Displaying publications 1 - 20 of 183 in total

Abstract:
Sort:
  1. Zulaziz N, Azhim A, Himeno N, Tanaka M, Satoh Y, Kinoshita M, et al.
    Hum. Cell, 2015 Oct;28(4):159-66.
    PMID: 25997703 DOI: 10.1007/s13577-015-0118-2
    Antibacterial photodynamic therapy (PDT) has come to attract attention as an alternative therapy for drug-resistant bacteria. Recent reports revealed that antibacterial PDT induces innate immune response and stimulates abundant cytokine secretion as a part of inflammatory responses. However, the underlying mechanism how antibacterial PDT interacts with immune cells responsible for cytokine secretion has not been well outlined. In this study, we aimed to clarify the difference in gene expression and cytokine secretion between combined culture of fibroblasts and macrophages and their independent cultures. SCRC-1008, mouse fibroblast cell line and J774, mouse macrophage-like cell line were co-cultured and PDT treatments with different parameters were carried out. After various incubation periods (1-24 h), cells and culture medium were collected, and mRNA and protein levels for cytokines were measured using real-time PCR and ELISA, respectively. Our results showed that fibroblasts and macrophages interact with each other to mediate the immune response. We propose that fibroblasts initially respond to PDT by expressing Hspa1b, which regulates the NF-κB pathway via Tlr2 and Tlr4. Activation of the NF-κB pathway then results in an enhanced secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and neutrophil chemoattractant MIP-2 and KC from macrophages.
    Matched MeSH terms: Cell Movement
  2. Zhao Z, Malhotra A, Seng WY
    J Environ Pathol Toxicol Oncol, 2019;38(3):195-203.
    PMID: 31679307 DOI: 10.1615/JEnvironPatholToxicolOncol.2019029549
    UNCI 19 expression has been reported to be significantly higher in hepatic cancer cells (HCC). However, the clinical significance of modulating UNC119 expression in HCC is not well understood. The study described here aimed to explore the potential of curcumin in modulation of UNC119 expression in HCC by assessment with quantitative real-time PCR, western blot, and immune-histochemical analyses in HCC cell lines and tissues. The biological functions of UNC119 in the proliferation, growth, and cycle of tumor cells were analyzed both in vitro and in vivo. UNC119 expression was upregulated in HCC cell lines and tissues as indicated by comparison with normal liver cells and tissues. Cellular function assays showed that higher levels of UNC119 not only promoted proliferation but also enhanced HCC cell migration and invasion. UNC119 promoted progression of the cell cycle and significantly promoted HCC cell growth through the Wnt/β-catenin signal pathway, and enhanced tumor migration and invasion by the TGF-β/EMT pathway. Curcumin efficiently inhibited HCC cell proliferation by blocking the Wnt/β-catenin pathway and inhabited migration and invasion by blocking the TGF-p/EMT signal pathway. Curcumin not only was beneficial for tumor remission but also contributed to the long-term survival of HCC-bearing mice. UNC119 was significantly upregulated and promoted cell growth in hepatic cancer cells and tissues by the Wnt/β-catenin signal pathway and migration by TGF-β/EMT signal pathway. Curcumin treatment inhibited cell proliferation, growth, migration, and invasion by inhibition of those pathways.
    Matched MeSH terms: Cell Movement/genetics
  3. Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF
    Int J Oncol, 2021 02;58(2):185-198.
    PMID: 33491756 DOI: 10.3892/ijo.2020.5164
    Lung cancer is one of the most lethal forms of cancer known to man, affecting millions of individuals worldwide. Despite advancements being made in lung cancer treatments, the prognosis of patients with the disease remains poor, particularly among patients with late‑stage lung cancer. The elucidation of the signaling pathways involved in lung cancer is a critical approach for the treatment of the disease. Over the past decades, accumulating evidence has revealed that Rho‑associated kinase (ROCK) is overexpressed in lung cancer and is associated with tumor growth. The present review discusses recent findings of ROCK signaling in the pathogenesis of lung cancer that were conducted in pre‑clinical studies. The significant role of ROCK in cancer cell apoptosis, proliferation, migration, invasion and angiogenesis is discussed. The present review also suggests the use of ROCK as a potential target for the development of lung cancer therapies, as ROCK inhibition can reduce multiple hallmarks of cancer, particularly by decreasing cancer cell migration, which is an initial step of metastasis.
    Matched MeSH terms: Cell Movement/drug effects
  4. Zainal NS, Gan CP, Lau BF, Yee PS, Tiong KH, Abdul Rahman ZA, et al.
    Phytomedicine, 2018 Jan 15;39:33-41.
    PMID: 29433681 DOI: 10.1016/j.phymed.2017.12.011
    BACKGROUND: The CXCR4-RhoA and PI3K-mTOR signaling pathways play crucial roles in the dissemination and tumorigenesis of oral squamous cell carcinoma (OSCC). Activation of these pathways have made them promising molecular targets in the treatment of OSCC. Zerumbone, a bioactive monocyclic sesquiterpene isolated from the rhizomes of tropical ginger, Zingiber zerumbet (L.) Roscoe ex Sm. has displayed promising anticancer properties with the ability to modulate multiple molecular targets involved in carcinogenesis. While the anticancer activities of zerumbone have been well explored across different types of cancer, the molecular mechanism of action of zerumbone in OSCC remains largely unknown.

    PURPOSE: Here, we investigated whether OSCC cells were sensitive towards zerumbone treatment and further determined the molecular pathways involved in the mechanism of action.

    METHODS: Cytotoxicity, anti-proliferative, anti-migratory and anti-invasive effects of zerumbone were tested on a panel of OSCC cell lines. The mechanism of action of zerumbone was investigated by analysing the effects on the CXCR4-RhoA and PI3K-mTOR pathways by western blotting.

    RESULTS: Our panel of OSCC cells was broadly sensitive towards zerumbone with IC50 values of less than 5 µM whereas normal keratinocyte cells were less responsive with IC50 values of more than 25 µM. Representative OSCC cells revealed that zerumbone inhibited OSCC proliferation and induced cell cycle arrest and apoptosis. In addition, zerumbone treatment inhibited migration and invasion of OSCC cells, with concurrent suppression of endogenous CXCR4 protein expression in a time and dose-dependent manner. RhoA-pull down assay showed reduction in the expression of RhoA-GTP, suggesting the inactivation of RhoA by zerumbone. In association with this, zerumbone also inhibited the PI3K-mTOR pathway through the inactivation of Akt and S6 proteins.

    CONCLUSION: We provide evidence that zerumbone could inhibit the activation of CXCR4-RhoA and PI3K-mTOR signaling pathways leading to the reduced cell viability of OSCC cells. Our results suggest that zerumbone is a promising phytoagent for development of new therapeutics for OSCC treatment.

    Matched MeSH terms: Cell Movement/drug effects
  5. Zahari NK, Idrus RBH, Chowdhury SR
    Int J Mol Sci, 2017 Oct 30;18(11).
    PMID: 29084180 DOI: 10.3390/ijms18112242
    Myoblasts, the contractile cells of skeletal muscle, have been invaluable for fundamental studies of muscle development and clinical applications for muscle loss. A major limitation to the myoblast-based therapeutic approach is contamination with non-contractile fibroblasts, which overgrow during cell expansion. To overcome these limitations, this study was carried out to establish a 3D culture environment using nanofiber scaffolds to enrich the myoblast population during construct formation. Poly(methyl methacrylate) (PMMA) nanofiber (PM) scaffolds were fabricated using electrospinning techniques and coated with extracellular matrix (ECM) proteins, such as collagen or laminin, in the presence or absence of genipin. A mixed population of myoblasts and fibroblasts was isolated from human skeletal muscle tissues and cultured on plain surfaces, as well as coated and non-coated PM scaffolds. PMMA can produce smooth fibers with an average diameter of 360 ± 50 nm. Adsorption of collagen and laminin on PM scaffolds is significantly enhanced in the presence of genipin, which introduces roughness to the nanofiber surface without affecting fiber diameter and mechanical properties. It was also demonstrated that laminin-coated PM scaffolds significantly enhance myoblast proliferation (0.0081 ± 0.0007 h-1) and migration (0.26 ± 0.04 μm/min), while collagen-coated PM scaffolds favors fibroblasts proliferation (0.0097 ± 0.0009 h-1) and migration (0.23 ± 0.03 μm/min). Consequently, the myoblast population was enriched on laminin-coated PM scaffolds throughout the culture process. Therefore, laminin coating of nanofiber scaffolds could be a potential scaffold for the development of a tissue-engineered muscle substitute.
    Matched MeSH terms: Cell Movement
  6. Yip WK, Cheenpracha S, Chang LC, Ho CC, Seow HF
    Int J Oncol, 2010 Nov;37(5):1229-41.
    PMID: 20878070
    Secondary metabolites from actinomycetes especially the genus Streptomyces may be one of the most important sources for novel anticancer agents. A purified fraction from a novel actinomycete strain, Streptomyces sp. H7372, was elucidated in breast cancer cells. We have isolated three purified fractions from a novel strain, Streptomyces sp. H7372. One of the fractions, designated as 31-2, exhibited the strongest growth-inhibitory effect and thereby was selected for further studies. 31-2 exerted a growth-inhibitory effect on a panel of 15 human cancer and 2 non-malignant cell lines. In MCF-7 and MDA-MB-231 breast cancer cells, 31-2 induced a cytostatic (anti-proliferative) effect without causing cytotoxicity (cell death). Our data suggest that the cytostasis resulted from cell cycle arrest at the G1 phase in MCF-7 cells and at the S phase in MDA-MB-231 cells. Western blot analysis demonstrated a modulation of phosphorylation of the Rb and CDC2 proteins and of CDK4, cyclin D1 and cyclin D3 in the 31-2-treated breast cancer cell lines. The protein levels of CDK2, CDK6, and PCNA were not affected by 31-2 treatment. 31-2 also exhibited an anti-invasive effect in MDA-MB-231 cells. However, this effect is not attributed to the modulation of proteolytic activity in MDA-MB-231 cells as the enzymatic degradation of type IV collagen was not affected by 31-2. The 31-2 is a potent cytostatic and anti-invasive agent and modulates the cell cycle pathway. Together, these results will have important implications in searching for novel approaches to treat cancer.
    Matched MeSH terms: Cell Movement/drug effects
  7. Yap WH, Ahmed N, Lim YM
    Lipids, 2016 10;51(10):1153-1159.
    PMID: 27540737 DOI: 10.1007/s11745-016-4186-1
    Maslinic acid is a natural pentacyclic triterpenoid which has anti-inflammatory properties. A recent study showed that secretory phospholipase A2 (sPLA2) may be a potential binding target of maslinic acid. The human group IIA (hGIIA)-sPLA2 is found in human sera and their levels are correlated with severity of inflammation. This study aims to determine whether maslinic acid interacts with hGIIA-sPLA2 and inhibits inflammatory response induced by this enzyme. It is shown that maslinic acid enhanced intrinsic fluorescence of hGIIA-sPLA2 and inhibited its enzyme activity in a concentration-dependent manner. Molecular docking revealed that maslinic acid binds to calcium binding and interfacial phospholipid binding site, suggesting that it inhibit access of catalytic calcium ion for enzymatic reaction and block binding of the enzyme to membrane phospholipid. The hGIIA-sPLA2 enzyme is also responsible in mediating monocyte recruitment and differentiation. Results showed that maslinic acid inhibit hGIIA-sPLA2-induced THP-1 cell differentiation and migration, and the effect observed is specific to hGIIA-sPLA2 as cells treated with maslinic acid alone did not significantly affect the number of adherent and migrated cells. Considering that hGIIA-sPLA2 enzyme is known to hydrolyze glyceroacylphospholipids present in lipoproteins and cell membranes, maslinic acid may bind and inhibit hGIIA-sPLA2 enzymatic activity, thereby reduces the release of fatty acids and lysophospholipids which stimulates monocyte migration and differentiation. This study is the first to report on the molecular interaction between maslinic acid and inflammatory target hGIIA-sPLA2 as well as its effect towards hGIIA-sPLA2-induced THP-1 monocyte adhesive and migratory capabilities, an important immune-inflammation process in atherosclerosis.
    Matched MeSH terms: Cell Movement/drug effects
  8. Yap LF, Velapasamy S, Lee HM, Thavaraj S, Rajadurai P, Wei W, et al.
    J Pathol, 2015 Feb;235(3):456-65.
    PMID: 25294670 DOI: 10.1002/path.4460
    Undifferentiated nasopharyngeal carcinoma (NPC) is a highly metastatic disease that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the contribution of lysophosphatidic acid (LPA) signalling to the pathogenesis of NPC. Here we demonstrate two distinct functional roles for LPA in NPC. First, we show that LPA enhances the migration of NPC cells and second, that it can inhibit the activity of EBV-specific cytotoxic T cells. Focusing on the first of these phenotypes, we show that one of the LPA receptors, LPA receptor 5 (LPAR5), is down-regulated in primary NPC tissues and that this down-regulation promotes the LPA-induced migration of NPC cell lines. Furthermore, we found that EBV infection or ectopic expression of the EBV-encoded LMP2A was sufficient to down-regulate LPAR5 in NPC cell lines. Our data point to a central role for EBV in mediating the oncogenic effects of LPA in NPC and identify LPA signalling as a potential therapeutic target in this disease.
    Matched MeSH terms: Cell Movement/physiology
  9. Yap LF, Ahmad M, Zabidi MM, Chu TL, Chai SJ, Lee HM, et al.
    Int J Oncol, 2014 May;44(5):1774-80.
    PMID: 24626628 DOI: 10.3892/ijo.2014.2342
    The molecular events that drive the progression of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) are still to be elucidated. Here, we report for the first time the pathogenic significance of an NPC-associated gene, wingless-type MMTV integration site family, member 5A (WNT5A) and the contribution of EBV to its expression. WNT5A is a representative Wnt protein that activates non-canonical Wnt signalling. With regard to its role in carcinogenesis, there is conflicting evidence as to whether WNT5A has a tumour-promoting or tumour-suppressive role. We show that WNT5A is upregulated in primary NPC tissue samples. We also demonstrate that WNT5A expression was dramatically increased in NPC cell lines expressing the EBV-encoded LMP2A gene, suggesting that this EBV-encoded latent gene is responsible for upregulating WNT5A in NPC. In addition, in vitro WNT5A overexpression promotes the proliferation, migration and invasion of NPC cells. Our results not only reveal pro-tumorigenic effects of WNT5A in NPC but also suggest that WNT5A could be an important therapeutic target in patients with EBV-associated disease.
    Matched MeSH terms: Cell Movement
  10. Yap HM, Lee YZ, Harith HH, Tham CL, Cheema MS, Shaari K, et al.
    Sci Rep, 2018 11 09;8(1):16640.
    PMID: 30413753 DOI: 10.1038/s41598-018-34847-0
    Increased airway smooth muscle (ASM) mass is a prominent hallmark of airway remodeling in asthma. Inhaled corticosteroids and long-acting beta2-agonists remain the mainstay of asthma therapy, however are not curative and ineffective in attenuating airway remodeling. The geranyl acetophenone 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), an in-house synthetic non-steroidal compound, attenuates airway hyperresponsiveness and remodeling in murine models of asthma. The effect of tHGA upon human ASM proliferation, migration and survival in response to growth factors was assessed and its molecular target was determined. Following serum starvation and induction with growth factors, proliferation and migration of human bronchial smooth muscle cells (hBSMCs) treated with tHGA were significantly inhibited without any significant effects upon cell survival. tHGA caused arrest of hBSMC proliferation at the G1 phase of the cell cycle with downregulation of cell cycle proteins, cyclin D1 and diminished degradation of cyclin-dependent kinase inhibitor (CKI), p27Kip1. The inhibitory effect of tHGA was demonstrated to be related to its direct inhibition of AKT phosphorylation, as well as inhibition of JNK and STAT3 signal transduction. Our findings highlight the anti-remodeling potential of this drug lead in chronic airway disease.
    Matched MeSH terms: Cell Movement/drug effects
  11. Yang C, Li X, Li Q, Zhang B, Li H, Lin J
    Neuroreport, 2017 Dec 06;28(17):1180-1185.
    PMID: 28953094 DOI: 10.1097/WNR.0000000000000903
    Chicken embryos are used widely in the fields of developmental biology and neurobiology. The chicken embryo also serves as a model to analyze gene expression and function using in ovo electroporation. Plasmids may be injected into the spinal cord or tectum of the chicken central nervous system by microinjection for electroporation. Here, we developed a novel method that combines in ovo electroporation and neuronal culturing to study gene function in the chicken tectum during embryo development. Our method can be used to study in-vivo and in-vitro exogenous genes' function. In addition, live cell imaging microscopy, immunostaining, and transfection can be used with our method to study neuronal growth, development, neurite growth and retraction, and axonal pathfinding. Our result showed that axons were present in isolated neurons after culturing for 24 h, and cell debris was low after replacing the media at 48 h. Many GFP-expressing neurons were observed in the cultured cells after 48 h. We successfully cultured the neurons for 3 weeks. Together, this method combines in ovo electroporation and neuronal culturing advantages and is more convenient for the gene function analysis.
    Matched MeSH terms: Cell Movement/physiology
  12. Yahaya B
    ScientificWorldJournal, 2012;2012:961684.
    PMID: 23049478 DOI: 10.1100/2012/961684
    Understanding the mechanisms underlying the process of regeneration and repair of airway epithelial structures demands close characterization of the associated cellular and molecular events. The choice of an animal model system to study these processes and the role of lung stem cells is debatable since ideally the chosen animal model should offer a valid comparison with the human lung. Species differences may include the complex three-dimensional lung structures, cellular composition of the lung airway as well as transcriptional control of the molecular events in response to airway epithelium regeneration, and repair following injury. In this paper, we discuss issues related to the study of the lung repair and regeneration including the role of putative stem cells in small- and large-animal models. At the end of this paper, the author discuss the potential for using sheep as a model which can help bridge the gap between small-animal model systems and humans.
    Matched MeSH terms: Cell Movement
  13. Xi Loh EY, Fauzi MB, Ng MH, Ng PY, Ng SF, Ariffin H, et al.
    ACS Appl Mater Interfaces, 2018 Nov 21;10(46):39532-39543.
    PMID: 30372014 DOI: 10.1021/acsami.8b16645
    The evaluation of the interaction of cells with biomaterials is fundamental to establish the suitability of the biomaterial for a specific application. In this study, the properties of bacterial nanocellulose/acrylic acid (BNC/AA) hydrogels fabricated with varying BNC to AA ratios and electron-beam irradiation doses were determined. The manner these hydrogel properties influence the behavior of human dermal fibroblasts (HDFs) at the cellular and molecular levels was also investigated, relating it to its application both as a cell carrier and wound dressing material. Swelling, hardness, adhesive force (wet), porosity, and hydrophilicity (dry) of the hydrogels were dependent on the degree of cross-linking and the amount of AA incorporated in the hydrogels. However, water vapor transmission rate, pore size, hydrophilicity (semidry), and topography were similar between all formulations, leading to a similar cell attachment and proliferation profile. At the cellular level, the hydrogel demonstrated rapid cell adhesion, maintained HDFs viability and morphology, restricted cellular migration, and facilitated fast transfer of cells. At the molecular level, the hydrogel affected nine wound-healing genes (IL6, IL10, MMP2, CTSK, FGF7, GM-CSF, TGFB1, COX2, and F3). The findings indicate that the BNC/AA hydrogel is a potential biomaterial that can be employed as a wound-dressing material to incorporate HDFs for the acceleration of wound healing.
    Matched MeSH terms: Cell Movement
  14. Wu YS, Chung I, Wong WF, Masamune A, Sim MS, Looi CY
    Biochim Biophys Acta Gen Subj, 2017 Feb;1861(2):296-306.
    PMID: 27750041 DOI: 10.1016/j.bbagen.2016.10.006
    BACKGROUND: We previously showed that pancreatic stellate cells (PSC) secreted interleukin (IL)-6 and promoted pancreatic ductal adenocarcinoma (PDAC) cell proliferation via nuclear factor erythroid 2 (Nrf2)-mediated metabolic reprogramming. Epithelial-mesenchymal transition (EMT) is a key process for the metastatic cascade. To study the mechanism of PDAC progression to metastasis, we investigated the role of PSC-secreted IL-6 in activating EMT and the involvement of Nrf2 in this process.

    METHODS: Gene expression of IL-6 and IL-6Rα in PSC and PDAC cells was measured with qRT-PCR. The role of PSC-secreted IL-6, JAK/Stat3 signaling, and Nrf2 mediation on EMT-related genes expression was also examined with qRT-PCR. EMT phenotypes were assessed with morphological change, wound healing, migration, and invasion.

    RESULTS: PSC expressed higher mRNA levels of IL-6 but lower IL-6Rα compared to PDAC cells. Neutralizing IL-6 in PSC secretion reduced mesenchymal-like morphology, migration and invasion capacity, and mesenchymal-like gene expression of N-cadherin, vimentin, fibronectin, collagen I, Sip1, Snail, Slug, and Twist2. Inhibition of JAK/Stat3 signaling induced by IL-6 repressed EMT and Nrf2 gene expression. Induction of Nrf2 activity by tert-butylhydroquinone (tBHQ) increased both EMT phenotypes and gene expression (N-cadherin, fibronectin, Twist2, Snail, and Slug) repressed by IL-6 neutralizing antibody. Simultaneous inhibition of Nrf2 expression with siRNA and Stat3 signaling further repressed EMT gene expression, indicating that Stat3/Nrf2 pathway mediates EMT induced by IL-6.

    CONCLUSIONS: IL-6 from PSC promotes EMT in PDAC cells via Stat3/Nrf2 pathway.

    GENERAL SIGNIFICANCE: Targeting Stat3/Nrf2 pathway activated by PSC-secreted IL-6 may provide a novel therapeutic option to improve the prognosis of PDAC.

    Matched MeSH terms: Cell Movement/physiology
  15. Wu X, Zhang S, Lai J, Lu H, Sun Y, Guan W
    Exp Clin Transplant, 2020 12;18(7):823-831.
    PMID: 33349209 DOI: 10.6002/ect.2020.0108
    OBJECTIVES: Liver fibrosis is inevitable in the healing process of liver injury. Liver fibrosis will develop into liver cirrhosis unless the damaging factors are removed. This study investigated the potential therapy of Bama pig adipose-derived mesenchymal stem cells in a carbon tetrachloride-induced liver fibrosis Institute of Cancer Research strain mice model.

    MATERIALS AND METHODS: Adipose-derived mesenchymal stem cells were injected intravenously into the tails of mice of the Institute of Cancer Research strain that had been treated with carbon tetrachloride for 4 weeks. Survival rate, migration, and proliferation of adipose-derived mesenchymal stem cells in the liver were observed by histochemistry, fluorescent labeling, and serological detection.

    RESULTS: At 1, 2, and 3 weeks after adipose-derived mesenchymal stem cell injection, liver fibrosis was significantly ameliorated. The injected adipose-derived mesenchymal stem cells had hepatic differentiation potential in vivo, and the survival rate of adipose-derived mesenchymal stem cells declined over time.

    CONCLUSIONS: The findings in this study confirmed that adipose-derived mesenchymal stem cells derived from the Bama pig can be used in the treatment of liver fibrosis, and the grafted adipose-derived mesenchy-mal stem cells can migrate, survive, and differentiate into hepatic cells in vivo.

    Matched MeSH terms: Cell Movement
  16. Wu H, Sun Y, Wong WL, Cui J, Li J, You X, et al.
    Eur J Med Chem, 2020 Mar 01;189:112042.
    PMID: 31958737 DOI: 10.1016/j.ejmech.2020.112042
    Transforming growth factor-β (TGF-β) plays an important role in regulating epithelial to mesenchymal transition (EMT) and the TGF-β signaling pathway is a potential target for therapeutic intervention in the development of many diseases, such as fibrosis and cancer. Most currently available inhibitors of TGF-β signaling function as TGF-β receptor I (TβR-I) kinase inhibitors, however, such kinase inhibitors often lack specificity. In the present study, we targeted the extracellular protein binding domain of the TGF-β receptor II (TβR-II) to interfere with the protein-protein interactions (PPIs) between TGF-β and its receptors. One compound, CJJ300, inhibited TGF-β signaling by disrupting the formation of the TGF-β-TβR-I-TβR-II signaling complex. Treatment of A549 cells with CJJ300 resulted in the inhibition of downstream signaling events such as the phosphorylation of key factors along the TGF-β pathway and the induction of EMT markers. Concomitant with these effects, CJJ300 significantly inhibited cell migration. The present study describes for the first time a designed molecule that can regulate TGF-β-induced signaling and EMT by interfering with the PPIs required for the formation of the TGF-β signaling complex. Therefore, CJJ300 can be an important lead compound with which to study TGF-β signaling and to design more potent TGF-β signaling antagonists.
    Matched MeSH terms: Cell Movement/drug effects
  17. Weng-Yew W, Selvaduray KR, Ming CH, Nesaretnam K
    Nutr Cancer, 2009;61(3):367-73.
    PMID: 19373610 DOI: 10.1080/01635580802582736
    Previous studies have revealed that tocotrienol-rich fractions (TRF) from palm oil inhibit the proliferation and the growth of solid tumors. The anticancer activity of TRF is said to be caused by several mechanisms, one of which is antiangiogenesis. In this study, we looked at the antiangiogenic effects of TRF. In vitro investigations of the antiangiogenic activities of TRF, delta-tocotrienol (deltaT3), and alpha-tocopherol (alphaToc) were carried out in human umbilical vein endothelial cells (HUVEC). TRF and deltaT3 significantly inhibited cell proliferation from 4 microg/ml onward (P < 0.05). Cell migration was inhibited the most by deltaT3 at 12 microg/ml. Anti-angiogenic properties of TRF were carried out further in vivo using the chick embryo chorioallantoic membrane (CAM) assay and BALB/c mice model. TRF at 200 microg/ml reduced the vascular network on CAM. TRF treatment of 1 mg/mouse significantly reduced 4T1 tumor volume in BALB/c mice. TRF significantly reduced serum vascular endothelial growth factor (VEGF) level in BALB/c mice. In conclusion, this study showed that palm tocotrienols exhibit anti-angiogenic properties that may assist in tumor regression.
    Matched MeSH terms: Cell Movement/drug effects
  18. Wen Jun L, Pit Foong C, Abd Hamid R
    Biomed Pharmacother, 2019 Oct;118:109221.
    PMID: 31545225 DOI: 10.1016/j.biopha.2019.109221
    Ardisia crispa Thunb. A. DC. (Primulaceae) has been used extensively as folk-lore medicine in South East Asia including China and Japan to treat various inflammatory related diseases. Ardisia crispa root hexane fraction (ACRH) has been thoroughly studied by our group and it has been shown to exhibit anti-inflammatory, anti-hyperalgesic, anti-arthritic, anti-ulcer, chemoprevention and suppression against inflammation-induced angiogenesis in various animal model. Nevertheless, its effect against human endothelial cells in vitro has not been reported yet. Hence, the aim of the study is to investigate the potential antiangiogenic property of ACRH in human umbilical vein endothelial cells (HUVECs) and zebrafish embryo model. ACRH was separated from the crude ethanolic extract of the plant's root in prior to experimental studies. MTT assay revealed that ACRH exerted a concentration-dependent antiproliferative effect on HUVEC with the IC50 of 2.49 ± 0.04 μg/mL. At higher concentration (10 μg/mL), apoptosis was induced without affecting the cell cycle distribution. Angiogenic properties including migration, invasion and differentiation of HUVECs, evaluated via wound healing, trans-well invasion and tube formation assay respectively, were significantly suppressed by ACRH in a concentration-dependent manner. Noteworthily, significant antiangiogenic effects were observed even at the lowest concentration used (0.1 μg/mL). Expression of proMMP-2, vascular endothelial growth factor (VEGF)-C, VEGF-D, Angiopoietin-2, fibroblast growth factor (FGF)-1, FGF-2, Follistatin, and hepatocyte growth factor (HGF) were significantly reduced in various degrees by ACRH. The ISV formation in zebrafish embryo was significantly suppressed by ACRH at the concentration of 5 μg/mL. These findings revealed the potential of ACRH as antiangiogenic agent by suppressing multiple proangiogenic proteins. Thus, it can be further verified via the transcription of these proteins from their respective DNA, in elucidating their exact pathways.
    Matched MeSH terms: Cell Movement
  19. Wang Y, Gao F, Ooi KK, Tai Q, Zhang J, Zhu Y, et al.
    J Environ Pathol Toxicol Oncol, 2019;38(4):297-311.
    PMID: 32464002 DOI: 10.1615/JEnvironPatholToxicolOncol.2019030482
    Early development of liver cancer is usually asymptomatic. The overall survival rate of patients is relatively low due to late diagnosis, despite hepatocellular carcinoma being a common diagnosis. The high mortality rate of liver cancer was due to its overactivated cellular mitochondrial activities, namely thioredoxin reductase enzymatic activities and its downstream activation of nuclear factor kappa B (NF-κB) signaling pathways for cancer cell migration. Our previous study on this candidate compound on A2780 ovarian cancer cells and MCF-7 breast cancer cells, through modulation of cell-cycle checkpoints and respective targeted apoptosis pathways. The current study used HepG2 hepatocellular carcinoma cell lines as a representative in vitro liver cancer cell model. The half maximal inhibitory concentration (IC50) value was obtained via incubation of PTZ compound for 24 h yield of 37.03 μM, whereby it was three-fold more potent than the standard control tested, cisplatin (109.23 μM). The subsequent application of IC50 dosage of PTZ onto HepG2 cells illustrated a growth-static effect via activation of S-phase cell-cycle checkpoints, immediately followed by regulation of apoptosis. Increased cellular concentration of reactive oxygen species eventually generated oxidative damages on mitochondria, hence resulting in the release of cytochrome c protein and suppression of TrxR enzymatic activity, in conjunction with the suppression on invasion of cancer cells via Matrigel invasion chamber. In conclusion, PTZ was hypothesized to act effectively on mitochondria of HepG2 cells; hence it should proceed into detailed drug targeting mechanism research.
    Matched MeSH terms: Cell Movement/drug effects
  20. Wang S, Yang J, Kuang X, Li H, Du H, Wu Y, et al.
    J Ethnopharmacol, 2024 May 23;326:117913.
    PMID: 38360380 DOI: 10.1016/j.jep.2024.117913
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga Linn. is an aromatic medicinal herb with extensively applied in India, China, Malaysia and other South Asia countries for thousands of years. It has been mentioned to treat abdominal tumors. Ethyl cinnamate (EC), one of the main chemical constituents of the rhizome of K. galanga, exhibited nematocidal, sedative and vasorelaxant activities. However, its anti-angiogenic activity, and anti-tumor effect have not been investigated.

    AIM OF THE STUDY: To investigate the anti-angiogenic mechanism of EC and its anti-tumor effect by suppressing angiogenesis.

    MATERIALS AND METHODS: The in vitro anti-angiogenic effect was evaluated using HUVECs model induced by VEGF and zebrafish model in vivo. The influence of the EC on phosphorylation of VEGFR2 and its downstream signaling pathways were evaluated by western blotting assay. Molecule docking technology was conducted to explore the interaction between EC and VEGFR2. SPR assay was used for detecting the binding affinity between EC and VEGFR2. To further investigate the molecular mechanism of EC on anti-angiogenesis, VEGFR2 knockdown in HUVECs and examined the influence of the EC. Anti-tumor activity of EC was evaluated using colony formation assay and apoptosis assay. The inhibitory effect of EC on tumor growth was explored using HT29 colon cancer xenograft model.

    RESULTS: EC obviously inhibited proliferation, migration, invasion and tube formation of VEGF-induced HUVECs. EC also induced apoptosis of HUVECs. Moreover, it inhibited the development of vessel formation in zebrafish. Further investigations demonstrated that EC could suppress the phosphorylation of VEGFR2, and its downstream signaling pathways were altered in VEGF-induced HUVECs. EC formed a hydrogen bond to bind with the ATP binding site of the VEGFR2, and EC-VEGFR2 interaction was shown in SPR assay. The suppressive effect of EC on angiogenesis was abrogated after VEGFR2 knockdown in HUVECs. EC inhibited the colon cancer cells colony formation and induced apoptosis. In addition, EC suppressed tumor growth in colon cancer xenograft model, and no detectable hepatotoxicity and nephrotoxicity. In addition, it inhibited the phosphorylation of VEGFR2, and its downstream signal pathways in tumor.

    CONCLUSIONS: EC could inhibit tumor growth in colon cancer by suppressing angiogenesis via VEGFR2 signaling pathway, and suggested EC as a promising candidate for colon cancer treatment.

    Matched MeSH terms: Cell Movement
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links