Displaying publications 1 - 20 of 677 in total

Abstract:
Sort:
  1. Hani H, Ibrahim TA, Othman AM, Lila MA, bt Allaudin ZN
    Xenotransplantation, 2010 12 17;17(6):469-80.
    PMID: 21158948 DOI: 10.1111/j.1399-3089.2010.00616.x
    BACKGROUND: Insufficient availability of human donors makes the search for alternative source of islet cells mandatory for future developments in pancreatic transplantation. The present study investigates the potential of caprine as an alternative source of pancreatic islets. The objectives of the study were to optimize techniques for caprine islet isolation and purification for culture establishment, and to subsequently assess their viable and functional potential.

    METHODS: Caprine pancreatic tissues were collected from a local slaughterhouse and prior transported to the laboratory by maintaining the cold chain. Islets were obtained by a collagenase-based digestion and optimized isolation technique. Islet cell purity and viability were determined by dithizone and trypan blue staining, respectively. Islet clusters of different sizes were positively identified by staining methods and demonstrated 90% viability in the culture system. Following static incubation, an in vitro insulin secretion assay was carried out and analyzed by ELISA.

    RESULTS: The islets remained satisfactorily viable for 5 days in the culture system following regular media changes. The current study has successfully optimized the isolation, purification and culture maintenance of caprine islets.

    CONCLUSION: The successful yield, viability and functionality of islets isolated from the optimized protocol provide promising potential as an alternative source of islets for diabetes and transplantation researches.

    Matched MeSH terms: Cells, Cultured
  2. Azmi MF, Ghafar NA, Hamzah JC, Luan NS, Hui CK
    Wounds, 2017 Nov;29(11):327-332.
    PMID: 28678731
    OBJECTIVE: The aim of this study is to investigate the potential bene ts of Gelam honey (GH) in promoting proliferation of ex vivo cor- neal epithelial cells (CECs) and its effects on the phenotypical features.

    MATERIALS AND METHODS: Corneal epithelial cells were isolated from the corneas of rabbits (n = 6). The optimal dose of GH for CEC proliferation in both basal medium (BM) and cornea medium (CM) was determined via MTT (3-[4, 5-dimethyl thiazolyl-2]-2, 5-diphenyl tetrazolium bro- mide) assay. Morphology, gene and protein expressions, and cell cycle analysis of CECs were evaluated via phase contrast microscopy, real- time polymerase chain reaction, immunocytochemistry, and ow cytom- etry, respectively.

    RESULTS: Corneal epithelial cells cultured in 0.0015% GH-supplemented media (BM + 0.0015% GH; CM + 0.0015% GH) demonstrated optimal proliferative capacity with normal polygonal- shaped morphology. Gelam honey potentiates cytokeratin 3 (CK3) gene expression in accordance with the cytoplasmic CK3 protein expression while retaining normal cell cycle of CECs.

    CONCLUSION: Culture media treated with 0.0015% GH increased CEC proliferation while preserving its phenotypical features. This study demonstrated the potential devel- opment of GH-based topical treatment for super cial corneal injury.

    Matched MeSH terms: Cells, Cultured
  3. Nasir NAM, Paus R, Ansell DM
    Wound Repair Regen, 2019 01;27(1):126-133.
    PMID: 30575205 DOI: 10.1111/wrr.12688
    Ex vivo wounded human skin organ culture is an invaluable tool for translationally relevant preclinical wound healing research. However, studies incorporating this system are still underutilized within the field because of the low throughput of histological analysis required for downstream assessment. In this study, we use intravital fluorescent dye to lineage trace epidermal cells, demonstrating that wound re-epithelialization of human ex vivo wounds occurs consistent with an extending shield mechanism of collective migration. Moreover, we also report a relatively simple method to investigate global epithelial closure of explants in culture using daily fluorescent dye treatment and en face imaging. This study is the first to quantify healing of ex vivo wounds in a longitudinal manner, providing global assessments for re-epithelialization and tissue contraction. We show that this approach can identify alterations to healing with a known healing promoter. This methodological study highlights the utility of human ex vivo wounds in enhancing our understanding of mechanisms of human skin repair and in evaluating novel therapies to improve healing outcome.
    Matched MeSH terms: Cells, Cultured/pathology*
  4. Wernsdorfer WH, Ismail S, Chan KL, Congpuong K, Wernsdorfer G
    Wien Klin Wochenschr, 2009 Oct;121 Suppl 3:23-6.
    PMID: 19915812 DOI: 10.1007/s00508-009-1230-7
    The habitats of Eurycoma longifolia Jack, a slender tree, are jungles in Malaysia and Indonesia. It belongs to the family Simaroubaceae and is a source of quassinoids with anabolic, antimalarial and cytostatic activity. In this study, conducted during 2008 in Mae Sot, Thailand, a standardized extract of E. longifolia containing three major quassinoids, eurycomanone (1), 13,21-dihydroeurycomanone (2) and 13alpha(21)-epoxyeurycomanone (3) was evaluated for antiplasmodial activity against Plasmodium falciparum and its activity has been compared with that of artemisinin, using 38 fresh parasite isolates and assessment of inhibition of schizont maturation. The IC(50), IC(90) and IC(99) values for artemisinin were 4.30, 45.48 and 310.97 microg/l, and those for the root extract from E. longifolia 14.72, 139.65 and 874.15 microg/l respectively. The GMCOC for artemisinin was 337.81 mug/l, and for the plant extract it was 807.41 microg/l. The log-concentration probit regressions were parallel. The inhibitory activity of the E. longifolia extract was higher than that expected from the three quassinoids isolated from the plant, suggesting synergism between the quassinoids or the presence of other unidentified compounds.
    Matched MeSH terms: Cells, Cultured
  5. Vilcek S, Stadejek T, Ballagi-Pordány A, Lowings JP, Paton DJ, Belák S
    Virus Res, 1996 Aug;43(2):137-47.
    PMID: 8864203
    The genetic variability of classical swine fever virus was studied by comparative nucleotide sequence analysis of 76 virus isolates, collected during a half century from three continents. Parts of the E2 (gp55) and the polymerase gene coding regions of the viral genome were amplified by RT-PCR and DNA fragments of 254 and 207 bp, respectively, were sequenced. The comparative sequence analysis of the E2 region revealed two main phylogenetic groups of CSFV, indicating that the virus apparently evolved from two ancestor nodes. Group I (represented by Brescia strain) consisted of old and recent American and Asian viruses, as well as old English isolates from the 1950s. This group was subdivided into three subgroups, termed I.A-I.C. Group II (represented by Alfort strain) consisted of relatively recent isolates from Europe, together with strain Osaka, which was isolated in Japan from a pig of European origin. Based on genetic distances the group was divided into subgroups II.A and II.B. Malaysian isolates were branched into both groups, indicating multiple origins for contemporaneous outbreaks in that country. All ten vaccine strains tested were branched in group I, implying a common ancestor. The Japanese Kanagawa strain, isolated in 1974, and the British Congenital Tremor strain from 1964 were the most distinct variants of CSFV in our collection. The comparison of the nucleotide sequences of the polymerase coding region of 32 European strains distinguished subgroups II.A and II.B which were similar to the corresponding subgroups of the E2 phylogenetic tree. Thus, the results revealed that the E2 region and the polymerase coding regions seem to be appropriate for the grouping of CSFV isolates from all over the world, distinguishing two major groups of the virus. The reliability of these regions for phylogenetic analysis is indicated by the similarity of the results obtained from the two separate parts of the CSFV genome.
    Matched MeSH terms: Cells, Cultured
  6. Yap MS, Tang YQ, Yeo Y, Lim WL, Lim LW, Tan KO, et al.
    Virol J, 2016 Jan 06;13:5.
    PMID: 26738773 DOI: 10.1186/s12985-015-0454-6
    The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials.
    Matched MeSH terms: Cells, Cultured
  7. Harun MS, Kuan CO, Selvarajah GT, Wei TS, Arshad SS, Hair Bejo M, et al.
    Virol J, 2013;10:329.
    PMID: 24209771 DOI: 10.1186/1743-422X-10-329
    BACKGROUND:
    Feline Infectious Peritonitis (FIP) is a lethal systemic disease, caused by the FIP Virus (FIPV); a virulent mutant of Feline Enteric Coronavirus (FECV). Currently, the viruses virulence determinants and host gene expressions during FIPV infection are not fully understood.

    METHODS:
    RNA sequencing of Crandell Rees Feline Kidney (CRFK) cells, infected with FIPV strain 79-1146 at 3 hours post infection (h.p.i), were sequenced using the Illumina next generation sequencing approach. Bioinformatic's analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench mapped both control and infected cell reads to 18899 genes out of 19046 annotated genes. Kal's Z test statistical analysis was used to analyse the differentially expressed genes from the infected CRFK cells. Real time RT-qPCR was developed for further transcriptional profiling of three genes (PD-1, PD-L1 and A3H) in infected CRFK cells and Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diseased cats.

    RESULTS:
    Based on Kal's Z-test, with False Discovery Rate (FDR) <0.05 and >1.99 fold change on gene expressions, a total of 61 genes were differentially expressed by both samples, where 44 genes were up-regulated and the remainder were down-regulated. Most genes were closely clustered together, suggesting a homogeneous expression. The majority of the genes that were significantly regulated, were those associated with monocytes-macrophage and Th1 cell functions, and the regulation of apoptosis. Real time RT-qPCR developed focusing on 2 up-regulated genes (PD-L1 and A3H) together with an apoptosis associated gene PD-1 expressions in FIPV infected CRFK cells and in PBMCs from healthy and FIP diagnosed cats produced concordant results with transcriptome data.

    CONCLUSION:
    The possible roles of these genes, and their importance in feline coronaviruses infection, are discussed.
    Matched MeSH terms: Cells, Cultured
  8. Chong YL, Kim O, Poss M
    Virology, 2014 Aug;462-463:309-17.
    PMID: 25010480 DOI: 10.1016/j.virol.2014.06.007
    Genotype VI-paramyxovirus (GVI-PMV1) is a major cause of epidemic Newcastle-like disease in Columbiformes. This genotype of avian paramyxovirus type 1 has diversified rapidly since its introduction into the US in 1982 resulting in two extant lineages, which have different population growth properties. Although some GVI-PMV1s replicate poorly in chickens, it is possible that variants with different replicative or pathogenic potential in chickens exist among the genetically-diverse GVI-PMV1s strains. To determine if variants of Columbiform GVI-PMV1 with different phylogenetic affiliations have distinct phenotypic properties in chickens, we investigated the replicative properties of 10 naturally circulating pigeon-derived isolates representing four subgroups of GVI-PMV1 in primary chicken lung epithelial cells and in chicken embryos. Our data demonstrate that GVI-PMV1 variants have different infection phenotypes in their chicken source host and that properties reflect subgroup affiliation. These subgroup replicative properties are consistent with observed dynamics of viral population growth.
    Matched MeSH terms: Cells, Cultured
  9. Raihan R, Akbar SMF, Al Mahtab M, Khan MSI, Tabassum S, Tee KK, et al.
    Viral Immunol, 2020 09;33(7):530-534.
    PMID: 32513066 DOI: 10.1089/vim.2019.0198
    Hepatitis B virus (HBV) is a noncytopathic virus and billions of HBV-infected patients live uneventful lives and do not suffer from notable liver damage. However, HBV also causes progressive liver diseases characterized by hepatic inflammation, hepatic fibrosis, and liver cancer in millions of HBV-infected patients. The goal of this study was to evaluate the role of mutant HBV in HBV pathogenesis. In a cohort of 360 chronic HBV-infected patients, mutations at T1762/A1764 of HBV genome were detected in most of the patients with HBV-induced liver cirrhosis and hepatocellular carcinoma. To explore if mutations at T1762/A1764 of HBV genome has any role in progressive liver disease, peripheral blood mononuclear cells (PBMCs) and antigen-presenting dendritic cells (DCs) were isolated from five chronic hepatitis B (CHB) patients with mutations at T1762/A1764 and five comparable patients of CHB without mutations at T1762/A1764. DCs were pulsed with hepatitis B surface antigen (HBsAg). The levels of cytokines produced by PBMCs and DCs as well as nitrite production by DCs were evaluated. Significantly higher levels of interleukin-12, tumor necrosis factor-alpha, interferon-gamma, and transforming growth factor-beta were detected in cultures of PBMCs, DCs, and HBsAg-pulsed DCs from CHB patients with mutations at T1762/A1764 compared with those without mutations (p 
    Matched MeSH terms: Cells, Cultured
  10. Fong LY, Ng CT, Yong YK, Hakim MN, Ahmad Z
    Vascul. Pharmacol., 2019 06;117:15-26.
    PMID: 30114509 DOI: 10.1016/j.vph.2018.08.005
    Endothelial hyperpermeability represents an initiating step in early atherosclerosis and it often occurs as a result of endothelial barrier dysfunction. Asiatic acid, a major triterpene isolated from Centella asiatica (L.) Urban, has previously been demonstrated to protect against tumor necrosis factor (TNF)-α-induced endothelial barrier dysfunction. The present study aimed to investigate the mechanisms underlying the barrier protective effect of asiatic acid in human aortic endothelial cells (HAECs). The localization of F-actin, diphosphorylated myosin light chain (diphospho-MLC), adherens junctions (AJs) and tight junctions (TJs) was studied using immunocytochemistry techniques and confocal microscopy. Their total protein expressions were examined using western blot analysis. The endothelial permeability was assessed using In Vitro Vascular Permeability Assay kits. In addition, intracellular redistribution of the junctional proteins was evaluated using subcellular fractionation kits. We show that asiatic acid stabilized F-actin and diphospho-MLC at the cell periphery and prevented their rearrangement stimulated by TNF-α. However, asiatic acid failed to attenuate cytochalasin D-induced increased permeability. Besides, asiatic acid abrogated TNF-α-induced structural reorganization of vascular endothelial (VE)-cadherin and β-catenin by preserving their reticulum structures at cell-cell contact areas. In addition, asiatic acid also inhibited TNF-α-induced redistribution of occludin and zona occludens (ZO)-1 in different subcellular fractions. In conclusion, the barrier-stabilizing effect of asiatic acid might be associated with preservation of AJs and prevention of TJ redistribution caused by TNF-α. This study provides evidence to support the potential use of asiatic acid in the prevention of early atherosclerosis, which is initiated by endothelial barrier dysfunction.
    Matched MeSH terms: Cells, Cultured
  11. Al-Jadi AM, Kanyan Enchang F, Mohd Yusoff K
    Turk J Med Sci, 2014;44(5):733-40.
    PMID: 25539538
    BACKGROUND/AIM: To examine, for the first time, the effect of a selected Malaysian honey and its major components on the proliferation of cultured fibroblasts.

    MATERIALS AND METHODS: Honey and some of its components, which include the sugars, the proteins, the hydrogen peroxide produced, and the phenolics, were exposed to cultured fibroblasts. The MTT colorimetric assay was used to assess cell viability and proliferation.

    RESULTS: The stimulatory effect of honey on fibroblast proliferation was observed to be time- and dose-dependent. The continuous production of hydrogen peroxide by the honey-glucose oxidase system also acts to stimulate cell proliferation in a time- and dose-dependent manner. The presence of phenolics with antioxidant properties, on the other hand, renders protection to the cells against the toxic effect of hydrogen peroxide. However, the presence of a growth factor-like substance in honey could not be ascertained.

    CONCLUSION: For the first time, honey and its major components were shown to exert stimulatory effects on cultured fibroblasts. Honey is therefore potentially useful in medicinal practices.

    Matched MeSH terms: Cells, Cultured
  12. Chieng CK, Say YH
    Tumour Biol., 2015 Sep;36(10):8107-20.
    PMID: 25983001 DOI: 10.1007/s13277-015-3530-z
    As the cellular prion protein (PrP(C)) has been implicated in carcinogenesis, we aimed to investigate the effects of cancer cell-specific PrP(C) overexpression from the invasion, metastasis, and apoptosis aspects, by performing cell motility assays, cell proliferation assays under anchorage-dependent and anchorage-independent conditions, and apoptosis evasion when subjected to multiple anti-cancer drugs. Overexpression of PrP(C) in LS 174T was achieved by stable transfection. PrP(C) overexpression was shown to increase cell proliferation in anchorage-dependent and anchorage-independent manners, as shown by more viable cells in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, more colonies formed in soft agar assay and increased resistance to anoikis in poly-2-hydroxyethyl methacrylate-coated surface. PrP(C) overexpression also increased cell motility and invasiveness of LS 174T. Cell adhesion to extracellular matrix using collagen- and fibronectin-coated surfaces revealed increased cell attachment in LS 174T cells overexpressing PrP(C). Analysis of apoptotic and necrotic cells by propidium iodide/annexin V-fluorescein isothiocyanate microscopy and 7-amino-actinomycin D/annexin V-phycoerythrin flow cytometry revealed that PrP(C) overexpression attenuated doxorubicin-induced apoptosis. Human apoptosis antibody array with 35 apoptosis-related proteins revealed that three inhibitor of apoptosis proteins (IAPs)-survivin, X-linked inhibitor of apoptosis protein (XIAP), and cellular inhibitor of apoptosis protein-1 (cIAP-1)-were upregulated in LS 174T cells overexpressing PrP(C) in doxorubicin-induced apoptosis. In conclusion, the overexpression of PrP(C) could enhance the invasiveness and survival of LS 174T colorectal cancer cells, indicating that PrP(C) plays a role in colorectal cancer biology.
    Matched MeSH terms: Tumor Cells, Cultured
  13. Goh KW, Say YH
    Tumour Biol., 2015 Sep;36(10):7947-60.
    PMID: 25956278 DOI: 10.1007/s13277-015-3455-6
    γ-synuclein, a neuronal protein of the synuclein family, is involved in carcinogenesis. To investigate its role in colorectal cancer carcinogenesis, we overexpressed γ-synuclein in LS 174T colon adenocarcinoma cell line (termed LS 174T-γsyn). When compared with untransfected/mock transfectants, LS 174T-γsyn had higher mobility in scratch wound assay, tend to scatter more in cell-scattering assay, and had enhanced lamellipodia and filopodia formation in cell-spreading assay. Enhanced adhesion of LS 174T-γsyn to fibronectin and collagen and significantly higher proliferation rate showed that γ-synuclein was able to increase extracellular matrix interaction and promoted proliferation of LS 174T. Higher invasiveness of LS 174T-γsyn was evidenced by enhanced invasion to the bottom of the basement membrane in Boyden chamber assay. However, LS 174T-γsyn were significantly more vulnerable to doxorubicin, vincristine and hydrogen peroxide insults, via apoptotic cell death. LS 174T-γsyn also had reduced anchorage-independent growth as shown by reduced colony formation and reduced anoikis resistance. We found that overexpression of γ-synuclein confers both pro-invasive and doxorubicin-mediated pro-apoptotic properties to LS 174T, where the former was mediated through enhanced cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation, while the latter involved hepatocyte growth factor (HGF) downregulation and subsequent downstream signalling pathways possibly involving extracellular signal-regulated kinases (ERK)1/2, p38α, c-Jun N-terminal kinase (JNK) pan and Signal Transducers and Activators of Transcription (STATs). This unexpected contrasting finding as compared to other similar studies on colon cancer cell lines might be correlated with the degree of tumour advancement from which the cell lines were derived from.
    Matched MeSH terms: Tumor Cells, Cultured
  14. Mohd Ridzuan MA, Noor Rain A, Zhari I, Zakiah I
    Trop Biomed, 2005 Dec;22(2):155-63.
    PMID: 16883282 MyJurnal
    In the present study we examined the effect of E. longifolia methanol extract (TA164) on the GSH levels of P. falciparum infected erythrocytes and uninfected erythrocytes. Our study on parasite growth shows the IC50 and IC75 values of TA164 to be 0.17 g/ml and 6 g/ml respectively while for BSO was 25.5 g/ml and 46.5 g/ml respectively. About 95% to 100% growth inhibition of P. falciparum infected erythrocyte was observed when treated with TA164 and BSO at 16 g/ml and 64 g/ml respectively. The study on GSH contents indicated that non-infected erythrocytes treated with 6 g/ml (IC75 values) of TA164 at 24 hours incubation showed less GSH content as compared to non-treated erythrocytes. A similar observation was seen on treated trophozoite infected erythrocyte (10% parasitemia) when treated with 6 g/ml at 3 hours incubation. Analysis of the GSH contents of parasite compartments treated with TA164 at the same concentration (6 g/ml) for 3 hours incubation indicated a reduction of GSH contents. At the same concentration, TA164 did not affect the GSH contents of enriched trophozoite infected erythrocytes (60-70% parasitemia). TA164 did affect the GSH content of non-infected erythrocyte at 24 hours (accept IC50 value) as well as the parasite compartments (trophozoite infected erythrocyte and parasite itself) but fails to affect the GSH content of enriched trophozoite infected erythrocyte.
    Matched MeSH terms: Cells, Cultured
  15. Ellan K, Thayan R, Phan CW, Sabaratnam V
    Trop Biomed, 2019 Dec 01;36(4):1087-1098.
    PMID: 33597478
    Pathogenesis of dengue fever has been associated with the activation of the cytokine cascade that triggered inflammatory responses. The inflammatory reactions in dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS) are the main cause of haemorrhagic manifestations, coagulation disorders, vascular permeability, hypotension and shock which could exacerbate the condition of the disease. In an earlier study, extracts belonging to Lignosus rhinocerotis, Pleurotus giganteus, Hericium erinaceus, Schizophyllum commune and Ganoderma lucidium mushrooms were screened for antidengue virus activities. We found that hot aqueous extract (HAE) and aqueous soluble separated from ethanol extract (ASE) exhibited their potential to reduce dengue viral load which were observed in plaque reduction assay and real-time RT-PCR. In continuation of our previous findings, this study was initiated to further investigate the other aspect; the anti-inflammatory activities of HAE and ASE of L. rhinocerotis, P. giganteus, H. erinaceus, S. commune and G. lucidium on human monocytes infected with dengue virus-2 (DENV-2) New guinea C strain. Human monocytes infected with DENV-2 were treated with mushroom extracts for 48 hours. The cytokine profile coincides with dengue infection, i.e. IFN-γ, TNF-α, IL-1β, IL-6, IL-8, and IL-10 were measured by BD OptEIATM Elisa Kit. The expression of these cytokines was significantly elevated in untreated infected cells two days after infection. However, after treated with mushroom extracts prominent anti-inflammatory effect were detected towards IFN-γ, IL-10, TNF-α, IL-6, and IL-1β. The most significant anti-inflammatory effects were detected in HAE of G. lucidium, S. commune, P. giganteus and ASE of L. rhinocerotis and the effects were comparable with dexamethasone, the reference inhibitor. These results demonstrated that mushroom HAE or ASE could successfully have suppressed cytokine production in dengue-infected monocytes and has a great potential to develop an antiinflammatory agent from mushroom extract for the treatment of dengue infection.
    Matched MeSH terms: Cells, Cultured
  16. Ismail AA, Mahboob T, Samudi Raju C, Sekaran SD
    Trop Biomed, 2019 Dec 01;36(4):888-897.
    PMID: 33597462
    Zika virus (ZIKV) is a mosquito-borne Flaviviruses. ZIKV is known to cause birth defect in pregnant women, especially microcephaly in the fetus. Hence, more study is required to understand the infection of Zika virus towards human brain microvascular endothelial cells (MECs). In this study, brain MECs were infected with ZIKV at MOI of 1 and 5 in vitro. The changes in barrier function and membrane permeability of ZIKV-infected brain MECs were determined using electric cell-substrate impedance sensing (ECIS) system followed by gene expression of ZIKV-infected brain MECs at 24 hours post infection using one-color gene expression microarray. The ECIS results demonstrated that ZIKV infection enhances vascular leakage by increasing cell membrane permeability via alteration of brain MECs barrier function. This was further supported by high expression of proinflammatory cytokine genes (lnc-IL6-2, TNFAIP1 and TNFAIP6), adhesion molecules (CERCAM and ESAM) and growth factor (FIGF). Overall, findings of this study revealed that ZIKV infection could alter the barrier function of brain MECs by altering adhesion molecules and inflammatory response.
    Matched MeSH terms: Cells, Cultured
  17. Rohaina CM, Then KY, Ng AM, Wan Abdul Halim WH, Zahidin AZ, Saim A, et al.
    Transl Res, 2014 Mar;163(3):200-10.
    PMID: 24286920 DOI: 10.1016/j.trsl.2013.11.004
    The cornea can be damaged by a variety of clinical disorders or chemical, mechanical, and thermal injuries. The objectives of this study were to induce bone marrow mesenchymal stem cells (BMSCs) to corneal lineage, to form a tissue engineered corneal substitute (TEC) using BMSCs, and to treat corneal surface defects in a limbal stem cell deficiency model. BMSCs were induced to corneal lineage using limbal medium for 10 days. Induced BMSCs demonstrated upregulation of corneal stem cell markers; β1-integrin, C/EBPδ, ABCG2, and p63, increased protein expression of CK3 and p63 significantly compared with the uninduced ones. For TEC formation, passage 1 BMSCs were trypsinized and seeded on amniotic membrane in a transwell co-culture system and were grown in limbal medium. Limbal stem cell deficiency models were induced by alkaline injury, and the TEC was implanted for 8 weeks. Serial slit lamp evaluation revealed remarkable improvement in corneal regeneration in terms of corneal clarity and reduced vascularization. Histologic and optical coherence tomography analyses demonstrated comparable corneal thickness and achieved stratified epithelium with a compact stromal layer resembling that of normal cornea. CK3 and p63 were expressed in the newly regenerated cornea. In conclusion, BMSCs can be induced into corneal epithelial lineage, and these cells are viable for the formation of TEC, to be used for the reconstruction of the corneal surface in the limbal stem cell deficient model.
    Matched MeSH terms: Cells, Cultured
  18. Lim CK, Yaacob NS, Ismail Z, Halim AS
    Toxicol In Vitro, 2010 Apr;24(3):721-7.
    PMID: 20079826 DOI: 10.1016/j.tiv.2010.01.006
    Biopolymer chitosan (beta-1,4-d-glucosamine) comprises the copolymer mixture of N-acetylglucosamine and glucosamine. The natural biocompatibility and biodegradability of chitosan have recently highlighted its potential use for applications in wound management. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability, but it is unknown as to what degree. Hence, the biocompatibility of the chitosan porous skin regenerating templates (PSRT 82, 87 and 108) was determined using an in vitro toxicology model at the cellular and molecular level on primary normal human epidermal keratinocytes (pNHEK). Cytocompatibility was accessed by using a 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl tetrazolium bromide (MTT) assay from 24 to 72h. To assess the genotoxicity of the PSRTs, DNA damage to the pNHEK was evaluated by using the Comet assay following direct contact with the various PSRTs. Furthermore, the skin pro-inflammatory cytokines TNF-alpha and IL-8 were examined to evaluate the tendency of the PSRTs to provoke inflammatory responses. All PSRTs were found to be cytocompatible, but only PSRT 108 was capable of stimulating cell proliferation. While all of the PSRTs showed some DNA damage, PSRT 108 showed the least DNA damage followed by PSRT 87 and 82. PSRT 87 and 82 induced a higher secretion of TNF-alpha and IL-8 in the pNHEK cultures than did PSRT 108. Hence, based on our experiments, PSRT 108 is the most biocompatible wound dressing of the three tested.
    Matched MeSH terms: Cells, Cultured
  19. Al-Zubairi AS, Abdul AB, Syam MM
    Toxicol In Vitro, 2010 Apr;24(3):707-12.
    PMID: 20123012 DOI: 10.1016/j.tiv.2010.01.011
    The chromosomal aberrations (CA) assay and micronucleus (MN) test were employed to investigate the effect in vitro of zerumbone (ZER) on human chromosomes. ZER is a sesquiterpene compound isolated from the rhizomes of wild ginger, Zingiber zerumbet Smith. The rhizomes of the plant are employed as a traditional medicine for some ailments and as condiments. ZER has been shown to have anti-cancer and apoptosis-inducing properties against various human tumour cells. It has also been shown to be active in vivo against a number of induced malignancies. Studies on ZER genotoxicity in cultured human peripheral blood lymphocytes (PBL) have not been reported so far. Therefore, the present study was undertaken to investigate the ability of ZER to induce chromosomal aberrations and micronuclei formation in human lymphocytes in vitro. Human blood samples were obtained from four healthy, non-smoking males aged 25-35years. Cultures were exposed to the drug for 48h at four final concentrations: 10, 20, 40 and 80 microM. Mitomycin C (MMC) was used as a positive control. The results of chromosomal aberrations assay showed that ZER was not clastogenic, when compared to untreated control, meanwhile MN test results showed a dose-dependent increase in MN formation. The overall clastogenic effect of ZER on human PBL was statistically not significant. In conclusion, ZER is a cytotoxic but not a clastogenic substance in human PBL.
    Matched MeSH terms: Cells, Cultured
  20. Chow PW, Abdul Hamid Z, Chan KM, Inayat-Hussain SH, Rajab NF
    Toxicol Appl Pharmacol, 2015 Apr 1;284(1):8-15.
    PMID: 25645895 DOI: 10.1016/j.taap.2015.01.016
    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are sensitive targets for benzene-induced hematotoxicity and leukemogenesis. The impact of benzene exposure on the complex microenvironment of HSCs and HPCs remains elusive. This study aims to investigate the mechanism linking benzene exposure to targeting HSCs and HPCs using phenotypic and clonogenic analyses. Mouse bone marrow (BM) cells were exposed ex vivo to the benzene metabolite, 1,4-benzoquinone (1,4-BQ), for 24h. Expression of cellular surface antigens for HSC (Sca-1), myeloid (Gr-1, CD11b), and lymphoid (CD45, CD3e) populations were confirmed by flow cytometry. The clonogenicity of cells was studied using the colony-forming unit (CFU) assay for multilineage (CFU-GM and CFU-GEMM) and single-lineage (CFU-E, BFU-E, CFU-G, and CFU-M) progenitors. 1,4-BQ demonstrated concentration-dependent cytotoxicity in mouse BM cells. The percentage of apoptotic cells increased (p < 0.05) following 1,4-BQ exposure. Exposure to 1,4-BQ showed no significant effect on CD3e(+) cells but reduced the total counts of Sca-1(+), CD11b(+), Gr-1(+), and CD45(+) cells at 7 and 12 μM (p < 0.05). Furthermore, the CFU assay showed reduced (p < 0.05) clonogenicity in 1,4-BQ-treated cells. 1,4-BQ induced CFU-dependent cytotoxicity by significantly inhibiting colony growth for CFU-E, BFU-E, CFU-G, and CFU-M starting at a low concentration of exposure (5μM); whereas for the CFU-GM and CFU-GEMM, the inhibition of colony growth was remarkable only at 7 and 12μM of 1,4-BQ, respectively. Taken together, 1,4-BQ caused lineage-related cytotoxicity in mouse HPCs, demonstrating greater toxicity in single-lineage progenitors than in those of multi-lineage.
    Matched MeSH terms: Cells, Cultured
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links