Displaying publications 1 - 20 of 413 in total

Abstract:
Sort:
  1. Othman SH, Shapi'i RA, Ronzi NDA
    Carbohydr Polym, 2024 Apr 01;329:121735.
    PMID: 38286535 DOI: 10.1016/j.carbpol.2023.121735
    Starch biopolymer films incorporated with chitosan nanoparticles (CNP) or starch/CNP films are promising alternatives to non-degradable food packaging materials. The films can be utilized for active food packaging applications because CNP exhibits antimicrobial and antioxidant properties, which can improve food shelf-life. Nonetheless, knowledge of the effects of CNP inclusion on the properties of starch films is not fully elucidated. This paper reviews the influences of various concentrations of CNP, sizes of CNP, and other additives on the mechanical, thermal, barrier, antimicrobial, antioxidant, biodegradability, and cytotoxicity properties of starch/CNP films as well as the mechanisms involved in relation to food packaging applications. The usage of starch/CNP films for active food packaging can help to reduce environmental issues and contribute to food safety and security.
    Matched MeSH terms: Chitosan*
  2. Yu H, Zheng Y, Zhou C, Liu L, Wang L, Cao J, et al.
    Carbohydr Polym, 2024 Feb 01;325:121583.
    PMID: 38008470 DOI: 10.1016/j.carbpol.2023.121583
    The potential of ultrasonication-driven molecular self-assembly of whey protein isolate (WPI) with chitosan (CS)/chitooligosaccharide (COS) to stabilize Pickering emulsions was examined, based on CS/COS ligands-induced partial unfolding in remodeling the Pickering particles features. Multi-spectral analysis suggested obvious changes in conformational structures of WPI due to interaction with CS/COS, with significantly higher unfolding degrees of WPI induced by COS. Non-covalent interactions were identified as the major forces for WPI-CS/COS conjugates. Ultrasonication enhanced electrostatic interaction between CS's -NH3 groups and WPI's -COO- groups which improved emulsification activity and storability of WPI-COS stabilized Pickering emulsion. This was attributed to increased surface hydrophobicity and decreased particle size compared to WPI-CS associated with differential unfolding degrees induced by different saccharide ligands. CLSM and SEM consistently observed smaller emulsion droplets in WPI-COS complexes than WPI-CS/COS particles tightly adsorbed at the oil-water interface. The electrostatic self-assembly of WPI with CS/COS greatly enhanced the encapsulation efficiency of quercetin than those stabilized by WPI alone and ultrasound further improved encapsulation efficiency. This corresponded well with the quantitative affinity parameters between quercetin and WPI-CS/COS complexes. This investigation revealed the great potential of glycan ligands-induced conformational transitions of extrinsic physical disruption in tuning Pickering particle features.
    Matched MeSH terms: Chitosan*
  3. Li G, Li J, Lee YY, Qiu C, Zeng X, Wang Y
    Int J Biol Macromol, 2024 Jan;255:128086.
    PMID: 37981278 DOI: 10.1016/j.ijbiomac.2023.128086
    Chitosan (CS) based nanoparticles (NPs) were fabricated via an ionic gelation reaction modified by flaxseed gum (FG) or sodium tripolyphosphate (STPP). The average particle size, morphology, interfacial tension, and wettability of NPs were characterized. The particle size of CS-STPP-HA (hyaluronic acid)-FA (ferulic acid) NPs and CS-FG-HA-FA NPs was 400.8 nm and 262.4 nm, respectively under the optimized conditions of CS/STPP = 5:1 (w/w) or CS/FG = 1:1 (v/v) with HA concentration of 0.25 mg/mL and FA dosage of 25 μM. FG acted as a good alternative for STPP to form particles with CS in stabilizing Pickering emulsion with an internal diacylglycerol (DAG) phase of 50-80 % (v/v). The complex nanoparticles had high surface activity and contact angle close to 90 °C, being able to tightly packed at the droplet surface. The emulsions had high thermal, ionic and oxidative stability. With the aid of moisturizing polysaccharides and DAG oil, the emulsions had a good sustained-release ability for FA with deeper penetration and retention into the dermis of the skin. Thus, FG and HA-based NPs serve as green vehicles for the fabrication of novel Pickering emulsions and possess great potential to be applied as a delivery system for lipophilic active agents in functional food and cosmetic products.
    Matched MeSH terms: Chitosan*
  4. Abdulhameed AS, Hapiz A, Musa SA, ALOthman ZA, Wilson LD, Jawad AH
    Int J Biol Macromol, 2024 Jan;255:128075.
    PMID: 37977465 DOI: 10.1016/j.ijbiomac.2023.128075
    Herein, a quadruple biomagnetic nanocomposite of cross-linked chitosan-ethylene glycol diglycidyl ether/organo-nanoclay (MCH-EGDE/ORNC) was designed for the uptake of remazol brilliant blue R (RBBR) dye from aqueous environment. The adsorption process was systematically improved via the Box-Behnken design (BBD) to determine the influence of key uptake parameters, including MCH-EGDE/ORNC dosage, pH, and time, on the RBBR removal. The highest RBBR removal of 87.5 % was achieved at the following conditions: MCH-EGDE/ORNC dosage: 0.1 g/100 mL; pH: 4.0; contact time: 25 min. The findings of the kinetics and equilibrium studies revealed an excellent fit to the pseudo-second order and the Freundlich models, respectively. The adsorption capacity of the MCH-EGDE/ORNC for RBBR was found to be 168.4 mg/g, showcasing its remarkable adsorption capability. The present work highlights the potential of MCH-EGDE/ORNC biomaterial as an advanced adsorbent and lays the foundation for future applications in water purification and environmental remediation.
    Matched MeSH terms: Chitosan*
  5. Abdulhameed AS, Wu R, Musa SA, Agha HM, ALOthman ZA, Jawad AH, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128267.
    PMID: 37992917 DOI: 10.1016/j.ijbiomac.2023.128267
    In this study, chitosan/nano SiO2 (CTS/NS) was chemically modified with bisphenol A diglycidyl ether (BADGE) cross-linker-assisted hydrothermal process to create an effective adsorbent, CTS-BADGE/NS, for the removal of reactive orange 16 (RO16) dye from aquatic systems. Box-Behnken design (BBD) was used to optimize the adsorption process by varying the adsorbent dose (0.02-0.1 g/100 mL), pH (4-10), and time (20-360 min). The adsorption isotherm results indicated that the Langmuir model fits the experimental data well, suggesting that the adsorption process involves a monolayer formation of RO16 on the surface of CTS-BADGE/NS. The kinetic modeling of RO16 adsorption by CTS-BADGE/NS demonstrated that the pseudo-first-order model fits the adsorption data. CTS-BADGE/NS achieved an adsorption capacity of 97.8 mg/g for RO16 dye at optimum desirability functions of dosage 0.099 g/100 mL, solution pH of 4.44, and temperature of 25 °C. Overall, the π-π electron donor-acceptor system significantly improved the adsorption performance of the CTS-BADGE/NS. The results of the regeneration investigation demonstrate that the CTS-BADGE/NS exhibits effective adsorption of RO16, even after undergoing five consecutive cycles. The results of this study suggest that the developed CTS-BADGE/NS composite can be a promising adsorbent for water purification applications.
    Matched MeSH terms: Chitosan*
  6. Azelee NIW, Dahiya D, Ayothiraman S, Noor NM, Rasid ZIA, Ramli ANM, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126492.
    PMID: 37634772 DOI: 10.1016/j.ijbiomac.2023.126492
    The unscientific disposal of the most abundant crustacean wastes, especially those derived from marine sources, affects both the economy and the environment. Strategic waste collection and management is the need of the hour. Sustainable valorization approaches have played a crucial role in solving those issues as well as generating wealth from waste. The shellfishery wastes are rich in valuable bioactive compounds such as chitin, chitosan, minerals, carotenoids, lipids, and other amino acid derivatives. These value-added components possessed pleiotropic applications in different sectors viz., food, nutraceutical, cosmeceutical, agro-industrial, healthcare, and pharmaceutical sectors. The manuscript covers the recent status, scope of shellfishery management, and different bioactive compounds obtained from crustacean wastes. In addition, both sustainable and conventional routes of valorization approaches were discussed with their merits and demerits along with their combinations. The utilization of nano and microtechnology was also included in the discussion, as they have become prominent research areas in recent years. More importantly, the future perspectives of crustacean waste management and other potential valorization approaches that can be implemented on a large scale.
    Matched MeSH terms: Chitosan*
  7. Wu R, Abdulhameed AS, Jawad AH, Yong SK, Li H, ALOthman ZA, et al.
    Int J Biol Macromol, 2023 Dec 01;252:126342.
    PMID: 37591432 DOI: 10.1016/j.ijbiomac.2023.126342
    Herein, the polymer nanomatrix of chitosan/SiO2 (CHI/n-SiO2) was enriched with a π-π electron donor-acceptor system using diaromatic rings of benzil (BEZ) assisted via a hydrothermal process to obtain an effective adsorbent of chitosan-benzil/SiO2 (CHI-BEZ/n-SiO2). The polymer nanomatrix (CHI/n-SiO2) and the resulting adsorbent (CHI-BEZ/n-SiO2) were applied to remove the anionic acid red 88 (AR88) dye from aqueous media in a comparative mode. Box-Behnken design (BBD) was adopted to optimize AR88 adsorption onto CHI/n-SiO2 and CHI-BEZ/n-SiO2 with respect to variables that influence AR88 adsorption (adsorbent dose: 0.02-0.1 g/100 mL; pH: 4-10; and time: 10-90). The adsorption studies at equilibrium were conducted with a variety of initial AR88 dye concentrations (20-200 mg/L). The adsorption isotherm results reveal that the AR88 adsorption by CHI/n-SiO2 and CHI-BEZ/n-SiO2 are described by the Langmuir model. The kinetic adsorption profiles of AR88 with CHI/n-SiO2 and CHI-BEZ/n-SiO2 reveal that the pseudo-first-order model provides the best fit results. Interestingly, CHI-BEZ/n-SiO2 has a high adsorption capacity (261.2 mg/g), which exceeds the adsorption capacity of CHI/n-SiO2 (215.1 mg/g) that relates to the surface effects of SiO2 and the functionalization of chitosan with BEZ. These findings show that CHI-BEZ/n-SiO2 represents a highly efficient adsorbent for the removal of harmful pollutants from water, which outperforming the CHI/n-SiO2 system.
    Matched MeSH terms: Chitosan*
  8. Bharathi D, Ranjithkumar R, Nandagopal JGT, Djearamane S, Lee J, Wong LS
    Environ Res, 2023 Dec 01;238(Pt 1):117109.
    PMID: 37696324 DOI: 10.1016/j.envres.2023.117109
    The synthesis of polymer-encapsulated metal nanoparticles is a growing field of area due to their long-term uses in the development of new technologies. The present study describes the synthesis of chitosan/silver nanocomposite using kaempferol for anticancer and bactericidal activity. The formation of Kf-CS/Ag nanocomposite was confirmed by the development of a brown color and UV-absorbance around 438 nm. The IR study was utilized to determine the existence of Kf and CS in the synthesized nanocomposite. TEM analysis demonstrated that the synthesized nanocomposite have a predominantly uniform spherical shape and size ranges 7-10 nm. EDX spectrum showed the existence of Ag, C, and N elements in the nanocomposite material. Further, Kf-CS/Ag nanocomposite exhibited potential in vitro inhibitory property against triple-negative breast cancer (TNBC) cells and their IC50 values was found to be 53 μg/mL. Moreover, fluorescent assays such as DAPI and AO/EtBr confirmed the apoptosis induction ability of Kf-CS/Ag nanocomposite in MDA-MB-231 cells. The synthesized Kf-CS/Ag nanocomposite showed significant and dose-depended antibacterial property against S. aureus and P. aeruginosa. Thus, the obtained findings demonstrated that the synthesized nanocomposite can be potentially used to improve human health as biocidal nanocomposite in biomedical sectors.
    Matched MeSH terms: Chitosan*
  9. Sheikh A, Hazari SA, Molugulu N, Alshehri SA, Wahab S, Sahebkar A, et al.
    Environ Res, 2023 Dec 01;238(Pt 1):117086.
    PMID: 37683783 DOI: 10.1016/j.envres.2023.117086
    Psoriasis is a deleterious auto-immune disorder which seriously harms the patients physical and mental health. CD44 are found to be over-expressed on psoriatic lesions which are highly responsible for epidermal hyperproliferation and inflammation. Gallic acid (GA), a phenolic acid natural compound has potential inhibitory impact on pro-inflammatory transcription factors. However, the penetration across skin and availability is low when applied topically, making the treatment extremely challenging. Considering such factors, we developed GA loaded chitosan nanoparticles and modified with hyaluronic acid (HA) (HA@CS-GA NP) to assess the therapeutic potential against psoriasis. The formulations were characterized by DSC, zetasizer and TEM for assuring the development of nanosystems. GA loaded CS NP had a particle size of 207.2 ± 0.08 nm while after coating with HA, the size increased to 220.1 ± 0.18 nm. The entrapment efficiency was 93.24 ± 0.132% and drug loading of 73.17 ± 0.23%. The in vitro cell viability assessment study confirmed enhanced anti-proliferative effect of HA@CS-GA NP over plain GA which is due to high sensitivity towards HaCaT cell. The in vivo results on imiquimod induced psoriasis model indicated that CD44 receptor mediated targeted approach of HA@CS-GA NP gel had great potential in restricting the keratinocyte hyperproliferation and circumventing psoriasis. For the therapy of further skin-related conditions, HA modified nanoparticles should be investigated extensively employing genes, antibodies, chemotherapeutics, or natural substances.
    Matched MeSH terms: Chitosan*
  10. Nordin AH, Ngadi N, Ilyas RA, Abd Latif NAF, Nordin ML, Mohd Syukri MS, et al.
    Environ Sci Pollut Res Int, 2023 Dec;30(60):125048-125065.
    PMID: 36795217 DOI: 10.1007/s11356-023-25816-w
    This study investigates the feasibility of spent tea waste extract (STWE) as a green modifying agent for the modification of chitosan adsorbent towards aspirin removal. Response surface methodology based on Box-Behnken design was employed to find the optimal synthesis parameters (chitosan dosage, spent tea waste concentration, and impregnation time) for aspirin removal. The results revealed that the optimum conditions for preparing chitotea with 84.65% aspirin removal were 2.89 g of chitosan, 18.95 mg/mL of STWE, and 20.72 h of impregnation time. The surface chemistry and characteristics of chitosan were successfully altered and improved by STWE, as evidenced by FESEM, EDX, BET, and FTIR analysis. The adsorption data were best fitted to pseudo 2nd order, followed by chemisorption mechanisms. The maximum adsorption capacity of chitotea was 157.24 mg/g, as fitted by Langmuir, which is impressive for a green adsorbent with a simple synthesis method. Thermodynamic studies demonstrated the endothermic nature of aspirin adsorption onto chitotea.
    Matched MeSH terms: Chitosan*
  11. Du X, Rashid SA, Abdullah LC, Rahman NA
    Environ Sci Pollut Res Int, 2023 Nov;30(51):110417-110430.
    PMID: 37783997 DOI: 10.1007/s11356-023-30213-4
    Separation materials have received increasing attention given their broad applications in the management of environmental pollution. It is desired to balance the contradiction between high separation efficiency and selectivity of separation materials. The integration of ball-milled bone chars with electrospun membranes might achieve this balance. In this study, electrospun cellulose/chitosan/ball-milled bone char (CL/CS/MB) membranes were by well-dispersing ball-milled bone chars with nanoscale size (98.9-167.5 nm) and developed porosity (40.2-373.1 m2/g) in the electrospinning solvent. The synergistic integration of distributed MBs (5.4-31.5 wt.% of loading hydroxyapatite on the membrane matrix) allowed the efficient sorption of Pb(II) with fast kinetics (20.0 min), excellent capacity (219.9 mg/g at pH 5.0, T 298 K), and favorable selectivity coefficients (2.76-6.79). The formation of minerals was dominant for the selective sorption of Pb(II) by combining the spectral analysis and quantitative determination. The surface complexation with O-/reductive N-species, the cation exchange with inorganic Ca2+, the electrostatic attraction with deprotonated O-, and the cation-π coordination with the aromatic carbon via the π-electrons should be not ignored for the capture of Pb(II). This work demonstrated the feasibility of electrospun CL/CS/MB membranes as a promising candidate for the remediation of aquatic pollutants.
    Matched MeSH terms: Chitosan*
  12. Abdullah M, Rafiq A, Shahid N, Nasir Kalam M, Munir Y, Daoud Butt M, et al.
    Pak J Pharm Sci, 2023 Nov;36(6(Special)):1849-1858.
    PMID: 38264890
    Pharmaceutical substance sitagliptin has long been used to treat diabetes. However, subsequent researches have shown that sitagliptin has additional therapeutic effects. Anti-inflammatory effects are observed. Combining sitagliptin with biodegradable polymers like nanoparticles for chemotherapy may be effective. This method enhances therapeutic agent pharmacokinetics. This study tests sitagliptin (SIT) chitosan base nanoparticles against MCF-7 cancer cell lines for anti-cancer effects. Sitagliptin chitosan-based nanoparticles are tested for their ability to suppress MCF-7 cancer cell proliferation. Ionic gelation, a typical nanoparticle manufacturing method, was used. A detailed examination of the nanoparticles followed, using particle-size measurement, FTIR and SEM. Entrapment efficiency, drug-loading, and in-vitro drug release were assessed. Loaded with chitosan and sitagliptin, the nanoparticles averaged 500nm and 534nm in diameter. Sitagliptin has little effect on particle size. Chitosan-based Sitagliptin nanoparticles grew slightly, suggesting Sitagliptin is present. SIT-SC-NPs had 32% encapsulation efficiency and 30% drug content due to their high polymer-to-drug ratio. SEM analysis showed that both drug-free and sitagliptin-loaded nanoparticles are spherical, as shown by the different bands in the photos. The SIT-CS-NPs had a 120-hour release efficiency of up to 80%. This suggests that these nanoparticles could cure hepatocellular carcinoma, specifically MCF-7 cell lines.
    Matched MeSH terms: Chitosan*
  13. Jailani N, Jaafar NR, Rahman RA, Illias RM
    Enzyme Microb Technol, 2023 Sep;169:110283.
    PMID: 37433237 DOI: 10.1016/j.enzmictec.2023.110283
    One of the potentials of carrier-free cross-linked enzyme aggregates (CLEA) immobilization is the ability to be separated and reuse. Yet, it might be impeded by the poor mechanical stability resulting low recyclability. CLEA of CGTase from Bacillus lehensis G1 (CGTase G1-CLEA) using chitosan (CS) as a cross-linker demonstrated high activity recovery however, displayed poor reusability. Therefore, the relationship between mechanical strength and reusability is studied by enhancing the CS mechanical properties and applying a new co-aggregation approach. Herein, CS was chemically cross-linked with glutaraldehyde (GA) and GA was introduced as a co-aggregant (coGA). CGTase G1-CLEA developed using an improved synthesized chitosan-glutaraldehyde (CSGA) cross-linker and a new coGA technique showed to increase its mechanical stability which retained 63.4% and 52.2%, respectively compared to using CS that remained 33.1% of their initial activity after stirred at 500 rpm. The addition of GA impacted the morphology and interaction consequently stabilizing the CLEAs durability in production of cyclodextrins. As a result, the reusability of CGTase G1-CLEA with CSGA and coGA increased by 56.6% and 42.8%, respectively compared to previous CLEA after 5 cycles for 2 h of reaction. This verifies that the mechanical strength of immobilized enzyme influences the improvement of its operational stability.
    Matched MeSH terms: Chitosan*
  14. Saheed IO, Yusof ENM, Oh WD, Hanafiah MAKM, Suah FBM
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124798.
    PMID: 37178882 DOI: 10.1016/j.ijbiomac.2023.124798
    Adsorption efficiency of a duo-material blend featuring the fabrication of modified chitosan adsorbents (powder (C-emimAc), bead (CB-emimAc) and sponge (CS-emimAc)) for the removal of Cd(II) from aqueous solution was investigated. The chitosan@activated carbon (Ch/AC) blend was developed in a green ionic solvent, 1-ethyl-3-methyl imidazolium acetate (EmimAc) and its characteristics was examined using FTIR, SEM, EDX, BET and TGA. The possible mechanism of interaction between the composites and Cd(II) was also predicted using the density functional theory (DFT) analysis. The interactions of various blend forms (C-emimAc, CB-emimAc and CS-emimAc) with Cd(II) gave better adsorption at pH 6. The composites also present excellent chemical stability in both acidic and basic conditions. The monolayer adsorption capacities obtained (under the condition 20 mg/L [Cd], adsorbent dosage 5 mg, contact time 1 h) for the CB-emimAc (84.75 mg/g) > C-emimAc (72.99 mg/g) > CS-emimAc (55.25 mg/g), as this was supported by their order of increasing BET surface area (CB-emimAc (120.1 m2/g) > C-emimAc (67.4 m2/g) > CS-emimAc (35.3 m2/g)). The feasible adsorption interactions between Cd(II) and Ch/AC occurs through the O-H and N-H groups of the composites, as supported by DFT analysis in which an electrostatic interactions was predicted as the dominant force. The interaction energy (-1309.35 eV) calculated via DFT shows that the Ch/AC with amino (-NH) and hydroxyl (-OH) groups are more effective with four significant electrostatic interactions with the Cd(II) ion. The various form of Ch/AC composites developed in EmimAc possess good adsorption capacity and stability for the adsorption Cd(II).
    Matched MeSH terms: Chitosan*
  15. Mohamed Hatta NS, Lau SW, Chua HB, Takeo M, Sen TK, Mubarak NM, et al.
    Environ Res, 2023 May 01;224:115527.
    PMID: 36822539 DOI: 10.1016/j.envres.2023.115527
    Bacterial strains belonging to Citrobacter spp. were reported to produce polysaccharides consisting of N-acetylglucosamine and glucosamine like chitosan, with high flocculation activity. In this work, the flocculation dewatering performance of activated sludge conditioned by a novel cationic chitosan-like bioflocculant (BF) named BF01314, produced from Citrobacter youngae GTC 01314, was evaluated under the influences of flocculant dosage, pH, and temperature. At BF dosage as low as 0.5 kg/t DS, the sludge dewaterability was significantly enhanced in comparison to the raw (untreated) sludge, featuring well-flocculated characteristic (reduction in CST from 22.0 s to 9.4 s) and good sludge filterability with reduced resistance (reduction in SRF by one order from 7.42 × 1011 to 9.59 × 1010 m/kg) and increased compactness of sludge (increase in CSC from 15.2 to 23.2%). Besides, the BF demonstrated comparable high sludge dewatering performance within the pH range between 2 and 8, and temperature range between 25 °C and 80 °C. Comparison between the BF, the pristine chitosan and the commercial cationic copolymer MF 7861 demonstrated equivalent performance with enhanced dewaterability at the dosage between 2.0 and 3.0 kg/t DS. Besides, the BF demonstrated strong flocculation activity (>99%) when added to the sludge suspension using moderate to high flocculation speeds (100-200 rpm) with at least 3-min mixing time. The BF's reaction in sludge flocculation was best fitted with a pseudo first-order kinetic model. Electrostatic charge patching and polymer bridging mechanisms are believed to be the dominant mechanistic phenomena during the BF's sludge conditioning process (coagulation-flocculation).
    Matched MeSH terms: Chitosan*
  16. Lim HP, Ng SD, Dasa DB, Adnan SA, Tey BT, Chan ES, et al.
    Int J Biol Macromol, 2023 Mar 31;232:123461.
    PMID: 36720328 DOI: 10.1016/j.ijbiomac.2023.123461
    Formulation of water-in-oil (W/O) Pickering emulsion (PE) for food applications has been largely restricted by the limited choices of food-grade Pickering emulsifiers. In this study, composite microgels made of chitosan and carrageenan were explored as a dual (pH and thermal) stimuli-responsive Pickering emulsifier for the stabilization of W/O PE. The chitosan-carrageenan (CS-CRG) composite microgels not only exhibited pH- and thermo-responsiveness, but also displayed enhanced lipophilicity as compared to the discrete polymers. The stability of the CS-CRG-stabilized W/O PE system (CS-CRG PE) was governed by CS:CRG mass ratio and oil fractions used. The CS-CRG PE remained stable at acidic pH and at temperatures below 40 °C. The instability of CS-CRG composite microgels at alkaline pH and at temperatures above 40 °C rendered the demulsification of CS-CRG PE. This stimuli-responsive W/O PE could unlock new opportunities for the development of stimuli-responsive W/O PE using food-grade materials.
    Matched MeSH terms: Chitosan*
  17. Sharma DS, Wadhwa S, Gulati M, Kumar B, Chitranshi N, Gupta VK, et al.
    Int J Biol Macromol, 2023 Jan 01;224:810-830.
    PMID: 36302483 DOI: 10.1016/j.ijbiomac.2022.10.168
    Diabetic retinopathy (DR) is one of the chronic complications of diabetes. It includes retinal blood vessels' damage. If untreated, it leads to loss of vision. The existing treatment strategies for DR are expensive, invasive, and need expertise during administration. Hence, there is a need to develop a non-invasive topical formulation that can penetrate deep to the posterior segment of retina and treat the damaged retinal vessels. In addition, it should also provide sustained release. In recent years, novel drug delivery systems (NDDS) have been explored for treating DR and found successful. In this study, chitosan (CS) modified 5-Fluorouracil Nanostructured Lipid Carriers (CS-5-FU-NLCs) were prepared by modified melt emulsification-ultrasonication method and optimized by Box-Behnken Design. The size, polydispersity index, zeta potential and entrapment efficiency of CS-5-FU-NLCs were 163.2 ± 2.3 nm, 0.28 ± 1.52, 21.4 ± 0.5 mV and 85.0 ± 0.2 %, respectively. The in vitro drug release and ex vivo permeation study confirmed higher and sustained drug release in CS-5-FU-NLCs as compared to 5-FU solution. HET-CAM Model ensured the non-irritant nature of CS-5-FU-NLCs. In vivo ocular studies of CS-5-FU-NLCs confirmed antiangiogenic effect of 5-FU by CAM model and diabetic retinopathy induced rat model, indicating successful delivery of 5-FU to the retina.
    Matched MeSH terms: Chitosan*
  18. Shen S, Deng L, Du Y, Gao J, Zhang C, Wang Y, et al.
    Int J Pharm, 2022 Dec 15;629:122385.
    PMID: 36375685 DOI: 10.1016/j.ijpharm.2022.122385
    Wound dressings can be applied over the wound sites to provide long-lasting wound management and improve wound healing. Biological wound dressings are superior to synthetic materials due to biodegradability and biocompatibility. These biomaterials have demonstrated huge potential in the field of wound dressings. Applying bibliometric analysis combined with results-based descriptions to characterize the research status, hotspots, and cutting-edge topics, this study is the first in-depth qualitative, quantitative, data-driven overview of biological wound dressings research in recent decades. Filtered data were used to construct co-citation, heatmaps, bi-clustering, strategy maps, and other analyses and visualization. The results show that research on biological wound dressings has progressed considerably in the last 5 years with extensive global collaboration. A clear knowledge base has been developed. Chitosan hydrogels, bacterial cellulose, active agents (silver nanoparticles, growth factors, curcumin, etc.), and electrospinning fibers stand out as research hotspots. The research frontiers include novel starting materials, precise and controlled release systems, and clinical and regenerative medicine applications. We interpreted an overview of the excavated topics and expected the findings here to provide a guide and inspire innovations for developing the next generation wound dressings.
    Matched MeSH terms: Chitosan*
  19. Eddin FBK, Fen YW, Liew JYC, Daniyal WMEMM
    Biosensors (Basel), 2022 Dec 03;12(12).
    PMID: 36551091 DOI: 10.3390/bios12121124
    Surface plasmonic sensors have received considerable attention, found extensive applications, and outperformed conventional optical sensors. In this work, biopolymer chitosan (CS) was used to prepare the bilayer structure (CS/Au) of a plasmonic refractive index sensor for dopamine (DA) detection. The sensing characteristics of the developed plasmonic sensor were evaluated. Increasing DA concentrations significantly shifted the SPR dips. The sensor exhibited stability and a refractive index sensitivity of 8.850°/RIU in the linear range 0.1 nM to 1 µM with a detection limit of 0.007 nM and affinity constant of 1.383 × 108 M-1. The refractive index and thickness of the CS/Au structure were measured simultaneously by fitting the obtained experimental findings to theoretical data based on Fresnel equations. The fitting yielded the refractive index values n (1.5350 ± 0.0001) and k (0.0150 ± 0.0001) for the CS layer contacting 0.1 nM of DA, and the thickness, d was (15.00 ± 0.01) nm. Then, both n and d values increased by increasing DA concentrations. In addition, the changes in the FTIR spectrum and the variations in sensor surface roughness and structure obtained by AFM analysis confirmed DA adsorption on the sensing layer. Based on these observations, CS/Au bilayer has enhanced the performance of this plasmonic sensor, which showed promising importance as a simple, low-cost, and reliable platform for DA sensing.
    Matched MeSH terms: Chitosan*
  20. Razali S, Bose A, Benetti C, Chong PW, Miller M, Colombo P, et al.
    Int J Pharm, 2022 Nov 25;628:122226.
    PMID: 36191818 DOI: 10.1016/j.ijpharm.2022.122226
    Dome matrix was designed with gastric and intestinal targeting capacities using melatonin and caffeine as model drugs, and alginate, chitosan and cellulose as composite materials. The melatonin, caffeine and intermediate hydroxypropylmethylcelluose-based dispersible modules were prepared through compaction. Caffeine piled module was capped at both ends with melatonin void modules via intermediate dispersible modules into Dome matrix. Dispersion of intermediate module detached melatonin module from Dome matrix and had it floated in stomach providing a more complete melatonin release due to favorable pH-pKa relationship of dissolution medium and drug. With reference to the caffeine module, the detachment of melatonin module facilitated its gastrointestinal transit as a reduced size matrix, with majority of caffeine delivered in colon. The dual site-targeted and -release Dome matrix is applicable as reference oral carrier for pharmaceutical, nutraceutical, functional food and veterinary medicine where a complex formulation and performancein vivoare required.
    Matched MeSH terms: Chitosan*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links