Displaying publications 1 - 20 of 413 in total

Abstract:
Sort:
  1. Gul K, Sohni S, Waqar M, Ahmad F, Norulaini NAN, A K MO
    Carbohydr Polym, 2016 Nov 05;152:520-531.
    PMID: 27516300 DOI: 10.1016/j.carbpol.2016.06.045
    In the present study, we decorated chitosan (©) with Fe3O4 nanoparticles followed by cross-linking with GO to prepare Fe3O4 supported chitosan-graphene oxide composite (Fe3O4©-GO). Different properties of synthesized material were investigated by SEM, XRD, FTIR, TGA and EDX. Batch adsorption experiments were performed to remove toxic cationic and anionic dyes from industrial wastewater. To maximize removal efficiency of composite material, effect of pH (4-12), time (0-80min), Fe3O4©-GO dosage (2-10mg), initial dye concentration (2-30μgmL̄ (1)) and temperature (303, 313, and 323K) were studied. The uptake of dyes presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model. To understand the interaction of dye with adsorbent, Langmuir and Freundlich isotherm were applied. Thermodynamic studies were conducted to calculate the changes in free energy (ΔG(0)), enthalpy (ΔH(0)) and entropy (ΔS(0)). In view of practical application, the influence of ionic strength, recycling as well as investigations based on percent recoveries from spiked real water samples were also taken into account.
    Matched MeSH terms: Chitosan/chemistry*
  2. Jawad AH, Abdulhameed AS, Malek NNA, ALOthman ZA
    Int J Biol Macromol, 2020 Dec 01;164:4218-4230.
    PMID: 32861784 DOI: 10.1016/j.ijbiomac.2020.08.201
    In current research work, chitosan (Chi) was subjected to subsequent physical and chemical modifications by incorporating kaolin clay (KA) into its polymeric structure, and crosslinking process with a covalent cross-linker namely epichlorohydrin (ECH) respectively. The final product of crosslinked chitosan-epichlorohydrin/kaolin (Chi-ECH/KA) composite was successfully applied for color removal and chemical oxygen demand (COD) reduction of textile dye namely reactive blue 19 dye (RB19) from aqueous environment. The influence of pertinent parameters, i.e. A: Chi-ECH/KA dose (0.02-0.1 g), B: pH (4-10), and C: time (5-30 min) on the RB19 color removal and COD reduction were statistically optimized by using response surface methodology with Box-Behnken design (RSM-BBD). The experimental data of the adsorption kinetic and the adsorption isotherm demonstrated a better fitness to pseudo-second order model and Langmuir isotherm model respectively. Excellent absorption ability of 560.9 mg/g was recorded for Chi-ECH/KA composite. The calculated thermodynamic functions clarified that the RB19 adsorption process was endothermic and spontaneous in nature. The mechanism of RB19 adsorption onto the Chi-ECH/KA may include electrostatic interactions, hydrogen bonding, Yoshida H-bonding, and n-π interactions. This study introduces Chi-ECH/KA composite as an eco-friendly, potential and multi-function composite bio adsorbent for removal of textile dye and COD reduction from aqueous environment.
    Matched MeSH terms: Chitosan/chemistry*
  3. Malek NNA, Jawad AH, Ismail K, Razuan R, ALOthman ZA
    Int J Biol Macromol, 2021 Oct 31;189:464-476.
    PMID: 34450144 DOI: 10.1016/j.ijbiomac.2021.08.160
    A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.
    Matched MeSH terms: Chitosan/chemistry*
  4. Isa IM, Ab Ghani S
    Talanta, 2007 Jan 15;71(1):452-5.
    PMID: 19071326 DOI: 10.1016/j.talanta.2006.04.034
    This paper describes the preparation of and experimentation undertaken by heterogeneous chitosan membrane as ion selective electrode for glutamate ion. The linearity response was obtained in the range of 1.0x10(-5) to 1.0x10(-1)M with a detection limit of 1.0x10(-6)M. The performance of the electrode was found in the pH range of 4.0-8.0 at temperature 25+/-3 degrees C. The response time was at 5-35s and was useful for a period of more than 4 months. The selectivity values towards some anions indicates good selectivity over a number of interfering anions. No significant improvement of membrane performance over additional of plasticizers such as 2-NPOE, BEHA and DOPP. The electrodes gave sufficient Nernstian responses with the exception of membrane with 2-NPOE.
    Matched MeSH terms: Chitosan
  5. Zokti JA, Sham Baharin B, Mohammed AS, Abas F
    Molecules, 2016 Jul 26;21(8).
    PMID: 27472310 DOI: 10.3390/molecules21080940
    Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.
    Matched MeSH terms: Chitosan/chemistry
  6. Kaikabo AA, AbdulKarim SM, Abas F
    Poult Sci, 2017 Feb 01;96(2):295-302.
    PMID: 27702916 DOI: 10.3382/ps/pew255
    Disease inflicted by avian pathogenic Escherichia coli (APEC) causes economic losses and burden to the poultry industry worldwide. In this study, the efficacy of chitosan nanoparticles loaded ΦKAZ14 (C-ΦKAZ14 NPs) as an oral biological therapy for Colibacillosis was evaluated. C-ΦKAZ14 NPs containing 10(7) PFU/ml of ΦKAZ14 (Myoviridae; T4-like coliphage) bacteriophage were used to treat experimentally APEC-infected COBB 500 broiler chicks. C-ΦKAZ14 NPs and ΦKAZ14 bacteriophage were administered orally in a single dose. The clinical symptoms, mortality, and pathology in the infected birds were recorded and compared with those of control birds that did not receive C-ΦKAZ14 NPs or naked ΦKAZ14 bacteriophage. The results showed that C-ΦKAZ14 NP intervention decreased mortality from 58.33 to 16.7% with an increase in the protection rate from 42.00 to 83.33%. The bacterial colonization of the intestines of infected birds was significantly higher in the untreated control than in the C-ΦKAZ14 NP-treated group (2.30×10(9) ± 0.02 and 0.79×10(3) ± 0.10 CFU/mL, respectively) (P ≤ 0.05). Similarly, a significant difference in the fecal shedding of Escherichia coli was observed on d 7 post challenge between the untreated control and the C-ΦKAZ14 NP-treated group (2.35×10(9) ± 0.05 and 1.58×10(3) ± 0.06 CFU/mL, respectively) (P ≤ 0.05). Similar trends were observed from d 14 until d 21 when the experiment was terminated. Treatment with C-ΦKAZ14 NPs improved the body weights of the infected chicks. A difference in body weight on d 7 post challenge was observed between the untreated control and the C-ΦKAZ14 NP-treated group (140 ± 20 g and 160 ± 20 g, respectively). The increase was significant (P ≤ 0.05) on d 21 between the 2 groups (240 ± 30 g and 600 ± 80 g, respectively). Consequently, the clinical signs and symptoms were ameliorated upon treatment with C-ΦKAZ14 NPs compared with infected untreated birds. In all, based on the results, it can be concluded that the encapsulation of bacteriophage could enhance bacteriophage therapy and is a valuable approach for controlling APEC infections in poultry.
    Matched MeSH terms: Chitosan
  7. Adamu Ahmad K, Sabo Mohammed A, Abas F
    Molecules, 2016 Mar 14;21(3):256.
    PMID: 26985885 DOI: 10.3390/molecules21030256
    The use of chitosan as a delivery carrier has attracted much attention in recent years. In this study, chitosan nanoparticles (CS-NP) and chitosan-ΦKAZ14 bacteriophage-loaded nanoparticles (C-ΦKAZ14 NP) were prepared by a simple coercavation method and characterized. The objective was to achieve an effective protection of bacteriophage from gastric acids and enzymes in the chicken gastrointestinal tract. The average particle sizes for CS-NP and C-ΦKAZ14 NP were 188 ± 7.4 and 176 ± 3.2 nm, respectively. The zeta potentials for CS-NP and C-ΦKAZ14 NP were 50 and 60 mV, respectively. Differential scanning calorimetry (DSC) of C-ΦKAZ14 NP gave an onset temperature of -17.17 °C with a peak at 17.32 °C and final end set of 17.41 °C, while blank chitosan NP had an onset of -20.00 °C with a peak at -19.78 °C and final end set at -20.47. FT-IR spectroscopy data of both CS-NP and C-ΦKAZ14 NP were the same. Chitosan nanoparticles showed considerable protection of ΦKAZ14 bacteriophage against degradation by enzymes as evidenced in gel electrophoresis, whereby ΦKAZ14 bacteriophage encapsulated in chitosan nanoparticles were protected whereas the naked ΦKAZ14 bacteriophage were degraded. C-ΦKAZ14 NP was non-toxic as shown by a chorioallantoic membrane (CAM) toxicity assay. It was concluded that chitosan nanoparticles could be a potent carrier of ΦKAZ14 bacteriophage for oral therapy against colibacillosis in poultry.
    Matched MeSH terms: Chitosan/chemistry
  8. Khairul Zaman N, Rohani R, Izni Yusoff I, Kamsol MA, Basiron SA, Abd Rashid AI
    PMID: 34501755 DOI: 10.3390/ijerph18179164
    The evaluation of complex organic and inorganic coagulant's performances and their relationships could compromise the surface water treatment process time and its efficiency. In this work, process optimization was investigated by comparing an eco-friendly chitosan with the industrially used coagulants namely aluminum sulfate (alum), polyaluminum chloride (PAC), and aluminum chlorohydrate (ACH) in compliance with national drinking water standards. To treat various water samples from different treatment plants with turbidity and pH ranges from 20-826.3 NTU and 5.21-6.80, respectively, 5-20 mg/L coagulant dosages were varied in the presence of aluminum, ferum, and manganese. Among all, 10 mg/L of the respective ACH and chitosan demonstrated 97% and 99% turbidity removal in addition to the removal of the metals that complies with the referred standard. However, chitosan owes fewer sensitive responses (turbidity and residual metal) with the change in its input factors (dosage and pH), especially in acidic conditions. This finding suggested its beneficial role to be used under the non-critical dosage monitoring. Meanwhile, ACH was found to perform better than chitosan only at pH > 7.4 with half dosage required. In summary, chitosan and ACH could perform equally at a different set of optimum conditions. This optimization study offers precise selections of coagulants for a practical water treatment operation.
    Matched MeSH terms: Chitosan*
  9. Md Rasib SZ, Md Akil H, Khan A, Abdul Hamid ZA
    Int J Biol Macromol, 2019 May 01;128:531-536.
    PMID: 30708001 DOI: 10.1016/j.ijbiomac.2019.01.190
    An earlier study showed that the behaviour of chitosan-poly(methacrylic acid‑co‑N‑isopropylacrylamide) [chitosan‑p(MAA‑co‑NIPAM)] hydrogels synthesized at different reaction times are affected with regard to their pH and temperature sensitivities. The study was continued in this paper to identify the effects of different reaction times on the degradation, efficiency of rifampicin (Rif) loading and the Rif release profile under two different pH conditions (acidic and basic). The results that were obtained showed that the hydrogel had a faster degradation rate in the acidic condition than in the basic condition, where there was a loss of approximately 50% and 20%, respectively in its original weight within two weeks. The Rif loading efficiency was within 50% and the drug release was controlled by characteristics that were developed beyond the polymerization stages of the synthesis. Therefore, the reaction time for the synthesis of the hydrogel can be considered as a way to control the behaviour of the hydrogel as well as to modify the drug release profile in the chitosan‑p(MAA‑co‑NIPAM) hydrogel.
    Matched MeSH terms: Chitosan/chemistry*
  10. Ahmed Saud Abdulhameed, Ali H. Jawad, Abdul Karim-Talaq Mohammad
    Science Letters, 2020;14(2):1-14.
    MyJurnal
    Response surface methodology-Box–Behnken design (RSM-BBD) was employed to optimize the methyl orange (MO) dye removal efficiency from aqueous solution by cross-linked chitosan-tripolyphosphate/nano-titania compsite (Chi-TPP/NTC). The influence of pertinent parameters, i.e. A: TiO2 loading (0- 50 %), B: dose (0.04-0.14 g), C: pH (4-10), and D: temperature (30-50 oC) on the MO removal efficiency were tested and optimized using RSM-BBD. The F-values of BBD model for MO removal efficiency was 93.4 (corresponding p-value < 0.0001). The results illustrated that the highest MO removal efficiency (87.27 %) was observed at the following conditions: TiO2 loading (50% TiO2), dose (0.09 g), pH = 4.0, and temperature of 40 oC.
    Matched MeSH terms: Chitosan
  11. Yusof Nurhayati, Abdul Manaf Ali
    MyJurnal
    Many researchers have focused chitosan as a source of potential bioactive material during the past few decades. However, chitosan has several drawbacks to be utilised in biological applications, including poor solubility under physiological conditions. Therefore, a new interest has recently emerged on partially hydrolysed chitosan, chitosan oligosaccharides (COS). In this study, degradation of chitosan was performed by Cellulase from Trichoderma reesei® 1.5L and Response Surface Methodology (RSM) were employed to optimize the hydrolysis temperature, pH, enzyme concentration and substrate concentration. Optimization of cellulase T. reesei® using central composite design (CCD) was to obtain optimum parameters and all the factors showed significant effects (p˂0.05). The maximum response, Celluclast® activity (1.268 U) was obtained by assaying the process at 49.79oC, pH 4.5, 3% (v/w) of enzyme concentration and 25% (w/v) concentration of chitosan for 24 hours.
    Matched MeSH terms: Chitosan
  12. Jafarizadeh Malmiri, H., Osman, A., Tan, C.P., Abdul Rahman, R.
    MyJurnal
    Response surface methodology (RSM) was used to optimize the concentrations of chitosan and glycerol for coating Berangan banana (Musa sapientum cv. Berangan). The effects of main edible coating components, chitosan (0.5-2.5%, w/w) and glycerol (0-2%, w/w) on weight loss, firmness, total colour difference, total soluble solids content (TSS) and titratable acidity (TA) of coated banana were studied during 10 days of storage at 26±2°C and 40-50% relative humidity. Results showed that the experimental data could be adequately fitted into a second-order polynomial model with coefficient of determination (R 2 ) ranging from 0.745 to 0.930 for all the variables studied. In general, the chitosan concentration appeared to be the most significant (P< 0.1) factor influencing all variables except for TSS. The optimum concentration of chitosan and glycerol were predicted to be 2.02% and 0.18%, respectively. Statistical assessment showed insignificant difference between experimental and predicted values.
    Matched MeSH terms: Chitosan
  13. Bayrami A, Shirdel A, Rahim Pouran S, Mahmoudi F, Habibi-Yangjeh A, Singh R, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 Dec;117:111351.
    PMID: 32919695 DOI: 10.1016/j.msec.2020.111351
    There is a renewed interest in the application of chitosan-based drug delivery systems over the last few years. In this study, the ionic gelation method was used to prepare chitosan-engaged tripolyphosphate ions, as the cross-linking molecule, (Chit-TPP) and concurrent loading of the biomolecules of the ethanolic extract of fennel, Foeniculum vulgare, seed (FEC@NBC). The samples were characterized by SEM, DLS, TGA, FTIR, XRD, GC-MS, and zeta potential, and their effects on the related hormonal and biochemical factors of the rats with polycystic ovarian syndrome (PCOS) were assessed. The estradiol valerate-induced PCOS in female rats was confirmed by vaginal smear test and subsequent histological screening. The PCOS-induced rats were treated by fennel seed extract (FSX), Chit-TPP, and FEC@NBC. The process of treatment was monitored by measuring the serum levels of testosterone, luteinizing hormone, follicle-stimulating hormone, insulin, glucose, high-density lipoprotein cholesterol, total cholesterol, and total triglyceride after 16 days of treatment and compared with healthy control and untreated PCOS-control groups. The FEC@NBC administration contributed to the remarkable hormonal, glucose, and lipid profile regulation in the rats with PCOS. The significance of FEC@NBC performance in dealing with PCOS complications compared to that of the only extract could be resulted from the effective targeted delivery and stability of phytomolecules when encapsulated in Chit-TPP.
    Matched MeSH terms: Chitosan*
  14. Abd Manan FM, Attan N, Zakaria Z, Mahat NA, Abdul Wahab R
    J Biotechnol, 2018 May 28;280:19-30.
    PMID: 29852195 DOI: 10.1016/j.jbiotec.2018.05.015
    To overcome drawbacks in the conventional chemical route to synthesize eugenyl benzoate, immobilized Rhizomucor miehei lipase (RML) as the biocatalyst was proposed. The RML conjugated to a hybrid support consisting of biopolymers, chitosan (CS) and chitin nanowhiskers (CNWs). 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDAC) was used as the crosslinker to bind the lipase. Immobilization of RML was the highest on crosslinked CS/CNWs which gave a protein loading of ∼8.12 mg/g, corresponding to specific and residual activity of 537 U/g and 137%, respectively. Fourier transform infrared spectroscopy, thermogravimetric analysis-differential thermogravimetry, field emission scanning electron and atomic force microscopy of RML-CS/CNWs revealed that RML was successfully attached to the surface of crosslinked CS/CNWs. Under an optimized condition, the highest yield of eugenyl benzoate (56.3%) was attained after 5 h using 3 mg/mL of RML-CS/CNWs with molar ratio of eugenol: benzoic acid of 3:1, as compared to only 47.3% for the free RML. Analyses of FTIR and NMR on purified eugenyl benzoate affirmed that the ester was successfully produced in the enzymatic esterification. Therefore, the use of the RML-CS/CNWs biocatalysts appears promising to afford good yields of eugenyl benzoate within a relatively shorter reaction time.
    Matched MeSH terms: Chitosan
  15. Jawad AH, Mubarak NSA, Abdulhameed AS
    Int J Biol Macromol, 2020 Jan 01;142:732-741.
    PMID: 31760013 DOI: 10.1016/j.ijbiomac.2019.10.014
    In this study, tunable Schiff's base-cross-linked chitosan-glutaraldehyde (CS-GLA) was modified and applied to remove reactive red 120 (RR120) dye from an aqueous solution. Different ratios of TiO2 nanoparticles, such as 25% TiO2 nanoparticles (CS-GLA/TNC-25) and 50% TiO2 nanoparticles (CS-GLA/TNC-50), were loaded into the CS-GLA's molecular structure. The adsorptive properties of CS-GLA, CS-GLA/TNC-25, and CS-GLA/TNC-50 for the RR120 dye in the aqueous solution were evaluated. CS-GLA/TNC-25 exhibited the best adsorptive property possibly because of the perfect balancing between the surface area and available amine (NH2) groups in the composite formulation. The impact of adsorption key parameters, such as adsorbent dosage (0.01-1.2 g), RR120 dye concentration (30-400 mg/L), solution pH (3-12), and contact time (0-400 min) were explored by batch adsorption mode. The adsorption was well described by the Freundlich model and pseudo-second order kinetic model. The adsorption capacity of CS-GLA/TNC-25 for RR120 dye was 103.1 mg/g at 303K. The adsorption mechanism of RR120 on the CS-GLA/TNC-25 surface can be assigned to various interactions, such as electrostatic attraction, n-π stacking, and H-bonding. Results indicate the potential application of CS-GLA/TNC-25 as environment-friendly biosorbent for removing acid and/or textile dyes, such as RR120, from aqueous environments.
    Matched MeSH terms: Chitosan/chemistry*
  16. Vakili M, Rafatullah M, Salamatinia B, Ibrahim MH, Abdullah AZ
    Carbohydr Polym, 2015 Nov 05;132:89-96.
    PMID: 26256328 DOI: 10.1016/j.carbpol.2015.05.080
    The adsorption behavior of chitosan (CS) beads modified with 3-aminopropyl triethoxysilane (APTES) for the removal of reactive blue 4 (RB4) in batch studies has been investigated. The effects of modification conditions, such as the APTES concentration, temperature and reaction time on RB4 removal, were studied. The adsorbent prepared at a concentration of 2 wt% APTES for 8h at 50 °C was the most effective one for RB4 adsorption. The adsorption capacity of modified CS beads (433.77 mg/g) was 1.37 times higher than that of unmodified CS beads (317.23 mg/g). The isotherm data are adequately described by a Freundlich model, and the kinetic study revealed that the pseudo-second-order rate model was in better agreement with the experimental data. The negative values of the thermodynamic parameters, including ΔG° (-2.28 and -4.70 kJ/mol at 30 ± 2 °C), ΔH° (-172.18 and -43.82 kJ/mol) and ΔS° (-560.71 and -129.08 J/mol K) for CS beads and APTES modified beads, respectively, suggest that RB4 adsorption is a spontaneous and exothermic process.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  17. Aziz SB, Hamsan MH, Kadir MFZ, Karim WO, Abdullah RM
    Int J Mol Sci, 2019 Jul 09;20(13).
    PMID: 31323971 DOI: 10.3390/ijms20133369
    Solid polymer blend electrolyte membranes (SPBEM) composed of chitosan and dextran with the incorporation of various amounts of lithium perchlorate (LiClO4) were synthesized. The complexation of the polymer blend electrolytes with the salt was examined using FTIR spectroscopy and X-ray diffraction (XRD). The morphology of the SPBEs was also investigated using field emission scanning electron microscopy (FESEM). The ion transport behavior of the membrane films was measured using impedance spectroscopy. The membrane with highest LiClO4 content was found to exhibit the highest conductivity of 5.16 × 10-3 S/cm. Ionic (ti) and electronic (te) transference numbers for the highest conducting electrolyte were found to be 0.98 and 0.02, respectively. Electrochemical stability was estimated from linear sweep voltammetry and found to be up to ~2.3V for the Li+ ion conducting electrolyte. The only existence of electrical double charging at the surface of electrodes was evidenced from the absence of peaks in cyclic voltammetry (CV) plot. The discharge slope was observed to be almost linear, confirming the capacitive behavior of the EDLC. The performance of synthesized EDLC was studied using CV and charge-discharge techniques. The highest specific capacitance was achieved to be 8.7 F·g-1 at 20th cycle. The efficiency (η) was observed to be at 92.8% and remained constant at 92.0% up to 100 cycles. The EDLC was considered to have a reasonable electrode-electrolyte contact, in which η exceeds 90.0%. It was determined that equivalent series resistance (Resr) is quite low and varies from 150 to 180 Ω over the 100 cycles. Energy density (Ed) was found to be 1.21 Wh·kg-1 at the 1st cycle and then remained stable at 0.86 Wh·kg-1 up to 100 cycles. The interesting observation is that the value of Pd increases back to 685 W·kg-1 up to 80 cycles.
    Matched MeSH terms: Chitosan/chemistry*
  18. B Aziz S, S Marf A, Dannoun EMA, Brza MA, Abdullah RM
    Polymers (Basel), 2020 Sep 24;12(10).
    PMID: 32987807 DOI: 10.3390/polym12102184
    This report presents a facile and efficient methodology for the fabrication of plasticized polyvinyl alcohol (PVA):chitosan (CS) polymer electrolytes using a solution cast technique. Regarding characterizations of electrical properties and structural behavior, the electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) are used, respectively. Crystalline peaks appear in the XRD pattern of the PVA:CS:NH4I while no peaks can be seen in the XRD pattern of plasticized systems. The degree of crystallinity is calculated for all the samples from the deconvoluted area of crystalline and amorphous phases. Considering the EIS measurements, the most conductive plasticized system shows a relatively high conductivity of (1.37 × 10-4) S/cm, which is eligible for applications in energy storage devices. The analysis of the EIS spectra reveals a decrease in bulk resistance which indicates an increase in free ion carriers. The electrical equivalent circuit (EEC) model is used in the analysis of EIS plots. Dielectric properties are modified with the addition of glycerol as a plasticizer. It is proved that the addition of glycerol as a plasticizer lowers ion association. It also shows, at the low-frequency region, a large value of a dielectric constant which is correlated with electrode polarization (EP). The distribution of relaxation times is associated with conducting ions.
    Matched MeSH terms: Chitosan
  19. Rozman NAS, Tong WY, Leong CR, Tan WN, Hasanolbasori MA, Abdullah SZ
    J Microbiol Biotechnol, 2019 Jul 28;29(7):1009-1013.
    PMID: 31288302 DOI: 10.4014/jmb.1904.04065
    Polymeric nanoparticles are widely used for drug delivery due to their biodegradability property. Among the wide array of polymers, chitosan has received growing interest among researchers. It was widely used as a vehicle in polymeric nanoparticles for drug targeting. This review explored the current research on the antimicrobial activity of chitosan nanoparticles (ChNP) and the impact on the clinical applications. The antimicrobial activities of ChNP were widely reported against bacteria, fungi, yeasts and algae, in both in vivo and in vitro studies. For pharmaceutical applications, ChNP were used as antimicrobial coating for promoting wound healing, preventing infections and combating the rise of infectious disease. Besides, ChNP also exhibited significant inhibitory on foodborne microorganisms, particularly on fruits and vegetables. It is noteworthy that ChNP can be also applied to deliver antimicrobial drugs, which further enhance the efficiency and stability of the antimicrobial agent. The present review addresses the potential antimicrobial applications of ChNP from these few aspects.
    Matched MeSH terms: Chitosan/chemistry*
  20. Aziz SB, Brza MA, Hamsan EMADMH, Hadi JM, Kadir MFZ, Abdulwahid RT
    Molecules, 2020 Oct 01;25(19).
    PMID: 33019618 DOI: 10.3390/molecules25194503
    Plasticized magnesium ion conducting polymer blend electrolytes based on chitosan (CS): polyvinyl alcohol (PVA) was synthesized with a casting technique. The source of ions is magnesium triflate Mg(CF3SO3)2, and glycerol was used as a plasticizer. The electrical and electrochemical characteristics were examined. The outcome from X-ray diffraction (XRD) examination illustrates that the electrolyte with highest conductivity exhibits the minimum degree of crystallinity. The study of the dielectric relaxation has shown that the peak appearance obeys the non-Debye type of relaxation process. An enhancement in conductivity of ions of the electrolyte system was achieved by insertion of glycerol. The total conductivity is essentially ascribed to ions instead of electrons. The maximum DC ionic conductivity was measured to be 1.016 × 10-5 S cm-1 when 42 wt.% of plasticizer was added. Potential stability of the highest conducting electrolyte was found to be 2.4 V. The cyclic voltammetry (CV) response shows the behavior of the capacitor is non-Faradaic where no redox peaks appear. The shape of the CV response and EDLC specific capacitance are influenced by the scan rate. The specific capacitance values were 7.41 F/g and 32.69 F/g at 100 mV/s and 10 mV/s, respectively. Finally, the electrolyte with maximum conductivity value is obtained and used as electrodes separator in the electrochemical double-layer capacitor (EDLC) applications. The role of lattice energy of magnesium salts in energy storage performance is discussed in detail.
    Matched MeSH terms: Chitosan/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links