Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Khairul WM, Hashim F, Mohammed M, Shah NSMN, Johari SATT, Rahamathullah R, et al.
    Anticancer Agents Med Chem, 2021;21(13):1738-1750.
    PMID: 33176667 DOI: 10.2174/1871520620999201110190709
    INTRODUCTION: In this contribution, a series of alkoxy substituted chalcones were successfully designed, synthesized, spectroscopically characterized and evaluated for their cytotoxicity potential in inhibiting the growth of MCF-7 cells.

    OBJECTIVE: In order to investigate the influence between electron density in conjugated π-systems and biological activities, different withdrawing substituents, namely Nitro (NO2), Cyano (C≡N) and trifluoromethyl (CF3) were introduced in the chalcone-based molecular system.

    METHODS: All the derivatives were then tested on MCF-7 cell line using the fluorescence microscopy-based cytotoxicity analyses.

    RESULTS: The preliminary findings showed that both -NO2 and -CF3 substituents revealed their potential to inhibit the growth of MCF-7 with IC;50 values of 14.75 and 13.75 μg/ml, respectively. In addition, the morphological changes of MCF-7 cells were observed in response to alkoxy substituted chalcone treatment through an induction of apoptosis pathway with cell blebbing, phosphatidylserine exposure and autophagic activity with acidification of lysosomal structure. Intermolecular interaction based on in silico investigation on nitro, trifluoromethyl and cyano based chalcones exhibited several types of interactions with tumor necrosis factor receptor (PDB: 1EXT) protein and high hydrogen bond in the molecule-receptor interaction have given significant impact towards their toxicity on MCF-7 cells.

    CONCLUSION: Significantly, these types of chalcones exhibited ideal and high potential to be further developed as anti-cancer agents.

    Matched MeSH terms: Chalcones/pharmacology*
  2. Ng KB, Bustamam A, Sukari MA, Abdelwahab SI, Mohan S, Buckle MJ, et al.
    PMID: 23432947 DOI: 10.1186/1472-6882-13-41
    Boesenbergia rotunda (Roxb.) Schlecht (family zingiberaceae) is a rhizomatous herb that is distributed from north-eastern India to south-east Asia, especially in Indonesia, Thailand and Malaysia. Previous research has shown that the crude extract of this plant has cytotoxic properties. The current study examines the cytotoxic properties of boesenbergin A isolated from Boesenbergia rotunda.
    Matched MeSH terms: Chalcones/pharmacology
  3. Phang CW, Abd Malek SN, Karsani SA
    Biomed Pharmacother, 2021 May;137:110846.
    PMID: 33761587 DOI: 10.1016/j.biopha.2020.110846
    Chalcones and their derivatives belong to the flavonoid family. They have been extensively studied for their anticancer properties and some have been approved for clinical use. In this study, the in vivo anti-tumor activity of flavokawain C (FKC), a naturally occurring chalcone found in Kava (Piper methysticum Forst) was evaluated in HCT 116 cells (colon carcinoma). We also attempted to identify potential biomarkers and/or molecular targets in serum with applicability in predicting treatment outcome. The anti-tumor effects and toxicity of FKC were assessed using the xenograft nude mice model. Cisplatin was used as positive control. The anti-proliferative and apoptotic activities were then evaluated in tumor tissues treated with FKC. Furthermore, two-dimensional electrophoresis (2-DE) followed by protein identification using MALDI-TOF/TOF-MS/MS was performed to compare the serum proteome profiles between healthy nude mice and nude mice bearing HCT 116 tumor treated with vehicle solution and FKC, respectively. Our results showed that FKC treatment significantly inhibited HCT 116 tumor growth. In vivo toxicity studies showed that administration of FKC did not cause damage to major organs and had no significant effect on body weight. FKC was found to induce apoptosis in tumor, and this was associated with increased expression of cleaved caspase-3 and decreased expression of Ki67 in tumor tissues. Our proteomic analysis identified five proteins that changed in abundance - Ig mu chain C region (secreted form), GRP78, hemopexin, kininogen-1 and apolipoprotein E. Overall, our findings demonstrated the potential of FKC as an anti-cancer agent for the treatment of colon carcinoma.
    Matched MeSH terms: Chalcones/pharmacology*
  4. Rullah K, Mohd Aluwi MF, Yamin BM, Abdul Bahari MN, Wei LS, Ahmad S, et al.
    Bioorg Med Chem Lett, 2014 Aug 15;24(16):3826-34.
    PMID: 25027933 DOI: 10.1016/j.bmcl.2014.06.061
    The discovery of potent inhibitors of prostaglandin E2 (PGE2) synthesis in recent years has been proven to be an important game changer in pharmaceutical industry. It is known that excessive production of PGE2 triggers a vast array of biological signals and physiological events that contributes to inflammatory diseases such as rheumatoid arthritis, atherosclerosis, cancer, and pain. In this Letter, we report the synthesis of a series of minor prenylated chalcones and flavonoids which was found to be significantly active in suppressing the PGE2 production secreted by lipopolysaccharide-induced mouse macrophage cells (RAW 264.7). Among the compounds tested, 14b showed a dose-response inhibition of PGE2 production with an IC50 value of 2.1 μM. The suppression upon PGE2 secretion was not due to cell death since 14b did not reduce the cell viability in close proximity to the PGE2 inhibition concentration. The obtained atomic coordinates for the single-crystal XRD of 14b was then applied in the docking simulation to determine the potential important binding interactions with murine COX-2 and mPGES-1 putative binding sites.
    Matched MeSH terms: Chalcones/pharmacology*
  5. Tajudeen Bale A, Mohammed Khan K, Salar U, Chigurupati S, Fasina T, Ali F, et al.
    Bioorg Chem, 2018 09;79:179-189.
    PMID: 29763804 DOI: 10.1016/j.bioorg.2018.05.003
    Despite of a diverse range of biological activities associated with chalcones and bis-chalcones, they are still neglected by the medicinal chemist for their possible α-amylase inhibitory activity. So, the current study is based on the evaluation of this class for the identification of new leads as α-amylase inhibitors. For that purpose, a library of substituted chalcones 1-13 and bis-chalcones 14-18 were synthesized and characterized by spectroscopic techniques EI-MS and 1H NMR. CHN analysis was carried out and found in agreement with the calculated values. All compounds were evaluated for in vitro α-amylase inhibitory activity and demonstrated good activities in the range of IC50 = 1.25 ± 1.05-2.40 ± 0.09 µM as compared to the standard acarbose (IC50 = 1.04 ± 0.3 µM). Limited structure-activity relationship (SAR) was established by considering the effect of different groups attached to aryl rings on varying inhibitory activity. SMe group in chalcones and OMe group in bis-chalcones were found more influential on the activity than other groups. However, in order to predict the involvement of different groups in the binding interactions with the active site of α-amylase enzyme, in silico studies were also conducted.
    Matched MeSH terms: Chalcones/pharmacology*
  6. Mohd Faudzi SM, Abdullah MA, Abdull Manap MR, Ismail AZ, Rullah K, Mohd Aluwi MFF, et al.
    Bioorg Chem, 2020 01;94:103376.
    PMID: 31677861 DOI: 10.1016/j.bioorg.2019.103376
    In search of potent anti-inflammatory agents, twenty-four chalcone derivatives including seven new compounds (13 - 17, 21 and 23) containing pyrrole moiety were designed, synthesized, and assessed for their nitric oxide (NO) and prostaglandin E2 (PGE2) suppression ability on IFN-γ/LPS-induced RAW 264.7 macrophage cells. Results showed that none of the synthesized compounds were PAINS-associated molecules, with 3-(2,5-dimethoxyphenyl)-1-(1H-pyrrol-2-yl)-prop-2-en-1-one (compound 16) exhibiting remarkable inhibition activity towards PGE2 and NO production with IC50 values of 0.5 ± 1.5 µM and 12.1 ± 1.5 µM, respectively. Physicochemical and ADMET studies showed that majority of the compounds obey to Lipinski's rule of five (RO5) having high blood brain barrier (BBB) penetration, human intestinal absorption (HIA), P- glycoprotein (PgP) inhibition and plasma binding protein (PPB) inhibition. The obtained atomic coordinates for the single-crystal XRD of 16 were then applied in a molecular docking simulation, and compound 16 was found to participate in a number of important binding interactions in the binding sites of ERK and mPGES-1. Based on these results, we have observed the potential of compound 16 as a new hit anti-inflammatory agent, and these findings could serve as a basis for further studies on its mechanism of action.
    Matched MeSH terms: Chalcones/pharmacology*
  7. Saleem F, Kanwal, Khan KM, Chigurupati S, Solangi M, Nemala AR, et al.
    Bioorg Chem, 2021 01;106:104489.
    PMID: 33272713 DOI: 10.1016/j.bioorg.2020.104489
    Diabetes being a chronic metabolic disorder have attracted the attention of medicinal chemists and biologists. The introduction of new and potential drug candidates for the cure and treatment of diabetes has become a major concern due to its increased prevelance worldwide. In the current study, twenty-seven azachalcone derivatives 3-29 were synthesized and evaluated for their antihyperglycemic activities by inhibiting α-amylase and α-glucosidase enzymes. Five compounds 3 (IC50 = 23.08 ± 0.03 µM), (IC50 = 26.08 ± 0.43 µM), 5 (IC50 = 24.57 ± 0.07 µM), (IC50 = 27.57 ± 0.07 µM), 6 (IC50 = 24.94 ± 0.12 µM), (IC50 = 27.13 ± 0.08 µM), 16 (IC50 = 27.57 ± 0.07 µM), (IC50 = 29.13 ± 0.18 µM), and 28 (IC50 = 26.94 ± 0.12 µM) (IC50 = 27.99 ± 0.09 µM) demonstrated good inhibitory activities against α-amylase and α-glucosidase enzymes, respectively. Acarbose was used as the standard in this study. Structure-activity relationship was established by considering the parent skeleton and different substitutions on aryl ring. The compounds were also subjected for kinetic studies to study their mechanism of action and they showed competitive mode of inhibition against both enzymes. The molecular docking studies have supported the results and showed that these compounds have been involved in various binding interactions within the active site of enzyme.
    Matched MeSH terms: Chalcones/pharmacology*
  8. Parambi DGT, Aljoufi F, Murugaiyah V, Mathew GE, Dev S, Lakshminarayanan B, et al.
    PMID: 30451121 DOI: 10.2174/1871524918666181119114016
    BACKGROUND: Dual-acting human monoamine oxidase B (hMAO-B) and cholinesterase (ChE) inhibitors are more effective than the classic one-drug one-target therapy for Alzheimer's disease (AD).

    METHODS: The ChE inhibitory ability of some halogenated thiophene chalcone-based molecules known to be selective hMAO-B inhibitors was evaluated.

    RESULTS: Based on the IC50 values, the selected compounds were found to moderately inhibit ChE, with IC50 values in the range of 14-70 µM. Among the synthesised molecules, T8 and T6 showed the most potent inhibitory activity against AChE and BChE, respectively.

    CONCLUSION: Taken together, the data revealed that T8 could be further optimized to enhance its AChE inhibitory activity.

    Matched MeSH terms: Chalcones/pharmacology
  9. Mahendran R, Lim SK, Ong KC, Chua KH, Chai HC
    Clin Exp Nephrol, 2021 Nov;25(11):1163-1172.
    PMID: 34254206 DOI: 10.1007/s10157-021-02111-x
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic kidney disorder that impairs renal functions progressively leading to kidney failure. The disease affects between 1:400 and 1:1000 ratio of the people worldwide. It is caused by the mutated PKD1 and PKD2 genes which encode for the defective polycystins. Polycystins mimic the receptor protein or protein channel and mediate aberrant cell signaling that causes cystic development in the renal parenchyma. The cystic development is driven by the increased cyclic AMP stimulating fluid secretion and infinite cell growth. In recent years, natural product-derived small molecules or drugs targeting specific signaling pathways have caught attention in the drug discovery discipline. The advantages of natural products over synthetic drugs enthusiast researchers to utilize the medicinal benefits in various diseases including ADPKD.

    CONCLUSION: Overall, this review discusses some of the previously studied and reported natural products and their mechanisms of action which may potentially be redirected into ADPKD.

    Matched MeSH terms: Chalcones/pharmacology*
  10. Mai CW, Yaeghoobi M, Abd-Rahman N, Kang YB, Pichika MR
    Eur J Med Chem, 2014 Apr 22;77:378-87.
    PMID: 24675137 DOI: 10.1016/j.ejmech.2014.03.002
    In the present study, a series of 46 chalcones were synthesised and evaluated for antiproliferative activities against the human TRAIL-resistant breast (MCF-7, MDA-MB-231), cervical (HeLa), ovarian (Caov-3), lung (A549), liver (HepG2), colorectal (HT-29), nasopharyngeal (CNE-1), erythromyeloblastoid (K-562) and T-lymphoblastoid (CEM-SS) cancer cells. The chalcone 38 containing an amino (-NH2) group on ring A was the most potent and selective against cancer cells. The effects of the chalcone 38 on regulation of 43 apoptosis-related markers in HT-29 cells were determined. The results showed that 20 apoptotic markers (Bad, Bax, Bcl-2, Bcl-w, Bid, Bim, CD40, Fas, HSP27, IGF-1, IGFBP-4, IGFBP-5, Livin, p21, Survivin, sTNF-R2, TRAIL-R2, XIAP, caspase-3 and caspase-8) were either up regulated or down regulated.
    Matched MeSH terms: Chalcones/pharmacology*
  11. Mohamad AS, Akhtar MN, Zakaria ZA, Perimal EK, Khalid S, Mohd PA, et al.
    Eur J Pharmacol, 2010 Nov 25;647(1-3):103-9.
    PMID: 20826146 DOI: 10.1016/j.ejphar.2010.08.030
    The present study examined the potential antinociceptive activity of flavokawin B (6'-hydroxy-2',4'-dimethoxychalcone), a synthetic chalcone using chemical- and thermal-induced nociception models in mice. It was demonstrated that flavokawin B (FKB; 0.3, 1, 3 and 10 mg/kg) administered via both oral (p.o.) and intraperitoneal (i.p.) routes produced significant and dose-dependent inhibition in the abdominal constrictions induced by acetic acid, with the i.p. route producing antinociception of approximately 7-fold more potent than the p.o. route. It was also demonstrated that FKB produced significant inhibition in the two phases of the formalin-induced paw licking test. In addition, the same treatment of flavokawin B (FKB) exhibited significant inhibition of the neurogenic nociceptive induced by intraplantar injections of glutamate and capsaicin. Likewise, this compound also induced a significant increase in the response latency period to thermal stimuli in the hot plate test and its antinociceptive effect was not related to muscle relaxant or sedative action. Moreover, the antinociception effect of the FKB in the formalin-induced paw licking test and the hot plate test was not affected by pretreatment of non-selective opioid receptor antagonist, naloxone. The present results indicate that FKB produced pronounced antinociception effect against both chemical and thermal models of pain in mice that exhibited both peripheral and central analgesic activity.
    Matched MeSH terms: Chalcones/pharmacology*
  12. Phang CW, Gandah NA, Abd Malek SN, Karsani SA
    Eur J Pharmacol, 2019 Jun 15;853:388-399.
    PMID: 31014923 DOI: 10.1016/j.ejphar.2019.04.032
    Flavokawain C (FKC), a naturally occurring chalcone, has previously been shown to inhibit the growth of colon carcinoma HCT 116 cells through induction of apoptosis and cell cycle arrest. However, the possible underlying mechanisms of cell death as a response to FKC treatment remains unclear. In this study, we performed proteomic analysis of HCT 116 cells treated with FKC to identify proteins that change in abundance. This was followed by bioinformatic analysis to predict possible associated molecular targets or pathways involved in the observed effects of FKC. A total of 35 proteins that changed in abundance (17 increased and 18 decreased) were identified through two-dimensional gel electrophoresis followed by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Using the Ingenuity Pathway Analysis (IPA), these proteins were predicted to be involved in cell death and survival, cell cycle, cellular growth and proliferation, protein synthesis, post-translational modification and amino acid metabolism by. Further analysis of the transcript levels of selected proteins using qPCR showed that some of the genes exhibited similar change of profile to that of the proteins'. Our results have provided novel insights into the potential molecular mechanisms underlying FKC-induced apoptosis or cell death in colon cancer cells.
    Matched MeSH terms: Chalcones/pharmacology*
  13. Voon FL, Sulaiman MR, Akhtar MN, Idris MF, Akira A, Perimal EK, et al.
    Eur J Pharmacol, 2017 Jan 05;794:127-134.
    PMID: 27845065 DOI: 10.1016/j.ejphar.2016.11.009
    Boesenbergia rotunda (L.) Mansf. had been traditionally used as herbs to treat pain and rheumatism. Cardamonin (2',4'-dihydroxy-6'-methoxychalcone) is a compound isolated from Boesenbergia rotunda (L.) Mansf.. Previous study had shown the potential of cardamonin in inhibiting the release of pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in vitro. Thus, the possible therapeutic effect of cardamonin in the rheumatoid arthritis (RA) joints is postulated. This study was performed to investigate the anti-arthritic properties of cardamonin in rat model of induced RA, particularly on the inflammatory and pain response of RA. Rheumatoid arthritis paw inflammation was induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA) in Sprague Dawley rats. Using four doses of cardamonin (0.625, 1.25, 2.5, and 5.0mg/kg), anti-arthritic activity was evaluated through the paw edema, mechanical allodynia and thermal hyperalgesia responses. Enzyme-linked immunosorbent assay (ELISA) was carried out to evaluate the plasma level of TNF-α, IL-1β, and IL-6. Histological slides were prepared from the harvested rat paws to observe the arthritic changes in the joints. Behavioral, biochemical, and histological studies showed that cardamonin demonstrated significant inhibition on RA-induced inflammatory and pain responses as well as progression of joint destruction in rats. ELISA results showed that there was significant inhibition in TNF-α, IL-1β, and IL-6 levels in plasma of the cardamonin-treated RA rats. Overall, cardamonin possesses potential anti-arthritic properties in CFA-induced RA rat model.
    Matched MeSH terms: Chalcones/pharmacology*
  14. Break MKB, Hossan MS, Khoo Y, Qazzaz ME, Al-Hayali MZK, Chow SC, et al.
    Fitoterapia, 2018 Mar;125:161-173.
    PMID: 29355749 DOI: 10.1016/j.fitote.2018.01.006
    Cardamonin is a natural chalcone that has been shown to exhibit high anticancer activity. In an attempt to discover analogues of cardamonin with enhanced anticancer activity, 19 analogues were synthesized and tested against A549 and HK1 cell lines. Results of the MTS cell viability assay showed that several derivatives possessed cytotoxic activities that were several-fold more potent than cardamonin. SAR analysis showed the importance of the ketone and alkene groups for bioactivity, while substituting cardamonin's phenolic groups with more polar moieties resulted in activity enhancement. As part of the SAR study and further exploration of chemical space, the effect of metal coordination on cytotoxicity was also investigated, but it was only possible to successfully obtain the Cu (II) complex of cardamonin (19). Compound 19 was the most active analogue possessing IC50 values of 13.2μM and 0.7μM against A549 and HK1 cells, corresponding to a 5- and 32-fold increase in activity, respectively. It was also able to significantly inhibit the migration of A549 and HK1 cells. Further mode of action studies have shown that the most active analogue, 19, induced DNA damage resulting in G2/M-phase cell- cycle arrest in both cell lines. These events further led to the induction of apoptosis by the compound via caspase-3/7 and caspase-9 activation, PARP cleavage and downregulation of Mcl-1 expression. Moreover, 19 inhibited the expression levels of p-mTOR and p-4EBP1, which indicated that it exerted its anticancer activity, at least in part, via inhibition of the mTOR signalling pathway.
    Matched MeSH terms: Chalcones/pharmacology*
  15. Liew CY, Tham CL, Lam KW, Mohamad AS, Kim MK, Cheah YK, et al.
    Immunopharmacol Immunotoxicol, 2010 Sep;32(3):495-506.
    PMID: 20109039 DOI: 10.3109/08923970903575708
    HMP [3-(2-hydroxyphenyl)-1-(5-methyl-furan-2-y-l) propenone] was evaluated for its ability to inhibit the synthesis of major proinflammatory mediators and cytokines in interferon-gamma (IFN-gamma)- and lipopolysaccharide (LPS)-induced RAW 264.7 cells and phorbol myristate acetate (PMA)-differentiated/LPS-induced U937 cells. HMP suppressed the production of nitric oxide (NO) with significant inhibitory effects at doses as low as 0.78 microM (P < 0.05). Prostaglandin E2 (PGE2) secretion was also inhibited at doses of 12.5 microM and above (P < 0.01). The secretion of both TNF-alpha and IL-6 were only inhibited at the highest dose used (25 microM; P < 0.001). IL-1beta secretion was also inhibited from 12.5 microM onwards (P < 0.01). This inhibition was demonstrated to be caused by down-regulation of inducible enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), without direct effect upon iNOS or COX-2 enzyme activity. HMP only inhibited iNOS (P < 0.001) and IL-1beta (P < 0.05) gene expression at the highest tested concentration. HMP did not affect the secretion of chemokines IL-8 and monocyte chemotactic protein-1 (MCP-1) and the anti-inflammatory cytokine IL-10. The most striking effect of HMP was its NO inhibitory activity and therefore we conclude that HMP is a selective inhibitor of iNOS.
    Matched MeSH terms: Chalcones/pharmacology*
  16. Chow YL, Lee KH, Vidyadaran S, Lajis NH, Akhtar MN, Israf DA, et al.
    Int Immunopharmacol, 2012 Apr;12(4):657-65.
    PMID: 22306767 DOI: 10.1016/j.intimp.2012.01.009
    The increasing prevalence of neurodegenerative diseases has prompted investigation into innovative therapeutics over the last two decades. Non-steroidal anti-inflammatory drugs (NSAIDs) are among the therapeutic choices to control and suppress the symptoms of neurodegenerative diseases. However, NSAIDs-associated gastropathy has hampered their long term usage despite their clinical advancement. On the natural end of the treatment spectrum, our group has shown that cardamonin (2',4'-dihydroxy-6'-methoxychalcone) isolated from Alpinia rafflesiana exerts potential anti-inflammatory activity in activated macrophages. Therefore, we further explored the anti-inflammatory property of cardamonin as well as its underlying mechanism of action in IFN-γ/LPS-stimulated microglial cells. In this investigation, cardamonin shows promising anti-inflammatory activity in microglial cell line BV2 by inhibiting the secretion of pro-inflammatory mediators including nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). The inhibition of NO and PGE(2) by cardamonin are resulted from the reduced expression of inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2), respectively. Meanwhile the suppressive effects of cardamonin on TNF-α, IL-1β and IL-6 were demonstrated at both protein and mRNA levels, thus indicating the interference of upstream signal transduction pathway. Our results also validate that cardamonin interrupts nuclear factor-kappa B (NF-κB) signalling pathway via attenuation of NF-κB DNA binding activity. Interestingly, cardamonin also showed a consistent suppressive effect on the cell surface expression of CD14. Taken together, our experimental data provide mechanistic insights for the anti-inflammatory actions of cardamonin in BV2 and thus suggest a possible therapeutic application of cardamonin for targeting neuroinflammatory disorders.
    Matched MeSH terms: Chalcones/pharmacology*
  17. Frimayanti N, Chee CF, Zain SM, Rahman NA
    Int J Mol Sci, 2011;12(2):1089-100.
    PMID: 21541045 DOI: 10.3390/ijms12021089
    Dengue is a serious disease which has become a global health burden in the last decade. Currently, there are no approved vaccines or antiviral therapies to combat the disease. The increasing spread and severity of the dengue virus infection emphasizes the importance of drug discovery strategies that could efficiently and cost-effectively identify antiviral drug leads for development into potent drugs. To this effect, several computational approaches were applied in this work. Initially molecular docking studies of reference ligands to the DEN2 NS2B/NS3 serine protease were carried out. These reference ligands consist of reported competitive inhibitors extracted from Boesenbergia rotunda (i.e., 4-hydroxypanduratin A and panduratin A) and three other synthesized panduratin A derivative compounds (i.e., 246DA, 2446DA and 20H46DA). The design of new lead inhibitors was carried out in two stages. In the first stage, the enzyme complexed to the reference ligands was minimized and their complexation energies (i.e., sum of interaction energy and binding energy) were computed. New compounds as potential dengue inhibitors were then designed by putting various substituents successively on the benzyl ring A of the reference molecule. These substituted benzyl compounds were then computed for their enzyme-ligand complexation energies. New enzyme-ligand complexes, exhibiting the lowest complexation energies and closest to the computed energy for the reference compounds, were then chosen for the next stage manipulation and design, which involved substituting positions 4 and 5 of the benzyl ring A (positions 3 and 4 for 2446DA) with various substituents.
    Matched MeSH terms: Chalcones/pharmacology
  18. Sukumaran SD, Nasir SB, Tee JT, Buckle MJC, Othman R, Rahman NA, et al.
    J Enzyme Inhib Med Chem, 2021 Dec;36(1):130-137.
    PMID: 33243025 DOI: 10.1080/14756366.2020.1847100
    A series of C4-substituted tertiary nitrogen-bearing 2'-hydroxychalcones were designed and synthesised based on a previous mixed type acetylcholinesterase inhibitor. Majority of the 2'-hydroxychalcone analogues displayed a better inhibition against acetylcholinesterase (AChE) than butyrylcholinesterase (BuChE). Among them, compound 4c was identified as the most potent AChE inhibitor (IC50: 3.3 µM) and showed the highest selectivity for AChE over BuChE (ratio >30:1). Molecular docking studies suggested that compound 4c interacts with both the peripheral anionic site (PAS) and catalytic anionic site (CAS) regions of AChE. ADMET analysis confirmed the therapeutic potential of compound 4c based on its blood-brain barrier penetrating. Overall, the results suggest that this 2'-hydroxychalcone deserves further investigation into the therapeutic lead for Alzheimer's disease (AD).
    Matched MeSH terms: Chalcones/pharmacology*
  19. Jantan I, Mohd Yasin YH, Jamil S, Sirat H, Basar N
    J Nat Med, 2010 Jul;64(3):365-9.
    PMID: 20349149 DOI: 10.1007/s11418-010-0410-0
    Five prenylflavonoids and two prenylchalcones from Artocarpus lowii King, A. scortechinii King and A. teysmanii Miq., and acetylated derivatives of cycloheterophyllin and artonin E were investigated for their ability to inhibit arachidonic acid (AA), collagen and adenosine diphosphate (ADP)-induced platelet aggregation in human whole blood by using an electrical impedance method. Among the tested compounds, only cycloheterophyllin inhibited AA-induced platelet aggregation with an IC(50) value of 100.9 microM. It also showed strong inhibition against ADP-induced aggregation, with an IC(50) value of 57.1 microM. Isobavachalcone, 2',4'-dihydroxy-4-methoxy-3'-prenyldihydrochalcone, cycloartobiloxanthone, artonin E and artonin E triacetate showed selective inhibition against ADP-induced aggregation, with IC(50) values ranging from 55.3 to 192.0 microM, but did not show such effect against other inducers.
    Matched MeSH terms: Chalcones/pharmacology*
  20. Jamil S, Sirat HM, Jantan I, Aimi N, Kitajima M
    J Nat Med, 2008 Jul;62(3):321-4.
    PMID: 18404311 DOI: 10.1007/s11418-008-0226-3
    A new prenylated dihydrochalcone, 2',4'-dihydroxy-4-methoxy-3'-prenyldihydrochalcone (1), along with two known compounds, 2',4',4-trihydroxy-3'-prenylchalcone (2) and 2',4-dihydroxy-3',4'-(2,2-dimethylchromene)chalcone (3) were isolated from the leaves of Artocarpus lowii. The structures of 1-3 were elucidated by spectroscopic methods and by comparison with data reported in the literature. Compounds 1-3 showed strong free radical scavenging activity towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) measured by electron spin resonance (ESR) spectrometry.
    Matched MeSH terms: Chalcones/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links