cells. In contrast, HeLa and Caov-3 cells were still sensitive to cisplatin and zerumbone, even in the presence of exogenous IL-6. However, membrane-bound IL-6 receptor is still intact after zerumbone treatment as demonstrated using an immune-fluorescence technique. This study concludes that the compound, zerumbone inhibits both cancer cell growth through the induction of apoptosis, arrests cell cycle at G2/M phase and inhibits the secretion levels of IL-6 in both cancer cells. Therefore, zerumbone is a potential candidate as a useful chemotherapeutic agent in treating both cervical and ovarian cancers in future.
    Matched MeSH terms: Cell Line, Tumor
  10. Abdul Manaf SA, Hegde G, Mandal UK, Wui TW, Roy P
    Curr Drug Deliv, 2017;14(8):1071-1077.
    PMID: 27745545 DOI: 10.2174/1567201813666161017130612
    BACKGROUND: Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application.

    OBJECTIVE: The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications.

    METHODS: This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques.

    RESULTS: The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure.

    CONCLUSION: Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications.

    Matched MeSH terms: Cell Line, Tumor
  11. Abdul Rahim AS, Salhimi SM, Arumugam N, Pin LC, Yee NS, Muttiah NN, et al.
    J Enzyme Inhib Med Chem, 2013 Dec;28(6):1255-60.
    PMID: 23061895 DOI: 10.3109/14756366.2012.729828
    A new series of N-sec/tert-butyl 2-arylbenzimidazole derivatives was synthesised in 85-96% yields within 2-3.5 min by condensing ethyl 3-amino-4-butylamino benzoate with various substituted metabisulfite adducts of benzaldehyde under focused microwave irradiation. The benzimidazole analogues were characterised using (1)H NMR, (13)C NMR, high resolution MS and melting points. Evaluation of antiproliferative activity of the benzimidazole analogues against MCF-7 and MDA-MB-231 revealed several compounds with unexpected selective inhibitions of MDA-MB-231 in micromolar range. All analogues were found inactive towards MCF-7. The most potent inhibition against MDA-MB-231 human breast cancer cell line came from the unsubstituted 2-phenylbenzimidazole 10a.
    Matched MeSH terms: Cell Line, Tumor
  12. Abdul Rahman A, Jamal AR, Harun R, Mohd Mokhtar N, Wan Ngah WZ
    PMID: 24980711 DOI: 10.1186/1472-6882-14-213
    Gamma-tocotrienol (GTT), an isomer of vitamin E and hydroxy-chavicol (HC), a major bioactive compound in Piper betle, has been reported to possess anti-carcinogenic properties by modulating different cellular signaling events. One possible strategy to overcome multi-drug resistance and high toxic doses of treatment is by applying combinational therapy especially using natural bioactives in cancer treatment.
    Matched MeSH terms: Cell Line, Tumor
  13. Abdul Rahman A, Mokhtar NM, Harun R, Jamal R, Wan Ngah WZ
    J Physiol Biochem, 2019 Nov;75(4):499-517.
    PMID: 31414341 DOI: 10.1007/s13105-019-00699-z
    Gamma-tocotrienol (GTT) and hydroxychavicol (HC) exhibit anticancer activity in glioma cancer cells, where the combination of GTT + HC was shown to be more effective than single agent. The aim of this study was to determine the effect of GTT + HC by measuring the cell cycle progression, migration, invasion, and colony formation of glioma cancer cells and elucidating the changes in gene expression mitigated by GTT + HC that are critical to the chemoprevention of glioma cell lines 1321N1 (grade II), SW1783 (grade III), and LN18 (grade IV) using high-throughput RNA sequencing (RNA-seq). Results of gene expression levels and alternative splicing transcripts were validated by qPCR. Exposure of glioma cancer cells to GTT + HC for 24 h promotes cell cycle arrest at G2M and S phases and inhibits cell migration, invasion, and colony formation of glioma cancer cells. The differential gene expression induced by GTT + HC clustered into response to endoplasmic reticulum (ER) stress, cell cycle regulations, apoptosis, cell migration/invasion, cell growth, and DNA repair. Subnetwork analysis of genes altered by GTT + HC revealed central genes, ATF4 and XBP1. The modulation of EIF2AK3, EDN1, and FOXM1 were unique to 1321N1, while CSF1, KLF4, and FGF2 were unique to SW1783. PLK2 and EIF3A gene expressions were only altered in LN18. Moreover, GTT + HC treatment dynamically altered transcripts and alternative splicing expression. GTT + HC showed therapeutic potential against glioma cancer as evident by the inhibition of cell cycle progression, migration, invasion, and colony formation of glioma cancer cells, as well as the changes in gene expression profiles with key targets in ER unfolded protein response pathway, apoptosis, cell cycle, and migration/invasion.
    Matched MeSH terms: Cell Line, Tumor
  14. Abdul Rahman SF, Xiang Lian BS, Mohana-Kumaran N
    Future Oncol, 2020 Oct;16(28):2235-2249.
    PMID: 32715755 DOI: 10.2217/fon-2020-0389
    The B-cell lymphoma 2 (BCL-2) anti-apoptotic proteins have become attractive therapeutic targets especially with the development of BH3-mimetics which selectively target these proteins. However, it is important to note that expression levels of the anti-apoptotic proteins and their relevance in inhibiting apoptosis varies between different cell lineages. This addiction to certain anti-apoptotic proteins for survival, can be determined with various techniques and targeted effectively with selective BH3-mimetics. Studies have highlighted that anti-apoptotic proteins BCL-XL and MCL-1 are crucial for cervical cancer cell survival. Co-targeting BCL-XL and MCL-1 with selective BH3-mimetics yielded promising results in cervical cancer cell lines. In this review, we focus on the expression levels of the anti-apoptotic proteins in cervical cancer tissues and how to possibly target them with BH3-mimetics.
    Matched MeSH terms: Cell Line, Tumor
  15. Abdul Satar N, Ismail MN, Yahaya BH
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670440 DOI: 10.3390/molecules26041056
    Cancer stem cells (CSCs) represent a small subpopulation within a tumour. These cells possess stem cell-like properties but also initiate resistance to cytotoxic agents, which contributes to cancer relapse. Natural compounds such as curcumin that contain high amounts of polyphenols can have a chemosensitivity effect that sensitises CSCs to cytotoxic agents such as cisplatin. This study was designed to investigate the efficacy of curcumin as a chemo-sensitiser in CSCs subpopulation of non-small cell lung cancer (NSCLC) using the lung cancer adenocarcinoma human alveolar basal epithelial cells A549 and H2170. The ability of curcumin to sensitise lung CSCs to cisplatin was determined by evaluating stemness characteristics, including proliferation activity, colony formation, and spheroid formation of cells treated with curcumin alone, cisplatin alone, or the combination of both at 24, 48, and 72 h. The mRNA level of genes involved in stemness was analysed using quantitative real-time polymerase chain reaction. Liquid chromatography-mass spectrometry was used to evaluate the effect of curcumin on the CSC niche. A combined treatment of A549 subpopulations with curcumin reduced cellular proliferation activity at all time points. Curcumin significantly (p < 0.001) suppressed colonies formation by 50% and shrank the spheroids in CSC subpopulations, indicating inhibition of their self-renewal capability. This effect also was manifested by the down-regulation of SOX2, NANOG, and KLF4. Curcumin also regulated the niche of CSCs by inhibiting chemoresistance proteins, aldehyde dehydrogenase, metastasis, angiogenesis, and proliferation of cancer-related proteins. These results show the potential of using curcumin as a therapeutic approach for targeting CSC subpopulations in non-small cell lung cancer.
    Matched MeSH terms: Cell Line, Tumor
  16. Abdull Razis AF, Konsue N, Ioannides C
    Mol Nutr Food Res, 2018 09;62(18):e1700916.
    PMID: 29288567 DOI: 10.1002/mnfr.201700916
    The potential of isothiocyanates to antagonize the carcinogenicity of structurally diverse chemicals has been established in animals. A feasible mechanism of action involves protecting DNA by reducing the availability of the genotoxic metabolites of chemical carcinogens by either inhibiting their generation and/or stimulating their detoxification. In vivo as well as in vitro studies conducted in rat/human primary hepatocytes and precision-cut tissue slices have revealed that isothiocyanates can impair cytochrome P450 activity, including the CYP1 family which is the most active in the bioactivation of carcinogens, by virtue of being mechanism-based inactivators. The aromatic phenethyl isothiocyanate is the most effective of those studied, whereas aliphatic isothiocyanates such as sulforaphane and erucin necessitate high doses in order to manifest such effects that may not always be achievable through the diet. In all systems studied, isothiocyanates are strong inducers of detoxification enzyme systems including quinone reductase, glutathione S-transferase, epoxide hydrolase, and UDP-glucuronosyl transferase. Indeed, in smokers phenethyl isothiocyanate intake increases the urinary excretion of inactive mercapturate metabolites of toxic chemicals present in tobacco. Glucosinolates, the precursors of isothiocyanates, have also the potential to upregulate detoxification enzyme systems, but their contribution to the cancer chemoprevention linked to cruciferous vegetable consumption remains to be evaluated.
    Matched MeSH terms: Cell Line, Tumor
  17. Abdullah AS, Mohammed AS, Abdullah R, Mirghani ME, Al-Qubaisi M
    PMID: 24962691 DOI: 10.1186/1472-6882-14-199
    Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals.
    Matched MeSH terms: Cell Line, Tumor
  18. Abdullah AS, Mohammed AS, Rasedee A, Mirghani ME, Al-Qubaisi MS
    PMID: 25881293 DOI: 10.1186/s12906-015-0575-x
    In this study, the effect of mango kernel extract in the induction of apoptosis of the breast cancer (MDA-MB-231) cell line was examined. This is an attempt to discover alternatives to current therapeutic regimes in the treatment of breast cancers.
    Matched MeSH terms: Cell Line, Tumor
  19. Abdullah N, Sahibul-Anwar H, Ideris S, Hasuda T, Hitotsuyanagi Y, Takeya K, et al.
    Fitoterapia, 2013 Jul;88:1-6.
    PMID: 23570840 DOI: 10.1016/j.fitote.2013.03.028
    Goniothalamus macrophyllus (Blume) Hook. f. & Thoms. is a plant widely distributed in Malaysia. The aim of this study is to identify compounds from the roots of G. macrophyllus. The ground roots were extracted with aqueous methanol and partitioned sequentially with n-hexane, chloroform and butanol. Purification from this extracts afforded six compounds with two new compounds, namely goniolandrene-A (1), -B (2). The absolute configuration of goniolandrene B (2) was established by circular dichrosim. The compounds were cytotoxic against the P388 cells with IC50 values ranging from 0.42 to 160 μM. Goniothalamin (3) exhibited the highest inhibition of 0.42 μM.
    Matched MeSH terms: Cell Line, Tumor
  20. Abood WN, Fahmi I, Abdulla MA, Ismail S
    PMID: 24969238 DOI: 10.1186/1472-6882-14-205
    Immunomodulators are substances that modify immune system response to a threat. Immunomodulators modulate and potentiate the immune system, keeping it highly prepared for any threat. The immunomodulatory effect of the traditional medicine Tinospora crispa is investigated in this work.
    Matched MeSH terms: Cell Line, Tumor
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links