Displaying publications 1 - 20 of 196 in total

Abstract:
Sort:
  1. de Wit E, Feldmann F, Cronin J, Goldin K, Mercado-Hernandez R, Williamson BN, et al.
    EBioMedicine, 2023 Jan;87:104405.
    PMID: 36508878 DOI: 10.1016/j.ebiom.2022.104405
    BACKGROUND: Nipah virus (NiV) causes recurrent outbreaks of lethal respiratory and neurological disease in Southeast Asia. The World Health Organization considers the development of an effective vaccine against NiV a priority.

    METHODS: We produced two NiV vaccine candidates using the licensed VSV-EBOV vaccine as a backbone and tested its efficacy against lethal homologous and heterologous NiV challenge with Nipah virus Bangladesh and Nipah virus Malaysia, respectively, in the African green monkey model.

    FINDINGS: The VSV-EBOV vaccine expressing NiV glycoprotein G (VSV-NiVG) induced high neutralising antibody titers and afforded complete protection from homologous and heterologous challenge. The VSV-EBOV vaccine expressing NiV fusion protein F (VSV-NiVF) induced a lower humoral response and afforded complete homologous protection, but only partial heterologous protection. Both vaccines reduced virus shedding from the upper respiratory tract, and virus replication in the lungs and central nervous system. None of the protected animals vaccinated with VSV-NiVG or VSV-NiVF showed histological lesions in the CNS, but one VSV-NiVF-vaccinated animal that was not protected developed severe meningoencephalitis.

    INTERPRETATION: The VSV-NiVG vaccine offers broad protection against NiV disease.

    FUNDING: This study was supported by the Intramural Research Program, NIAID, NIH.

    Matched MeSH terms: Cercopithecus aethiops
  2. Mire CE, Geisbert JB, Agans KN, Versteeg KM, Deer DJ, Satterfield BA, et al.
    Emerg Infect Dis, 2019 Jun;25(6):1144-1152.
    PMID: 31107231 DOI: 10.3201/eid2506.181620
    Nipah virus (NiV) is a zoonotic pathogen that causes high case-fatality rates (CFRs) in humans. Two NiV strains have caused outbreaks: the Malaysia strain (NiVM), discovered in 1998-1999 in Malaysia and Singapore (≈40% CFR); and the Bangladesh strain (NiVB), discovered in Bangladesh and India in 2001 (≈80% CFR). Recently, NiVB in African green monkeys resulted in a more severe and lethal disease than NiVM. No NiV vaccines or treatments are licensed for human use. We assessed replication-restricted single-injection recombinant vesicular stomatitis vaccine NiV vaccine vectors expressing the NiV glycoproteins against NiVB challenge in African green monkeys. All vaccinated animals survived to the study endpoint without signs of NiV disease; all showed development of NiV F Ig, NiV G IgG, or both, as well as neutralizing antibody titers. These data show protective efficacy against a stringent and relevant NiVB model of human infection.
    Matched MeSH terms: Cercopithecus aethiops*
  3. Bossart KN, Rockx B, Feldmann F, Brining D, Scott D, LaCasse R, et al.
    Sci Transl Med, 2012 Aug 08;4(146):146ra107.
    PMID: 22875827 DOI: 10.1126/scitranslmed.3004241
    In the 1990s, Hendra virus and Nipah virus (NiV), two closely related and previously unrecognized paramyxoviruses that cause severe disease and death in humans and a variety of animals, were discovered in Australia and Malaysia, respectively. Outbreaks of disease have occurred nearly every year since NiV was first discovered, with case fatality ranging from 10 to 100%. In the African green monkey (AGM), NiV causes a severe lethal respiratory and/or neurological disease that essentially mirrors fatal human disease. Thus, the AGM represents a reliable disease model for vaccine and therapeutic efficacy testing. We show that vaccination of AGMs with a recombinant subunit vaccine based on the henipavirus attachment G glycoprotein affords complete protection against subsequent NiV infection with no evidence of clinical disease, virus replication, or pathology observed in any challenged subjects. Success of the recombinant subunit vaccine in nonhuman primates provides crucial data in supporting its further preclinical development for potential human use.
    Matched MeSH terms: Cercopithecus aethiops/immunology*; Cercopithecus aethiops/virology*
  4. Salmijah S., Anita Mohd. Zubir, Maimon A.
    Metaldehyde is used widely in Malaysia for the control of molluscs. This communication reports the cytotoxic effects of this chemical on cultured cells as assessed by cell morphology and the DNA synthesising capability as well as its transport into cells. After 15 days of exposure with 20.0 ppm of the compound, the DNA synthesising capability was shown to be unaffected. The IC50 for Vero cells was 276.0 ppm. Transport of thymidine across cells was found to be not significantly affected even at high metaldehyde concentrations (up to 320.0 ppm) suggesting integrity of cells were not significantly affected. The present cellular studies have therefore shown that the cytotoxic effects of this chemical is rather low.
    Metaldehida digunakan dengan meluas di Malaysia untuk mengawal perosak moluska. Kesan sitotoksik bahan kimia ini di peringkat sel dari segi ciri-ciri perubahan moifologi dan keupayaan mensintesis DNA serta kajian awal kesannya terhadap proses kemasukan ke dalam sel dilaporkan di sini. Keupayaan mensintesis DNA didapati tidak terjejas secara signifikan selepas diberikan 20.0 ppm metaldehida secara berterusan selama 15 hari. Nilai IC50 bagi sel Vero adalah 276.0 ppm. Kemasukan timidina ke dalam sel tidak terjejas secara signifikan apabila sel diperlakukan dengan metaldehida, walaupun pada kepekatan yang agak tinggi iaitu sehingga 320.0 ppm. Kajian telah menunjukkan bahawa kesan sitotoksik oleh metaldehida adalah rendah.
    Matched MeSH terms: Cercopithecus aethiops
  5. Suppiah J, Nadaraju S, Hamzah S, Chee HY
    Trop Biomed, 2020 Jun 01;37(2):282-287.
    PMID: 33612798
    Storage of dengue virus (DENV) culture stocks in -80°C is a common laboratory practice to maintain the viability of the virus for long-term usage. However, the efficiency of this method could still be hindered by multiple factors. In our laboratory, we observed a constant and substantial deterioration in the titer of DENV in Vero culture supernatant stored in -80°C. Such incident had badly hampered the laboratory work and prompted an investigation to determine the cause. DENV isolates representing all four serotypes were propagated and the culture supernatants were harvested and stored in aliquots of original stock and 10 fold dilutions (10-1 -10-4). DENV titer in these stocks was determined prior to storage and reassessed on the third and sixth month of storage by focus forming unit assay (FFUA). The result demonstrated a constant preservation of titer ranging from 104 ffu/ml to 105 ffu/ml in the diluted DENV virus culture stocks of 10-1, and 10-2 of DENV1-4, a minor reduction of titer from 103 ffu/ml to 102 ffu/ml at dilution 10-3 for DENV4 only and complete deterioration in undiluted culture stock and lower dilution (10-4) within 6 months of storage in -80°C for all serotypes. It is recommended that propagated DENV in Vero cells are stored in 10 fold dilutions as compared to the original form to preserve the titer for long-term usage.
    Matched MeSH terms: Cercopithecus aethiops
  6. Chuprom J, Sangkanu S, Mitsuwan W, Boonhok R, Mahabusarakam W, Singh LR, et al.
    PeerJ, 2022;10:e14468.
    PMID: 36523474 DOI: 10.7717/peerj.14468
    Garcinia mangostana L., also known as the mangosteen tree, is a native medicinal plant in Southeast Asia having a wide variety of pharmacologically active compounds, including xanthonoid mangostin. In this study, we examined the pharmacological activities of the selected semi-synthetic mangostin derivative, namely, amoebicidal activity, encystation inhibition, excystation activity, and removal capacity of adhesive Acanthamoeba from the surface of contact lens (CL). Among the three derivatives, C1 exhibited promising anti-Acanthamoeba activity against Acanthamoeba triangularis WU19001 trophozoites and cysts. SEM images displayed morphological changes in Acanthamoeba trophozoites, including the loss of acanthopodia, pore formation in the cell membrane, and membrane damage. In addition, the treated cyst was shrunken and adopted an irregular flat cyst shape. Under a fluorescence microscope, acridine orange and propidium iodide (AO/PI) staining revealed C1 induced condensation of cytoplasm and chromatin with the loss of cell volume in the treated trophozoites, while calcofluor white staining demonstrated the leakage of cell wall in treated cysts, leading to cell death. Interestingly, at the concentration ranges in which C1 showed the anti-Acanthamoeba effects (IC50 values ranging from 0.035-0.056 mg/mL), they were not toxic to Vero cells. C1 displayed the highest inhibitory effect on A. triangularis encystation at 1/16×MIC value (0.004 mg/mL). While C1 demonstrated the excystation activity at 1/128×MIC value with a high rate of 89.47%. Furthermore, C1 exhibited the removal capacity of adhesive Acanthamoeba from the surface of CL comparable with commercial multipurpose solutions (MPSs). Based on the results obtained, C1 may be a promising lead agent to develop a therapeutic for the treatment of Acanthamoeba infections and disinfectant solutions for CL.
    Matched MeSH terms: Cercopithecus aethiops
  7. Toh TH, Qi YY, Yong SM, Lee JS, Liyana NF, See RY, et al.
    Hum Vaccin Immunother, 2023 Dec 31;19(1):2167438.
    PMID: 36705277 DOI: 10.1080/21645515.2023.2167438
    The effectiveness of the vero cell inactivated vaccine (CoronaVac®) against severe acute respiratory infection (‎SARI)‎ caused by SARS-CoV-2 in the real world was assessed. A matched test-negative case-control design was employed using the web-based national information system, as well as the hospitalization dataset in Sibu Hospital. Vaccine effectiveness was measured by conditional logistic regression with adjustment for gender, underlying comorbidity, smoking status, and education level. Between 15 March and 30 September 2021, 838 eligible SARI patients were identified from the hospitalization records. Vaccine effectiveness was 42.4% (95% confidence interval [CI]: -28.3 to 74.1) for partial vaccination (after receiving the first dose to 14 days after receiving the second dose), and 76.5% (95% CI: 45.6 to 89.8) for complete vaccination (at 15 days or more after receiving the second dose). This analysis indicated that two doses of CoronaVac® vaccine provided efficacious protection against SARI caused by SARS-CoV-2 in the short term. However, the duration of protection, and performance against new variants need to be studied continuously.
    Matched MeSH terms: Cercopithecus aethiops
  8. Morozova OV, Manuvera VA, Barinov NA, Subcheva EN, Laktyushkin VS, Ivanov DA, et al.
    Arch Biochem Biophys, 2024 Feb;752:109843.
    PMID: 38072298 DOI: 10.1016/j.abb.2023.109843
    Self-assembling nanoparticles (saNP) and nanofibers were found in the recombinant coronavirus SARS-CoV-2 S1, S2, RBD and N proteins purified by affinity chromatography using Ni Sepharose. Scanning electron (SEM), atomic force (AFM) microscopy on mica or graphite surface and in liquid as well as dynamic light scattering (DLS) revealed nanostructures of various sizes. AFM in liquid cell without drying on the surface showed mean height of S1 saNP 80.03 nm, polydispersity index (PDI) 0.006; for S2 saNP mean height 93.32 nm, PDI = 0.008; for N saNP mean height 16.71 nm, PDI = 0.99; for RBD saNP mean height 16.25 nm, PDI = 0.55. Ratios between the height and radius of each saNP in the range 0.1-0.5 suggested solid protein NP but not vesicles with internal empty spaces. The solid but not empty structures of the protein saNP were also confirmed by STEM after treatment of saNP with the standard contrasting agent uranyl acetate. The saNP remained stable after multiple freeze-thaw cycles in water and hyperosmotic solutions for 2 years at -20 °C. Receptor-mediated penetration of the SARS-CoV-2 S1 and RBD saNP in the African green mokey kidney Vero cells with the specific receptors for β-coronavirus reproduction was more efficient compared to unspecific endocytosis into MDCK cells without the specific receptors. Amyloid-like structures were revealed in the SARS-CoV-2 S1, S2, RBD and N saNP by means of their interaction with Thioflavin T and Congo Red dyes. Taken together, spontaneous formation of the amyloid-like self-assembling nanostructures due to the internal affinity of the SARS-CoV-2 virion proteins might induce proteinopathy in patients, including conformational neurodegenerative diseases, change stability of vaccines and diagnostic systems.
    Matched MeSH terms: Cercopithecus aethiops
  9. Johnston SC, Briese T, Bell TM, Pratt WD, Shamblin JD, Esham HL, et al.
    PLoS One, 2015;10(2):e0117817.
    PMID: 25706617 DOI: 10.1371/journal.pone.0117817
    Henipaviruses are implicated in severe and frequently fatal pneumonia and encephalitis in humans. There are no approved vaccines or treatments available for human use, and testing of candidates requires the use of well-characterized animal models that mimic human disease. We performed a comprehensive and statistically-powered evaluation of the African green monkey model to define parameters critical to disease progression and the extent to which they correlate with human disease. African green monkeys were inoculated by the intratracheal route with 2.5 × 10(4) plaque forming units of the Malaysia strain of Nipah virus. Physiological data captured using telemetry implants and assessed in conjunction with clinical pathology were consistent with shock, and histopathology confirmed widespread tissue involvement associated with systemic vasculitis in animals that succumbed to acute disease. In addition, relapse encephalitis was identified in 100% of animals that survived beyond the acute disease phase. Our data suggest that disease progression in the African green monkey is comparable to the variable outcome of Nipah virus infection in humans.
    Matched MeSH terms: Cercopithecus aethiops/virology*
  10. Lee JH, Hammoud DA, Cong Y, Huzella LM, Castro MA, Solomon J, et al.
    J Infect Dis, 2020 05 11;221(Suppl 4):S419-S430.
    PMID: 31687756 DOI: 10.1093/infdis/jiz502
    Nipah virus (NiV) is an emerging virus associated with outbreaks of acute respiratory disease and encephalitis. To develop a neurological model for NiV infection, we exposed 6 adult African green monkeys to a large-particle (approximately 12 μm) aerosol containing NiV (Malaysian isolate). Brain magnetic resonance images were obtained at baseline, every 3 days after exposure for 2 weeks, and then weekly until week 8 after exposure. Four of six animals showed abnormalities reminiscent of human disease in brain magnetic resonance images. Abnormalities ranged from cytotoxic edema to vasogenic edema. The majority of lesions were small infarcts, and a few showed inflammatory or encephalitic changes. Resolution or decreased size in some lesions resembled findings reported in patients with NiV infection. Histological lesions in the brain included multifocal areas of encephalomalacia, corresponding to known ischemic foci. In other regions of the brain there was evidence of vasculitis, with perivascular infiltrates of inflammatory cells and rare intravascular fibrin thrombi. This animal model will help us better understand the acute neurological features of NiV infection and develop therapeutic approaches for managing disease caused by NiV infection.
    Matched MeSH terms: Cercopithecus aethiops*
  11. Keniscope C, Juliana R, Subri H, Shangari SR, Wan Nor Azlina WA, Hamizah A, et al.
    Med J Malaysia, 2009 Mar;64(1):37-40.
    PMID: 19852319 MyJurnal
    The clinical presentation of acute measles is normally quite typical, especially in the presence of Koplik's spots, that laboratory test is seldom required to confirm the diagnosis. However, with wide measles vaccination coverage and the extensive use of immunosuppressive chemotherapy, the diagnosis of atypical manifestations of acute measles may require laboratory confirmation. When compared with B95a cell-line, this study shows that the Vero/hSLAM cell-line is sensitive and is recommended for use in the primary isolation of wild-type measles virus from clinical specimens. Throat swab and urine specimens are the clinical specimens of choice and both are recommended for optimal isolation of measles virus from patients suspected of acute measles virus infection.
    Matched MeSH terms: Cercopithecus aethiops
  12. Shafee N, AbuBakar S
    FEBS Lett., 2002 Jul 31;524(1-3):20-4.
    PMID: 12135735
    Dengue virus type 2 (DENV-2) infection induced apoptotic cellular DNA fragmentation in Vero cells within 8 days of infection. The addition of high concentrations of extracellular Zn(2+) but not Ca(2+), Mg(2+) or Mn(2+) to the cell culture medium hastened the detection of apoptosis to within 4 h after infection. No apoptotic cellular DNA fragmentation was detected in the cell culture treated with Zn(2+) alone or infected with heat- or ultraviolet light-inactivated DENV-2 in the presence of Zn(2+). These results suggest that (i) apoptosis is induced in African green monkey kidney cells infected with live DENV-2 and (ii) the addition of high extracellular Zn(2+) accelerates detection of apoptosis in the DENV-2-infected cells.
    Matched MeSH terms: Cercopithecus aethiops
  13. Tay ST, Devi S, Puthucheary S, Kautner I
    Zentralbl. Bakteriol., 1996 Mar;283(3):306-13.
    PMID: 8861868
    By means of the gentamicin HEp-2 cell invasion assay, it was demonstrated that 82% of the Campylobacters tested were cell-invasive, including 83% of isolates from bloody diarrhoea and 80% of isolates from watery diarrhoea. The large number of invasive strains from watery diarrhoea suggests the possible role of invasiveness in the production of watery diarrhoea. Whether this stage can progress further to more severe symptoms such as bloody diarrhoea remains to be elucidated. Whether this progression to bloody diarrhoea occurs as a result of toxin production is still debatable. In Vero cells, invasion was less efficient and intracellular multiplication was not observed.
    Matched MeSH terms: Cercopithecus aethiops
  14. Anita Lett J, Sundareswari M, Ravichandran K, Latha B, Sagadevan S
    Mater Sci Eng C Mater Biol Appl, 2019 Mar;96:487-495.
    PMID: 30606558 DOI: 10.1016/j.msec.2018.11.082
    The practice of bone implants is the standard procedure for the treatment of skeletal fissures, or to substitute and re-establish lost bone. A perfect scaffold ought to be made of biomaterials that duplicate the structure and properties of natural bone. However, the production of living tissue constructs that are architecturally, functionally and mechanically comparable to natural bone is the major challenge in the treatment and regeneration of bone tissue in orthopaedics and in dentistry. In this work, we have employed a polymeric replication method to fabricate hydroxyapatite (HAP) scaffolds using gum tragacanth (GT) as a natural binder. GT is a natural gum collected from the dried sap of several species of Middle Eastern legumes of the genus Astragalus, possessing antibacterial and wound healing properties. The synthesized porous HAP scaffolds were analyzed structurally and characterized for their phase purity and mechanical properties. The biocompatibility of the porous HAP scaffold was confirmed by seeding the scaffold with Vero cells, and its bioactivity assessed by immersing the scaffold in simulated body fluid (SBF). Our characterization data showed that the biocompatible porous HAP scaffolds were composed of highly interconnecting pores with compressive strength ranging from 0.036 MPa to 2.954 MPa, comparable to that of spongy bone. These can be prepared in a controlled manner by using an appropriate binder concentration and sintering temperature. These HAP scaffolds have properties consistent with normal bone and should be further developed for potential application in bone implants.
    Matched MeSH terms: Cercopithecus aethiops
  15. Fish-Low CY, Abubakar S, Othman F, Chee HY
    Malays J Pathol, 2019 Apr;41(1):41-46.
    PMID: 31025636
    INTRODUCTION: Dengue virus (DENV), the causative agent of dengue disease exists in sylvatic and endemic ecotypes. The cell morphological changes and viral morphogenesis of two dengue ecotypes were examined at the ultrastructural level to identify potential similarities and differences in the surrogate model of enzootic host.

    MATERIALS AND METHODS: Vero cells were inoculated with virus at a multiplicity of infection (MOI) of 0.1. Cell cultures were harvested over a time course and processed for transmission electron microscopic imaging.

    RESULTS: The filopodia protrusions on cell periphery preceded virus entry. Additionally, sylvatic DENV infection was found spreading slower than the endemic DENV. Morphogenesis of both dengue ecotypes was alike but at different level of efficiency in the permissive cells.

    CONCLUSIONS: This is the first ultrastructural study on sylvatic DENV and this comparative study revealed the similarities and differences of cellular responses and morphogenesis of two dengue ecotypes in vitro. The study revealed the weaker infectivity of sylvatic DENV in the surrogate model of enzootic host, which supposed to support better replication of enzootic DENV than endemic DENV.

    Matched MeSH terms: Cercopithecus aethiops
  16. Xu Y, Victorio CBL, Meng T, Jia Q, Tan YJ, Chua KB
    Virol Sin, 2019 Jun;34(3):262-269.
    PMID: 31016480 DOI: 10.1007/s12250-019-00116-1
    Our previous work has shown that Saffold virus (SAFV) induced several rodent and primate cell lines to undergo apoptosis (Xu et al. in Emerg Microb Infect 3:1-8, 2014), but the essential viral proteins of SAFV involved in apoptotic activity lack study. In this study, we individually transfected the viral proteins of SAFV into HEp-2 and Vero cells to assess their ability to induce apoptosis, and found that the 2B and 3C proteins are proapoptotic. Further investigation indicated the transmembrane domain of the 2B protein is essential for the apoptotic activity and tetramer formation of the 2B protein. Our research provides clues for the possible mechanisms of apoptosis induced by SAFV in different cell lines. It also opens up new directions to study viral proteins (the 2B, 3C protein), and sets the stage for future exploration of any possible link between SAFV, inclusive of its related uncultivable genotypes, and multiple sclerosis.
    Matched MeSH terms: Cercopithecus aethiops
  17. Saadatnia G, Haj Ghani H, Khoo BY, Maimunah A, Rahmah N
    Trop Biomed, 2010 Apr;27(1):125-30.
    PMID: 20562822
    In vitro culture of Toxoplasma gondii can provide tachyzoites which are active, viable and with desirable purity. Thus the aim of this study was to optimize the cell culture method for T. gondii propagation to obtain a consistent source of parasites with maximum yield and viability, but minimum host cell contamination for use in production of excretory-secretory antigen. Tachyzoites with seed counts of 1x10(6), 1x10(7) and 1x10(8) harvested from infected mice were added to VERO cells of different degrees of confluence, namely 50%, 85% and 100%, and examined periodically using an inverted microscope. When the maximum release of the tachyzoites was observed from the host cells, the culture supernatant was removed and the tachyzoites harvested. Using a Neubauer chamber, the percentages of viable tachyzoites and host cell contamination were determined using trypan blue stain. Parameters that gave the best yield and purity of viable tachyzoites were found to be as follows: VERO cells at 85% confluence in DMEM medium and inoculum comprising 1x10(7) tachyzoites. After about 3 days post infection, the tachyzoites multiplied 78x, with a yield of ~7.8x10(8) per flask, 99% viability and 3% host cell contamination. This study has successfully optimized the method of propagation of T. gondii tachyzoites in VERO cells which produce parasites with high yield, purity and viability.
    Matched MeSH terms: Cercopithecus aethiops
  18. Siew, Ching Ngai, Ramasamy, Rajesh, Syahril Abdullah
    MyJurnal
    Many diseases are potential targets for gene therapy using either non-viral or viral vectors. Unlike nonviralmethods, viral vectors, such as lentiviruses, have the ability to integrate into the host chromosome,which can lead to long-term transgene expression. Lentiviruses have advantages over other types ofviruses due to their capacity to transduce non-dividing cells. An optimized generation of lentivirusescarrying green fluorescent protein (GFP) reporter gene driven by either UbC (LV/UbC/GFP) orCMV (LV/CMV/GFP) promoter is described in this paper. The lentiviruses were produced by cotransfectinglentiviral expression constructs and packaging mix into 293FT lentivirus producer cell lines.Lipofectamine was highly efficient in transfecting the cells compared to Transfast and Polyethyleneimine(PEI). Following cell transfection, syncytia were clearly visible at day 2. Lentiviruses were harvestedat days 1, 2 and 3 post-transfection. The highest transduction efficiency was read from LV/CMV/GFPharvested at day 2 post-transfection and LV/UbC/GFP harvested at day 3 post-transfection. Finally,the GFP expression in COS-7 cells was determined at day 2 and day 14 post-transduction for transientand stable GFP expression. It was found that the GFP expression declined overtime. However, thetransduction efficiency and duration of the transgene expression in COS-7 cells transduced with LV/CMV/GFP were higher compared to LV/UbC/GFP. In conclusion, we have successfully produced lentivirusescarrying GFP with different promoters and shown that the viruses were able to infect COS-7 cells atdifferent efficiencies. Meanwhile, the generation of the active lentiviruses will allow us to proceed to the subsequent analysis of the effect of regulatory elements in future study.
    Matched MeSH terms: Cercopithecus aethiops
  19. Yusof, F., Chowdhury, S., Faruck, M. O., Sulaiman, N.
    MyJurnal
    Cancer still presents enormous challenges in the medical world. Currently, the search for
    anticancer compounds has garnered a lot of interest, especially in finding them from the natural
    sources. In this study, by using Sulforhodamine B (SRB) colorimetric assay, compounds,
    extracted from supermeal worm (Zophobas morio) larvae using two types of acidified organic
    solvent (ethanol and isopropanol), were shown to inhibit the growth of a breast cancer line,
    MCF-7. A comparative study of the effect was carried out on a normal cell line, Vero. Results
    showed that, the two types of extracts inhibits growth of MCF-7 cell at varying degrees, on
    the other hand, have much less effect on Vero cell. Extracts analysed by UV-vis spectroscopy,
    showed peaks in the range of 260 to 280 nm, inferring the presence of aromatic amino acids,
    whereas the highest peak of 3.608 AU at 230 nm indicates the presence of peptide bonds. By
    Raman spectroscopy, peaks are observed at 1349 cm-1, 944 cm-1 and 841 cm-1 indicating the
    presence of Tyr, Try and Gly, confirming the UV-vis analyses. All results of analyses implied
    that the anticancer compounds contain peptides.
    Matched MeSH terms: Cercopithecus aethiops
  20. Sangkanu S, Mitsuwan W, Mahboob T, Mahabusarakam W, Chewchanwuttiwong S, Siphakdi P, et al.
    Acta Trop, 2022 Feb;226:106266.
    PMID: 34890540 DOI: 10.1016/j.actatropica.2021.106266
    Acanthamoeba keratitis infection extends due to the growing number of contact lens users. Indigenous plants including Garcinia mangostana play a vital role in human health and well being. Many species of this plant have been reported with myriads of potent medicinal properties. However, the aims of this study were, for the first time, to isolate compounds from the flower of G. mangostana and to test their anti-Acanthamoeba and anti-adhesion activity against Acanthamoeba triangularis. Powdered flowers of G. mangostana were extracted and chromatographed on a silica gel column. The structures of the compounds were established with the aid of 1H NMR. More so, the anti-Acanthamoeba and anti-adhesion properties were tested on a 96-well polystyrene microtiter plate and soft contact lenses. Scanning electron microscope (SEM) was used to determine the features of A. triangularis on contact lenses. Eight pure compounds were obtained, namely 9-hydroxycalabaxanthone, tovophillin A, garcinone E, garcinone B, α-mangostin, gartinin, 8-deoxygartinin and γ-mangostin. The extract and pure compounds exhibited anti-Acanthamoeba activity with MIC values in the range of 0.25-1 mg/mL. In addition, the extract and α-mangostin displayed significant activity against the adhesion of A. triangularis trophozoites both in polystyrene plate and in contact lenses at 0.5 × MIC (0.25 mg/mL). Furthermore, α-mangostin has the potential to remove A. triangularis adhesion in contact lenses similar to a commercial multipurpose solution (MPS). SEM study confirmed that crude extract and α-mangostin are effective as solutions for contact lenses, which removed A. triangularis trophozoites within 24 h. Alpha-mangostin was non-toxic to Vero cells at a concentration below 39 μM in 24 h. Crude extract of G. mangostana flower and its α-mangostin serve as candidate compounds in the treatment of Acanthamoeba infection or as lens care solution, since they can be used as a source of natural products against Acanthamoeba and virulence factor associated with the adhesion of A. triangularis.
    Matched MeSH terms: Cercopithecus aethiops
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links