Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF, Looi CY
    J Control Release, 2019 12 28;316:168-195.
    PMID: 31669211 DOI: 10.1016/j.jconrel.2019.09.019
    The applications of eutectic systems, including deep eutectic solvents (DESs), in diverse sectors have drawn significant interest from researchers, academicians, engineers, medical scientists, and pharmacists. Eutecticity increases drug dissolution, improves drug penetration, and acts as a synthesis route for drug carriers. To date, DESs have been extensively explored as potential drug delivery systems on account of their unique properties such as tunability and chemical and thermal stability. This review discusses two major topics: first, the application of eutectic mixtures (before and after the introduction of DES) in the field of drug delivery systems, and second, the most promising examples of DES pharmaceutical activity. It also considers future prospects in the medical and biotechnological fields. In addition to the application of DESs in drug delivery systems, they show greatly promising pharmaceutical activities, including anti-fungal, anti-bacterial, anti-viral, and anti-cancer activities. Eutecticity is a valid strategy for overcoming many obstacles inherently associated with either introducing new drugs or enhancing drug delivery systems.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  2. Yap SP, Yuen KH
    Int J Pharm, 2004 Aug 20;281(1-2):67-78.
    PMID: 15288344
    A single dose comparative bioavailability study was conducted to evaluate the bioavailability of tocotrienols from two self-emulsifying formulations, one of which produced an emulsion that readily lipolysed under in vitro condition (SES-A), while the other produced a finer dispersion with negligible lipolysis (SES-B) in comparison with that of a non-self-emulsifying formulation in soya oil. The study was conducted according to a three-way crossover design using six healthy human volunteers. Statistically significant differences were observed between the logarithmic transformed peak plasma concentration (Cmax) and total area under the plasma concentration-time curve (AUC(0-infinity)) values of both SES-A and -B compared to NSES-C indicating that SES-A and -B achieved a higher extent of absorption compared to NSES-C. Moreover, the 90% confidence interval of the AUC(0-infinity) values of both SES-A and -B over those of NSES-C were between 2-3 suggesting an increase in bioavailability of about two-three times compared to NSES-C. Both SES-A and -B also achieved a faster onset of absorption. However, both SES-A and -B had comparable bioavailability, despite the fact that SES-B was able to form emulsions with smaller droplet size. Thus, it appeared that both droplet sizes as well as the rate and extent of lipolysis of the emulsion products formed were important for enhancing the bioavailability of the tocotrienols from the self-emulsifying systems.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  3. Yakubu R, Peh KK, Tan YT
    Drug Dev Ind Pharm, 2009 Dec;35(12):1430-8.
    PMID: 19929202 DOI: 10.3109/03639040902988566
    The purpose of this study was to design a 24-hour controlled porosity osmotic pump system that utilizes polyvinyl pyrrolidone (PVP) as an osmotic-suspending/release retarding agent of drugs.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  4. Wong TW, Dhanawat M, Rathbone MJ
    Expert Opin Drug Deliv, 2014 Sep;11(9):1419-34.
    PMID: 24960192 DOI: 10.1517/17425247.2014.924499
    Vaginal infection is widespread and > 80% of females encounter such infections during their lives. Topical treatment and prevention of vaginal infection allows direct therapeutic action, reduced drug doses and adverse effects, convenient administration and improved compliance. The advent of nanotechnology results in the use of nanoparticulate vehicle to control drug release, to enhance dosage form mucoadhesive properties and vaginal retention, and to promote mucus and epithelium permeation for both extracellular and intracellular drug delivery.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  5. Wong TW
    Curr Drug Deliv, 2008 Apr;5(2):77-84.
    PMID: 18393808
    Microwave has received a widespread application in pharmaceuticals and food processing, microbial sterilization, biomedical therapy, scientific and biomedical analysis, as well as, drug synthesis. This paper reviews the basis of application of microwave to prepare pharmaceutical dosage forms such as agglomerates, gel beads, microspheres, nanomatrix, solid dispersion, tablets and film coat. The microwave could induce drying, polymeric crosslinkages as well as drug-polymer interaction, and modify the structure of drug crystallites via its effects of heating and/or electromagnetic field on the dosage forms. The use of microwave opens a new approach to control the physicochemical properties and drug delivery profiles of pharmaceutical dosage forms without the need for excessive heat, lengthy process or toxic reactants. Alternatively, the microwave can be utilized to process excipients prior to their use in the formulation of drug delivery systems. The intended release characteristics of drugs in dosage forms can be met through modifying the physicochemical properties of excipients using the microwave.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  6. Wong TW, Nurjaya S
    Eur J Pharm Biopharm, 2008 May;69(1):176-88.
    PMID: 17980563
    The effects of microwave irradiation on the drug release property of pectinate beads loaded internally with chitosan (chitosan-pectinate beads) were investigated against the pectinate beads and beads coacervated with chitosan externally (pectinate-chitosonium beads). These beads were prepared by an extrusion method using sodium diclofenac as the model water-soluble drug. The beads were subjected to microwave irradiation at 80 W for 5, 10, 21 and 40 min. The profiles of drug dissolution, drug content, drug-polymer interaction and polymer-polymer interaction were determined by drug dissolution testing, drug content assay, drug adsorption study, differential scanning calorimetry (DSC) and Fourier transform infra-red spectroscopy (FTIR) techniques. Treatment of pectinate beads by microwave did not lead to a decrease, but an increase in the extent of drug released at 4h of dissolution owing to reduced pectin-pectin interaction via the CO moiety of polymer. In addition, the extent of drug released from the pectinate beads could not be reduced merely through the coacervation of pectinate matrix with chitosan. The reduction in the extent of drug released from the pectinate-chitosonium beads required the treatment of these beads by microwave, following an increase in drug-polymer and polymer-polymer interaction in the matrix. The extent of drug released from the pectinate beads was reduced through incorporating chitosan directly into the interior of pectinate matrix, owing to drug-chitosan adsorption. Nonetheless, the treatment of chitosan-pectinate matrix by microwave brought about an increase in the extent of drug released unlike those of pectinate-chitosonium beads. Apparently, the loading of chitosan into the interior of pectinate matrix could effectively retard the drug release without subjecting the beads to the treatment of microwave. The microwave was merely essential to reduce the release of drug from pectinate beads when the chitosan was introduced to the pectinate matrix by means of coacervation. Under the influences of microwave, the drug release property of beads made of pectin and chitosan was mainly modulated via the CH, OH and NH moieties of polymers and drug, with CH functional group purported to retard while OH and NH moieties purported to enhance the drug released from the matrix.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  7. Virk NA, Rehman A, Abbasi MA, Siddiqui SZ, Rashid U, Iqbal J, et al.
    Pak J Pharm Sci, 2018 Jul;31(4(Supplementary)):1501-1510.
    PMID: 30058542
    N-(Substituted)-5-(1-(4-methoxyphenylsulfonyl)piperidin-4-yl)-4H-1,2,4-triazol-3-ylthio) acetamide were synthesized by following conventional as well as microwave assisted protocol through five consecutive steps under the impact of various reaction conditions to control the reaction time and the yield of product. Starting from 4-methoxybenzenesulfonyl chloride and ethyl isonipecotate, product 3 was obtained which was converted into product 4 by treating with hydrazine hydrate. In step 3, the product 4 was refluxed with methyl isothiocyanate and KOH to yield compound 5 which was finally treated with variety of N-substituted acetamides to yield an array of different new compounds (8a-k). These synthesized compounds were evaluated for their inhibition potential against bovine carbonic anhydrase (bCA-II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Compound 8g demonstrated good activity against bCA-II, AChE and BChE with IC50 values of 8.69 ± 0.38 μM, 11.87±0.19 μM and 26.01±0.55 μM respectively. SAR studies assisted with molecular docking were carried out to explore the mode of binding of the compounds against the studied enzymes.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  8. Venkata Srikanth M, Songa AS, Nali SR, Battu JR, Kolapalli VR
    Drug Dev Ind Pharm, 2014 Jan;40(1):33-45.
    PMID: 23317339 DOI: 10.3109/03639045.2012.744416
    The objective of the present investigation was to study the applicability of thermal sintering technique for the development of gastric floating tablets of propranolol HCl. Formulations were prepared using four independent variables, namely (i) polymer quantity, (ii) sodium bicarbonate concentration, (iii) sintering temperature and (iv) sintering time. Floating lag time and t95 were taken as dependent variables. Tablets were prepared by the direct compression method and were evaluated for physicochemical properties, in vitro buoyancy and dissolution studies. From the drug release studies, it was observed that drug retarding property mainly depends upon the sintering temperature and time of exposure. The statistically optimized formulation (PTSso) was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry studies, and no significant chemical interaction between drug and polymer was observed. Optimized formulation was stable at accelerated conditions for a period of six months. PTSso was evaluated for in vivo buoyancy studies in humans for both fed and fasted states and found that gastric residence time of the floating tablets were enhanced by fed stage but not in fasted state. Optimized formulation PTSso and commercial formulation Ciplar LA 80 were subjected to bioavailability studies in healthy human volunteers by estimating pharmacokinetic parameters such as Cmax, Tmax, area under curve (AUC), elimination rate constant (Kel), biological half-life (t1/2) and mean residence time (MRT). There was a significant increase in the bioavailability of the propranolol HCl from PTSso formulation, which was evident from increased AUC levels and larger MRT values than Ciplar LA 80.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  9. Vallavan V, Krishnasamy G, Zin NM, Abdul Latif M
    Molecules, 2020 Dec 11;25(24).
    PMID: 33322256 DOI: 10.3390/molecules25245848
    Fungi are a rich source of secondary metabolites with several pharmacological activities such as antifungal, antioxidant, antibacterial and anticancer to name a few. Due to the large number of diverse structured chemical compounds they produce, fungi from the phyla Ascomycota, Basidiomycota and Muccoromycota have been intensively studied for isolation of bioactive compounds. Basidiomycetes-derived secondary metabolites are known as a promising source of antibacterial compounds with activity against Gram-positive bacteria. The continued emergence of antimicrobial resistance (AMR) poses a major challenge to patient health as it leads to higher morbidity and mortality, higher hospital-stay duration and substantial economic burden in global healthcare sector. One of the key culprits for AMR crisis is Staphylococcus aureus causing community-acquired infections as the pathogen develops resistance towards multiple antibiotics. The recent emergence of community strains of S. aureus harbouring methicillin-resistant (MRSA), vancomycin-intermediate (VISA) and vancomycin-resistant (VRSA) genes associated with increased virulence is challenging. Despite the few significant developments in antibiotic research, successful MRSA therapeutic options are still needed to reduce the use of scanty and expensive second-line treatments. This paper provides an overview of findings from various studies on antibacterial secondary metabolites from basidiomycetes, with a special focus on antistaphylococcal activity.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  10. Tang SY, Manickam S, Wei TK, Nashiru B
    Ultrason Sonochem, 2012 Mar;19(2):330-45.
    PMID: 21835676 DOI: 10.1016/j.ultsonch.2011.07.001
    In the present study, response surface methodology (RSM) based on central composite design (CCD) was employed to investigate the influence of main emulsion composition variables, namely drug loading, oil content, emulsifier content as well as the effect of the ultrasonic operating parameters such as pre-mixing time, ultrasonic amplitude, and irradiation time on the properties of aspirin-loaded nanoemulsions. The two main emulsion properties studied as response variables were: mean droplet size and polydispersity index. The ultimate goal of the present work was to determine the optimum level of the six independent variables in which an optimal aspirin nanoemulsion with desirable properties could be produced. The response surface analysis results clearly showed that the variability of two responses could be depicted as a linear function of the content of main emulsion compositions and ultrasonic processing variables. In the present investigation, it is evidently shown that ultrasound cavitation is a powerful yet promising approach in the controlled production of aspirin nanoemulsions with smaller average droplet size in a range of 200-300 nm and with a polydispersity index (PDI) of about 0.30. This study proved that the use of low frequency ultrasound is of considerable importance in the controlled production of pharmaceutical nanoemulsions in the drug delivery system.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  11. Tan SL, Stanslas J, Basri M, Abedi Karjiban RA, Kirby BP, Sani D, et al.
    Curr Drug Deliv, 2015;12(6):795-804.
    PMID: 26324229
    Carbamzepine (CBZ) was encapsulated in a parenteral oil-in-water nanoemulsion, in an attempt to improve its bioavailability. The particle size, polydispersity index and zeta potential were measured using dynamic light scattering. Other parameters such as pH, osmolality, viscosity, drug loading efficiency and entrapment efficiency were also recorded. Transmission electron microscopy revealed that emulsion droplets were almost spherical in shape and in the nano-range. The in vitro release profile was best characterized by Higuchi's equation. The parenteral nanoemulsion of CBZ showed significantly higher AUC0→5, AUC0→∞, AUMC0→5, AUMC0→∞, Cmax and lower clearance than that of CBZ solution in plasma. Additionally, parenteral nanoemulsion of CBZ showed significantly higher AUC0→∞, AUMC0→∞ and Cmaxthan that of CBZ solution in brain. The parenteral nanoemulsion of CBZ could therefore use as a carrier, worth exploring further for brain targeting.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  12. Tan DM, Fu JY, Wong FS, Er HM, Chen YS, Nesaretnam K
    Nanomedicine (Lond), 2017 Oct;12(20):2487-2502.
    PMID: 28972460 DOI: 10.2217/nnm-2017-0182
    AIM: To develop 6-O-palmitoyl-ascorbic acid-based niosomes targeted to transferrin receptor for intravenous administration of tocotrienols (T3) in breast cancer.

    MATERIALS & METHODS: Niosomes were prepared using film hydration and ultrasonication methods. Transferrin was coupled to the surface of niosomes via chemical linker. Nanovesicles were characterized for size, zeta potential, morphology, stability and biological efficacy.

    RESULTS: When evaluated in MDA-MB-231 cells, entrapment of T3 in niosomes caused 1.5-fold reduction in IC50 value compared with nonformulated T3. In vivo, the average tumor volume of mice treated with tumor-targeted niosomes was 12-fold lower than that of untreated group, accompanied by marked downregulation of three genes involved in metastasis.

    CONCLUSION: Findings suggested that tumor-targeted niosomes served as promising delivery system for T3 in cancer therapy.

    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  13. Taher AT, Origa R, Perrotta S, Kourakli A, Ruffo GB, Kattamis A, et al.
    Am J Hematol, 2017 May;92(5):420-428.
    PMID: 28142202 DOI: 10.1002/ajh.24668
    Once-daily deferasirox dispersible tablets (DT) have a well-defined safety and efficacy profile and, compared with parenteral deferoxamine, provide greater patient adherence, satisfaction, and quality of life. However, barriers still exist to optimal adherence, including gastrointestinal tolerability and palatability, leading to development of a new film-coated tablet (FCT) formulation that can be swallowed with a light meal, without the need to disperse into a suspension prior to consumption. The randomized, open-label, phase II ECLIPSE study evaluated the safety of deferasirox DT and FCT formulations over 24 weeks in chelation-naïve or pre-treated patients aged ≥10 years, with transfusion-dependent thalassemia or IPSS-R very-low-, low-, or intermediate-risk myelodysplastic syndromes. One hundred seventy-three patients were randomized 1:1 to DT (n = 86) or FCT (n = 87). Adverse events (overall), consistent with the known deferasirox safety profile, were reported in similar proportions of patients for each formulation (DT 89.5%; FCT 89.7%), with a lower frequency of severe events observed in patients receiving FCT (19.5% vs. 25.6% DT). Laboratory parameters (serum creatinine, creatinine clearance, alanine aminotransferase, aspartate aminotransferase and urine protein/creatinine ratio) generally remained stable throughout the study. Patient-reported outcomes showed greater adherence and satisfaction, better palatability and fewer concerns with FCT than DT. Treatment compliance by pill count was higher with FCT (92.9%) than with DT (85.3%). This analysis suggests deferasirox FCT offers an improved formulation with enhanced patient satisfaction, which may improve adherence, thereby reducing frequency and severity of iron overload-related complications.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  14. Sivakumar M, Tang SY, Tan KW
    Ultrason Sonochem, 2014 Nov;21(6):2069-83.
    PMID: 24755340 DOI: 10.1016/j.ultsonch.2014.03.025
    Novel nanoemulsion-based drug delivery systems (DDS) have been proposed as alternative and effective approach for the delivery of various types of poorly water-soluble drugs in the last decade. This nanoformulation strategy significantly improves the cell uptake and bioavailability of numerous hydrophobic drugs by increasing their solubility and dissolution rate, maintaining drug concentration within the therapeutic range by controlling the drug release rate, and reducing systemic side effects by targeting to specific disease site, thus offering a better patient compliance. To date, cavitation technology has emerged to be an energy-efficient and promising technique to generate such nanoscale emulsions encapsulating a variety of highly potent pharmaceutical agents that are water-insoluble. The micro-turbulent implosions of cavitation bubbles tear-off primary giant oily emulsion droplets to nano-scale, spontaneously leading to the formation of highly uniform drug contained nanodroplets. A substantial body of recent literatures in the field of nanoemulsions suggests that cavitation is a facile, cost-reducing yet safer generation tool, remarkably highlighting its industrial commercial viability in the development of designing novel nanocarriers or enhancing the properties of existing pharmaceutical products. In this review, the fundamentals of nanoemulsion and the principles involved in their formation are presented. The underlying mechanisms in the generation of pharmaceutical nanoemulsion under acoustic field as well as the advantages of using cavitation compared to the conventional techniques are also highlighted. This review focuses on recent nanoemulsion-based DDS development and how cavitation through ultrasound and hydrodynamic means is useful to generate the pharmaceutical grade nanoemulsions including the complex double or submicron multiple emulsions.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  15. Singh I, Nair RS, Gan S, Cheong V, Morris A
    Pharm Dev Technol, 2019 Apr;24(4):448-454.
    PMID: 30084268 DOI: 10.1080/10837450.2018.1509347
    The drawbacks associated with chemical skin permeation enhancers such as skin irritation and toxicity necessitated the research to focus on potential permeation enhancers with a perceived lower toxicity. Crude palm oil (CPO) is obtained by direct compression of the mesocarp of the fruit of the oil palm belonging to the genus Elaeis. In this research, CPO and tocotrienol-rich fraction (TRF) of palm oil were evaluated for the first time as skin permeation enhancers using full-thickness human skin. The in vitro permeation experiments were conducted using excised human skin mounted in static upright 'Franz-type' diffusion cells. The drugs selected to evaluate the enhancing effects of these palm oil derivatives were 5-fluorouracil, lidocaine and ibuprofen: compounds covering a wide range of Log p values. It was demonstrated that CPO and TRF were capable of enhancing the percutaneous permeation of drugs across full-thickness human skin in vitro. Both TRF and CPO were shown to significantly enhance the permeation of ibuprofen with flux values of 30.6 µg/cm2 h and 23.0 µg/cm2 h respectively, compared to the control with a flux of 16.2 µg/cm2 h. The outcome of this research opens further scope for investigation on the transdermal penetration enhancement activity of pure compounds derived from palm oil.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  16. Siddique MI, Katas H, Amin MCIM, Ng SF, Zulfakar MH, Buang F, et al.
    J Pharm Sci, 2015 Dec;104(12):4276-4286.
    PMID: 26447747 DOI: 10.1002/jps.24666
    Hydrocortisone (HC) is a topical glucocorticoid for the treatment of atopic dermatitis (AD); the local as well as systemic side effects limit its use. Hydroxytyrosol (HT) is a polyphenol present in olive oil that has strong antimicrobial and antioxidant activities. HC-HT coloaded chitosan nanoparticles (HC-HT CSNPs) were therefore developed to improve the efficacy against AD. In this study, HC-HT CSNPs of 235 ± 9 nm in size and with zeta potential +39.2 ± 1.6 mV were incorporated into aqueous cream (vehicle) and investigated for acute dermal toxicity, dermal irritation, and repeated dose toxicity using albino Wistar rats. HC-HT CSNPs exhibited LD50 > 125 mg/body surface area of active, which is 100-fold higher than the normal human dose of HC. Compared with the commercial formulation, 0.5 g of HC-HT CSNPs did not cause skin irritation, as measured by Tewameter®, Mexameter®, and as observed visually. Moreover, no-observed-adverse-effect level was observed with respect to body weight, organ weight, feed consumption, blood hematological and biochemical, urinalysis, and histopathological parameters at a dose of 1000 mg/body surface area per day of HC-HT CSNPs for 28 days. This in vivo study demonstrated that nanoencapsulation significantly reduced the toxic effects of HC and this should allow further clinical investigations.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  17. Shamsi S, Chen Y, Lim LY
    Int J Pharm, 2015 Nov 10;495(1):194-203.
    PMID: 26319630 DOI: 10.1016/j.ijpharm.2015.08.066
    Curcumin (CUR) has been formulated into a host of nano-sized formulations in a bid to improve its in vivo solubility, stability and bioavailability. The aim of this study was to investigate whether the encapsulation of CUR in nanocarriers would impede its biological interactivity, specifically its potential anti-cancer adjuvant activity via the modulation of CYP enzymes in vitro. NanoCUR, a micellar dispersion prepared via a thin film method using only Pluronic F127 as excipient, was amenable to lyophilization, and retained its nano-sized spherical dimensions (17-33 nm) upon reconstitution with water followed by dilution to 5 μM with HBSS or EMEM. NanoCUR was a weaker cytotoxic agent compared to CUR in solution (sCUR), affecting HepG2 cell viability only when the incubation time was prolonged from 4h to 48 h. Correlation with 2h uptake data suggests this was due to a lower cellular uptake rate of CUR from NanoCUR than from sCUR. The poorer CUR accessibility might also account for NanoCUR being a weaker inhibitor of CYP2C9 and CYP2D6 than sCUR. NanoCUR was, however, 1.76-fold more potent against the CYP3A4 (IC50 5.13 ± 0.91 μM) metabolic function. The higher activity against CYP3A4 might be attributed to the synergistic action of Pluronic F127, since the blank micellar dispersion also inhibited CYP3A4 activity. Both sCUR and NanoCUR had no effect on the CYP3A4 mRNA levels in the HepG2 cells. NanoCUR therefore, maintained most of the biological activities of CUR in vitro, albeit at a lower potency and response rate.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  18. Shah K, Chan LW, Wong TW
    Drug Deliv, 2017 Nov;24(1):1631-1647.
    PMID: 29063794 DOI: 10.1080/10717544.2017.1384298
    The study investigated aerosolization, pulmonary inhalation, intracellular trafficking potential in macrophages and pharmacokinetics profiles of rifampicin-oleic acid first-generation nanoemulsion and its respective chitosan- and chitosan-folate conjugate-decorated second and third-generation nanoemulsions, delivered via nebulization technique. The nanoemulsions were prepared by conjugate synthesis and spontaneous emulsification techniques. They were subjected to physicochemical, drug release, aerosolization, inhalation, cell culture and pharmacokinetics analysis. The nanoemulsions had average droplet sizes of 40-60 nm, with narrow polydispersity indices. They exhibited desirable pH, surface tension, viscosity, refractive index, density and viscosity attributes for pulmonary rifampicin administration. All nanoemulsions demonstrated more than 95% aerosol output and inhalation efficiency greater than 75%. The aerosol output, aerosolized and inhaled fine particle fractions were primarily governed by the size and surface tension of nanoemulsions in an inverse relationship. The nanoemulsions were found to be safe with third-generation nanoemulsion exhibiting higher cell internalization potential, reduced plasma drug concentration, and higher lung drug content.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  19. Sengupta P, Chatterjee B, Tekade RK
    Int J Pharm, 2018 May 30;543(1-2):328-344.
    PMID: 29635054 DOI: 10.1016/j.ijpharm.2018.04.007
    Different regulatory guidelines recommend establishing stability profile of pharmaceuticals at the time of drug development. The expiry date, retesting period and storage conditions of active drugs or products are established through stability analysis. Several regulatory guidelines exist for stability testing of pharmaceuticals. Mostly, ICH stability guidelines are followed in practice. This guideline recommends to validate stability indicating method using forced degradation samples that contains all possible degradation impurities. ICH guidelines provide general recommendations for inclusion of stability indicating parameters in a stability testing protocol. However, those guidelines do not provide specific requirements and experimental methodology to be followed for stability studies. Due to this gap, often confusion arises in the scientific community in designing stability testing protocol. Therefore, significant variations are observed in reported literature in selection of stability indicating parameters. Procedural dissimilarity amongst reported stability studies is also evident. This review discusses the regulatory guidelines and procedures to follow in performing stability testing of pharmaceuticals. Scope of this review also includes recommendations on practical approaches for designing stability testing protocol to fulfill current regulatory requirements for drug substances and their formulations.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  20. Samiun WS, Ashari SE, Salim N, Ahmad S
    Int J Nanomedicine, 2020;15:1585-1594.
    PMID: 32210553 DOI: 10.2147/IJN.S198914
    Background: Aripiprazole, which is a quinolinone derivative, has been widely used to treat schizophrenia, major depressive disorder, and bipolar disorder.

    Purpose: A Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM) was used purposely to optimize process parameters conditions for formulating nanoemulsion containing aripiprazole using high emulsification methods.

    Methods: This design is used to investigate the influences of four independent variables (overhead stirring time (A), shear rate (B), shear time (C), and the cycle of high-pressure homogenizer (D)) on the response variable namely, a droplet size (Y) of nanoemulsion containing aripiprazole.

    Results: The optimum conditions suggested by the predicted model were: 120 min of overhead stirring time, 15 min of high shear homogenizer time, 4400 rpm of high shear homogenizer rate and 11 cycles of high-pressure homogenizer, giving a desirable droplet size of nanoemulsion containing aripiprazole of 64.52 nm for experimental value and 62.59 nm for predicted value. The analysis of variance (ANOVA) showed the quadratic polynomial fitted the experimental values with F-value (9.53), a low p-value (0.0003) and a non-significant lack of-fit. It proved that the models were adequate to predict the relevance response. The optimized formulation with a viscosity value of 3.72 mPa.s and pH value of 7.4 showed good osmolality value (297 mOsm/kg) and remained stable for three months in three different temperatures (4°C, 25°C, and 45°C).

    Conclusion: This proven that response surface methodology is an efficient tool to produce desirable droplet size of nanoemulsion containing aripiprazole for parenteral delivery application.

    Matched MeSH terms: Chemistry, Pharmaceutical/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links