Displaying publications 1 - 20 of 197 in total

Abstract:
Sort:
  1. Abbasi Pirouz A, Abedi Karjiban R, Abu Bakar F, Selamat J
    Toxins (Basel), 2018 09 06;10(9).
    PMID: 30200553 DOI: 10.3390/toxins10090361
    A novel magnetic graphene oxide modified with chitosan (MGO-CTS) was synthesised as an adsorbent aimed to examine the simultaneous removal of mycotoxins. The composite was characterised by various procedures, namely Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and a scanning electron microscope (SEM). The adsorption evaluation was considered via pH effects, initial mycotoxin concentration, adsorption time and temperature. Adsorption isotherm data and kinetics experiments were acquired at the optimum pH 5 fit Freundlich isotherm as well as pseudo-second-order kinetic models. The thermodynamic results indicated that the adsorption of the mycotoxins was spontaneous, endothermic and favourable.
    Matched MeSH terms: Chitosan/chemistry*
  2. Abdi MM, Abdullah LC, Sadrolhosseini AR, Mat Yunus WM, Moksin MM, Tahir PM
    PLoS One, 2011;6(9):e24578.
    PMID: 21931763 DOI: 10.1371/journal.pone.0024578
    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.
    Matched MeSH terms: Chitosan/chemistry
  3. Abdolmohammadi S, Siyamak S, Ibrahim NA, Yunus WM, Rahman MZ, Azizi S, et al.
    Int J Mol Sci, 2012;13(4):4508-22.
    PMID: 22605993 DOI: 10.3390/ijms13044508
    This study investigates the effects of calcium carbonate (CaCO(3)) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO(3) were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO(3) nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO(3). Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO(3). The thermal stability was best enhanced at 1 wt% of CaCO(3) nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO(3) nanocomposite. TEM micrograph displays good dispersion of CaCO(3) at lower nanoparticle loading within the matrix.
    Matched MeSH terms: Chitosan/chemistry*
  4. Abdul Manan FM, Attan N, Widodo N, Aboul-Enein HY, Wahab RA
    Prep Biochem Biotechnol, 2018 Jan 02;48(1):92-102.
    PMID: 29194017 DOI: 10.1080/10826068.2017.1405021
    An alternative environmentally benign support was prepared from chitosan-chitin nanowhiskers (CS/CNWs) for covalent immobilization of Rhizomucor miehei lipase (RML) to increase the operational stability and recyclability of RML in synthesizing eugenyl benzoate. The CS/CNWs support and RML-CS/CNWs were characterized using X-ray diffraction, fluorescent microscopy, and Fourier transform infrared spectroscopy. Efficiency of the RML-CS/CNWs was compared to the free RML to synthesize eugenyl benzoate for parameters: reaction temperature, stirring rate, reusability, and thermal stability. Under optimal experimental conditions (50°C, 250 rpm, catalyst loading 3 mg/mL), a twofold increase in yield of eugenyl benzoate was observed for RML-CS/CNWs as compared to free RML, with the former achieving maximum yield of the ester at 62.1% after 5 hr. Results demonstrated that the strategy adopted to prepare RML-CS/CNWs was useful, producing an improved and prospectively greener biocatalyst that supported a sustainable process to prepare eugenyl benzoate. Moreover, RML-CS/CNWs are biodegradable and perform esterification reactions under ambient conditions as compared to the less eco-friendly conventional acid catalyst. This research provides a facile and promising approach for improving activity of RML in which the resultant RML-CS/CNWs demonstrated good operational stability for up to eight successive esterification cycles to synthesize eugenyl benzoate.
    Matched MeSH terms: Chitosan/chemistry*
  5. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Anal Bioanal Chem, 2006 Nov;386(5):1285-92.
    PMID: 17031625
    The stacked-film immobilization of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in hybrid nafion/sol-gel silicate film and horseradish peroxidase (HRP) in chitosan, performed in order to allow the determination of phenolic compounds, was investigated via an optical method. The stacked films were deposited onto a microscope glass slide by a spin-coating technique. The quinone or free radical product formed by the enzymatic reactions of phenolic compounds interacts with MBTH to form azo-dye products, which can be measured spectrophotometrically at a wavelength of 500 nm. The color intensity of the product was found to increase in proportion to the phenolic concentration after 5 min of exposure. The response of the biosensor was linear over concentration ranges of 0.025-0.500, 0.010-0.070 and 0.050-0.300 mM for guaiacol, resorcinol and o-cresol, respectively, and gave detection limits of 0.010, 0.005 and 0.012 mM. The sensor exhibited good sensitivity and stability for at least two months.
    Matched MeSH terms: Chitosan/chemistry
  6. Adamu Ahmad K, Sabo Mohammed A, Abas F
    Molecules, 2016 Mar 14;21(3):256.
    PMID: 26985885 DOI: 10.3390/molecules21030256
    The use of chitosan as a delivery carrier has attracted much attention in recent years. In this study, chitosan nanoparticles (CS-NP) and chitosan-ΦKAZ14 bacteriophage-loaded nanoparticles (C-ΦKAZ14 NP) were prepared by a simple coercavation method and characterized. The objective was to achieve an effective protection of bacteriophage from gastric acids and enzymes in the chicken gastrointestinal tract. The average particle sizes for CS-NP and C-ΦKAZ14 NP were 188 ± 7.4 and 176 ± 3.2 nm, respectively. The zeta potentials for CS-NP and C-ΦKAZ14 NP were 50 and 60 mV, respectively. Differential scanning calorimetry (DSC) of C-ΦKAZ14 NP gave an onset temperature of -17.17 °C with a peak at 17.32 °C and final end set of 17.41 °C, while blank chitosan NP had an onset of -20.00 °C with a peak at -19.78 °C and final end set at -20.47. FT-IR spectroscopy data of both CS-NP and C-ΦKAZ14 NP were the same. Chitosan nanoparticles showed considerable protection of ΦKAZ14 bacteriophage against degradation by enzymes as evidenced in gel electrophoresis, whereby ΦKAZ14 bacteriophage encapsulated in chitosan nanoparticles were protected whereas the naked ΦKAZ14 bacteriophage were degraded. C-ΦKAZ14 NP was non-toxic as shown by a chorioallantoic membrane (CAM) toxicity assay. It was concluded that chitosan nanoparticles could be a potent carrier of ΦKAZ14 bacteriophage for oral therapy against colibacillosis in poultry.
    Matched MeSH terms: Chitosan/chemistry
  7. Afreen S, Muthoosamy K, Manickam S, Hashim U
    Biosens Bioelectron, 2015 Jan 15;63:354-364.
    PMID: 25125029 DOI: 10.1016/j.bios.2014.07.044
    Designing a biosensor for versatile biomedical applications is a sophisticated task and how dedicatedly functionalized fullerene (C60) can perform on this stage is a challenge for today and tomorrow's nanoscience and nanotechnology. Since the invention of biosensor, many ideas and methods have been invested to upgrade the functionality of biosensors. Due to special physicochemical characteristics, the novel carbon material "fullerene" adds a new dimension to the construction of highly sensitive biosensors. The prominent aspects of fullerene explain its outstanding performance in biosensing devices as a mediator, e.g. fullerene in organic solvents exhibits five stages of reversible oxidation/reduction, and hence fullerene can work either as an electrophile or nucleophile. Fullerene is stable and its spherical structure produces an angle strain which allows it to undergo characteristic reactions of addition to double bonds (hybridization which turns from sp(2) to sp(3)). Research activities are being conducted worldwide to invent a variety of methods of fullerene functionalization with a purpose of incorporating it effectively in biosensor devices. The different types of functionalization methods include modification of fullerene into water soluble derivatives and conjugation with enzymes and/or other biomolecules, e.g. urease, glucose oxidase, hemoglobin, myoglobin (Mb), conjugation with metals e.g. gold (Au), chitosan (CS), ferrocene (Fc), etc. to enhance the sensitivity of biosensors. The state-of-the-art research on fullerene functionalization and its application in sensor devices has proven that fullerene can be implemented successfully in preparing biosensors to detect glucose level in blood serum, urea level in urine solution, hemoglobin, immunoglobulin, glutathione in real sample for pathological purpose, to identify doping abuse, to analyze pharmaceutical preparation and even to detect cancer and tumor cells at an earlier stage. Employing fullerene-metal matrix for the detection of tumor and cancer cells is also possible by the inclusion of fullerene in single-walled carbon nanotubes (SWCNTs) known as peapods as well as in double-walled carbon nanotubes (DWCNTs), to augment the effectiveness of biosensors. This review discusses various approaches that have been reported for functionalizing fullerene (C60) derivatives and their application in different types of biosensor fabrication.
    Matched MeSH terms: Chitosan/chemistry
  8. Afzal S, Samsudin EM, Julkapli NM, Hamid SB
    Environ Sci Pollut Res Int, 2016 Nov;23(22):23158-23168.
    PMID: 27591888
    For the synthesis of a highly active TiO2-chitosan nanocomposite, pH plays a crucial role towards controlling its morphology, size, crystallinity, thermal stability, and surface adsorption properties. The presence of chitosan (CS) biopolymer facilitates greater sustainability to the photoexcited electrons and holes on the catalysts' surface. The variation of synthesis pH from 2 to 5 resulted in different physico-chemical and photocatalytic properties, whereby a pH of 3 resulted in TiO2-chitosan nanocomposite with the highest photocatalytic degradation (above 99 %) of methylene orange (MO) dye. This was attributed to the efficient surface absorption properties, high crystallinity, and the presence of reactive surfaces of -NH2 and -OH groups, which enhances the adsorption-photodegradation effect. The larger surface oxygen vacancies coupled with reduced electron-hole recombination further enhanced the photocatalytic activity. It is undeniable that the pH during synthesis is critical towards the development of the properties of the TiO2-chitosan nanocomposite for the enhancement of photocatalytic activity.
    Matched MeSH terms: Chitosan/chemistry*
  9. Ahmad AL, Sumathi S, Hameed BH
    Water Res, 2005 Jul;39(12):2483-94.
    PMID: 15985277
    The adsorption of residue oil from palm oil mill effluent (POME) using chitosan powder and flake has been investigated. POME contains about 2g/l of residue oil, which has to be treated efficiently before it can be discharged. Experiments were carried out as a function of different initial concentrations of residue oil, weight dosage, contact time and pH of chitosan in powder and flake form to obtain the optimum conditions for the adsorption of residue oil from POME. The powder form of chitosan exhibited a greater rate compared to the flake type. The results obtained showed that chitosan powder, at a dosage of 0.5g/l, 15min of contact time and a pH value of 5.0, presented the most suitable conditions for the adsorption of residue oil from POME. The adsorption process performed almost 99% of residue oil removal from POME. Equilibrium studies have been carried out to determine the capacity of chitosan for the adsorption of residue oil from POME using the optimum conditions from the flocculation at different initial concentrations of residue oil. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherm constants. Equilibrium data fitted very well with the Freundlich model. The pseudo first- and second-order kinetic models and intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted well with the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step, i.e. chemisorption between residue oil and chitosan. The significant uptake of residue oil on chitosan was further proved by BET surface area analysis and SEM micrographs.
    Matched MeSH terms: Chitosan/chemistry*
  10. Ahmad MB, Tay MY, Shameli K, Hussein MZ, Lim JJ
    Int J Mol Sci, 2011;12(8):4872-84.
    PMID: 21954331 DOI: 10.3390/ijms12084872
    This paper presents the green synthesis of silver nanoparticles (Ag NPs) in aqueous medium. This method was performed by reducing AgNO(3) in different stirring times of reaction at a moderate temperature using green agents, chitosan (Cts) and polyethylene glycol (PEG). In this work, silver nitrate (AgNO(3)) was used as the silver precursor while Cts and PEG were used as the solid support and polymeric stabilizer. The properties of Ag/Cts/PEG nanocomposites (NCs) were studied under different stirring times of reaction. The developed Ag/Cts/PEG NCs were then characterized by the ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy.
    Matched MeSH terms: Chitosan/chemistry*
  11. Akhter S, Basirun WJ, Alias Y, Johan MR, Bagheri S, Shalauddin M, et al.
    Anal Biochem, 2018 06 15;551:29-36.
    PMID: 29753720 DOI: 10.1016/j.ab.2018.05.004
    In the present study, a nanocomposite of f-MWCNTs-chitosan-Co was prepared by the immobilization of Co(II) on f-MWCNTs-chitosan by a self-assembly method and used for the quantitative determination of paracetamol (PR). The composite was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive x-ray analysis (EDX). The electroactivity of cobalt immobilized on f-MWCNTs-chitosan was assessed during the electro-oxidation of paracetamol. The prepared GCE modified f-MWCNTs/CTS-Co showed strong electrocatalytic activity towards the oxidation of PR. The electrochemical performances were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range between 0.1 and 400 μmol L-1 with a detection limit of 0.01 μmol L-1 for the PR solution. The fabricated sensor exhibited significant selectivity towards PR detection. The fabricated sensor was successfully applied for the determination of PR in commercial tablets and human serum sample.
    Matched MeSH terms: Chitosan/chemistry
  12. Al-Jbour ND, Beg MD, Gimbun J, Alam AKMM
    Curr Drug Deliv, 2019;16(4):272-294.
    PMID: 30674256 DOI: 10.2174/1567201816666190123121425
    Chitosan is a polycationic natural polymer which is abundant in nature. Chitosan has gained much attention as natural polymer in the biomedical field. The up to date drug delivery as well as the nanotechnology in controlled release of drugs from chitosan nanofibers are focused in this review. Electrospinning is one of the most established and widely used techniques for preparing nanofibers. This method is versatile and efficient for the production of continuous nanofibers. The chitosan-based nanofibers are emerging materials in the arena of biomaterials. Recent studies revealed that various drugs such as antibiotics, chemotherapeutic agents, proteins and anti-inflammatory analgesic drugs were successfully loaded onto electrospun nanofibers. Chitosan nanofibers have several outstanding properties for different significant pharmaceutical applications such as wound dressing, tissue engineering, enzyme immobilization, and drug delivery systems. This review highlights different issues of chitosan nanofibers in drug delivery applications, starting from the preparation of chitosan nanofibers, followed by giving an idea about the biocompatibility and degradation of chitosan nanofibers, then describing how to load the drug into the nanofibers. Finally, the major applications of chitosan nanofibers in drug delivery systems.
    Matched MeSH terms: Chitosan/chemistry*
  13. Alirezalu K, Pirouzi S, Yaghoubi M, Karimi-Dehkordi M, Jafarzadeh S, Mousavi Khaneghah A
    Meat Sci, 2021 Jun;176:108475.
    PMID: 33684807 DOI: 10.1016/j.meatsci.2021.108475
    In the current study, the effect on packaged beef fillets (1 × 5 × 8 cm) of using active chitosan film (1%) was investigated. The fillets were stored at 4 °C for 12 days, and the film contained ɛ-polylysine (ɛ-PL) (0.3, 0.6, and 0.9% w/w). Chemical, microbiological, sensory properties, and quality indices of the fillets were investigated. Added to these factors was an assessment of the influence of ɛ-polylysine incorporation on the optical, structural, barrier, and mechanical specifications (elongation at break and tensile strength) of chitosan films. Based on the findings, a significant difference among the corresponding values to thickness, color, water vapor permeability (WVP), and mechanical specifications between the treated films by ɛ-PL and untreated films were noted. In addition, higher values of thickness and tensile strength were correlated with ɛ-PL added active chitosan films while compared with control samples. Additionally, no significant differences regarding the proximate composition (including protein, moisture, and fat) among beef fillet samples were observed. In this regard, due to significantly lower levels of pH, TVB-N, and TBARS ɛ-PL in enriched films, this technique demonstrated some protective effects on beef fillets. Another observation was that lower levels of the total viable count, coliform, mold, yeasts, and higher sensory properties were significantly associated with samples with added ɛ-PL (0.9%). Therefore, adding ɛ-PL into chitosan films could be introduced as an effective technique to extend the shelf life of beef fillets and maintain their quality indices during refrigerated storage.
    Matched MeSH terms: Chitosan/chemistry
  14. Alkhader E, Roberts CJ, Rosli R, Yuen KH, Seow EK, Lee YZ, et al.
    J Biomater Sci Polym Ed, 2018 12;29(18):2281-2298.
    PMID: 30376409 DOI: 10.1080/09205063.2018.1541500
    Curcumin, the active ingredient of the rhizome curcuma longa has been extensively studied as an anticancer agent for various types of tumours. However, its efficacy as an anticancer agent is restricted due to poor absorption from the gastrointestinal tract, rapid metabolism and degradation in acidic medium. In the present study, we encapsulated curcumin in chitosan-pectinate nanoparticulate system (CUR-CS-PEC-NPs) for deployment of curcumin to the colon, whereby curcumin is protected against degradative effects in the upper digestive tract, and hence, maintaining its anticancer properties until colon arrival. The CUR-CS-PEC-NPs was taken up by HT-29 colorectal cancer cells which ultimately resulted in a significant reduction in cancer cell propagation. The anti-proliferative effect of the encapsulated curcumin was similar to that of free curcumin at equivalent doses which confirms that the encapsulation process did not impede the anticancer activity of curcumin. The oral bioavailability (Cmax, and AUC) of curcumin in CUR-CS-PEC-NPs was enhanced significantly by 4-folds after 6 hours of treatment compared to free curcumin. Furthermore, the clearance of curcumin from the CUR-CS-PEC-NPs was lower compared to free curcumin. These findings point to the potential application of the CUR-CS-PEC-NPs in the oral delivery of curcumin in the treatment of colon cancer.
    Matched MeSH terms: Chitosan/chemistry*
  15. Amid M, Manap Y, Zohdi NK
    Molecules, 2014;19(3):3731-43.
    PMID: 24662085 DOI: 10.3390/molecules19033731
    Amylase is one of the most important enzymes in the world due to its wide application in various industries and biotechnological processes. In this study, amylase enzyme from Hylocereus polyrhizus was encapsulated for the first time in an Arabic gum-chitosan matrix using freeze drying. The encapsulated amylase retained complete biocatalytic activity and exhibited a shift in the optimum temperature and considerable increase in the pH and temperature stabilities compared to the free enzyme. Encapsulation of the enzyme protected the activity in the presence of ionic and non-ionic surfactants and oxidizing agents (H₂O₂) and enhanced the shelf life. The storage stability of amylase is found to markedly increase after immobilization and the freeze dried amylase exhibited maximum encapsulation efficiency value (96.2%) after the encapsulation process. Therefore, the present study demonstrated that the encapsulation of the enzyme in a coating agent using freeze drying is an efficient method to keep the enzyme active and stable until required in industry.
    Matched MeSH terms: Chitosan/chemistry*
  16. Aminu N, Chan SY, Yam MF, Toh SM
    Int J Pharm, 2019 Oct 30;570:118659.
    PMID: 31493495 DOI: 10.1016/j.ijpharm.2019.118659
    This study aimed to develop a dual action, namely anti-inflammatory and antimicrobial, nanogels (NG) for the treatment of periodontitis using triclosan (TCS) and flurbiprofen (FLB). Triclosan, an antimicrobial drug, was prepared as nanoparticles (NPs) using poly-ε-caprolactone (PCL), while flurbiprofen, an anti-inflammatory drug, was directly loaded in a chitosan (CS) based hydrogel. The entwinement of both NPs and hydrogel loaded systems resulted in the NG. The characterisation data confirmed that the developed formulation consists of nanosized spherical structures and displays pH-dependent swelling/erosion and temperature-responsiveness. Besides, the NG exhibited adequate bioadhesiveness using the chicken pouch model and displayed antibacterial activity through the agar plate method. An in-vivo study of the NG on experimental periodontitis (EP) rats confirmed the dual antibacterial and anti-inflammatory effects which revealed an excellent therapeutic outcome. In conclusion, a dual action NG was successfully developed and proved to have superior therapeutic effects in comparison to physical mixtures of the individual drugs.
    Matched MeSH terms: Chitosan/chemistry*
  17. Ang LF, Por LY, Yam MF
    PLoS One, 2013;8(8):e70597.
    PMID: 23940599 DOI: 10.1371/journal.pone.0070597
    Two chitosan samples (medium molecular weight (MMCHI) and low molecular weight (LMCHI)) were investigated as an enzyme immobilization matrix for the fabrication of a glucose biosensor. Chitosan membranes prepared from acetic acid were flexible, transparent, smooth and quick-drying. The FTIR spectra showed the existence of intermolecular interactions between chitosan and glucose oxidase (GOD). Higher catalytic activities were observed on for GOD-MMCHI than GOD-LMCHI and for those crosslinked with glutaraldehyde than using the adsorption technique. Enzyme loading greater than 0.6 mg decreased the activity. Under optimum conditions (pH 6.0, 35°C and applied potential of 0.6 V) response times of 85 s and 65 s were observed for medium molecular weight chitosan glucose biosensor (GOD-MMCHI/PT) and low molecular weight chitosan glucose biosensor (GOD-LMCHI/PT), respectively. The apparent Michaelis-Menten constant ([Formula: see text]) was found to be 12.737 mM for GOD-MMCHI/PT and 17.692 mM for GOD-LMCHI/PT. This indicated that GOD-MMCHI/PT had greater affinity for the enzyme. Moreover, GOD-MMCHI/PT showed higher sensitivity (52.3666 nA/mM glucose) when compared with GOD-LMCHI/PT (9.8579 nA/mM glucose) at S/N>3. Better repeatability and reproducibility were achieved with GOD-MMCHI/PT than GOD-LMCHI/PT regarding glucose measurement. GOD-MMCHI/PT was found to give the highest enzymatic activity among the electrodes under investigation. The extent of interference encountered by GOD-MMCHI/PT and GOD-LMCHI/PT was not significantly different. Although the Nafion coated biosensor significantly reduced the signal due to the interferents under study, it also significantly reduced the response to glucose. The performance of the biosensors in the determination of glucose in rat serum was evaluated. Comparatively better accuracy and recovery results were obtained for GOD-MMCHI/PT. Hence, GOD-MMCHI/PT showed a better performance when compared with GOD-LMCHI/PT. In conclusion, chitosan membranes shave the potential to be a suitable matrix for the development of glucose biosensors.
    Matched MeSH terms: Chitosan/chemistry*
  18. Aroua MK, Zuki FM, Sulaiman NM
    J Hazard Mater, 2007 Aug 25;147(3):752-8.
    PMID: 17339078
    This study deals with the removal of chromium species from aqueous dilute solutions using polymer-enhanced ultrafiltration (PEUF) process. Three water soluble polymers, namely chitosan, polyethyleneimine (PEI) and pectin were selected for this study. The ultrafiltration studies were carried out using a laboratory scale ultrafiltration system equipped with 500,000 MWCO polysulfone hollow fiber membrane. The effects of pH and polymer composition on rejection coefficient and permeate flux at constant pressure have been investigated. For Cr(III), high rejections approaching 100% were obtained at pH higher than 7 for the three tested polymers. With chitosan and pectin, Cr(VI) retention showed a slight increase with solution pH and did not exceed a value of 50%. An interesting result was obtained with PEI. The retention of Cr(VI) approached 100% at low pH and decreased when the pH was increased. This behavior is opposite to what one can expect in the polymer-enhanced ultrafiltration of heavy metals. Furthermore, the concentration of polymer was found to have little effect on rejection. Permeate flux remained almost constant around 25% of pure water flux.
    Matched MeSH terms: Chitosan/chemistry
  19. Auta M, Hameed BH
    Colloids Surf B Biointerfaces, 2013 May 1;105:199-206.
    PMID: 23376092 DOI: 10.1016/j.colsurfb.2012.12.021
    A renewable waste tea activated carbon (WTAC) was coalesced with chitosan to form composite adsorbent used for waste water treatment. Adsorptive capacities of crosslinked chitosan beads (CCB) and its composite (WTAC-CCB) for Methylene blue dye (MB) and Acid blue 29 (AB29) were evaluated through batch and fixed-bed studies. Langmuir, Freundlich and Temkin adsorption isotherms were tested for the adsorption process and the experimental data were best fitted by Langmuir model and least by Freundlich model; the suitability of fitness was adjudged by the Chi-square (χ(2)) and Marquadt's percent standard deviation error functions. Judging by the values of χ(2), pseudo-second-order reaction model best described the adsorption process than pseudo-first-order kinetic model for MB/AB29 on both adsorbents. After five cycles of adsorbents desorption test, more than 50% WTAC-CCB adsorption efficiency was retained while CCB had <20% adsorption efficiency. The results of this study revealed that WTAC-CCB composite is a promising adsorbent for treatment of anionic and cationic dyes in effluent wastewaters.
    Matched MeSH terms: Chitosan/chemistry*
  20. Ayumi NS, Sahudin S, Hussain Z, Hussain M, Samah NHA
    Drug Deliv Transl Res, 2019 04;9(2):482-496.
    PMID: 29569027 DOI: 10.1007/s13346-018-0508-6
    To investigate the use of chitosan nanoparticles (CS-TPP-NPs) as carriers for α- and β-arbutin. In this study, CS-TPP-NPs containing α- and β-arbutin were prepared via the ionic cross-linking of CS and TPP and characterized for particle size, zeta potential, and dispersity index. The entrapment efficiency and loading capacity of various β-arbutin concentrations (0.1, 0.2, 0.4, 0.5, and 0.6%) were also investigated. SEM, TEM FTIR, DSC and TGA analyses of the nanoparticles were performed to further characterize the nanoparticles. Finally, stability and release studies were undertaken to ascertain further the suitability of the nanoparticles as a carrier system for α- and β-arbutin. Data obtained clearly indicates the potential for use of CS-TPP-NPs as a carrier for the delivery of α- and β-arbutin. The size obtained for the alpha nanoparticles (α-arbutin CSNPs) ranges from 147 to 274 d.nm, with an increase in size with increasing alpha arbutin concentration. β-arbutin nanoparticles (β-arbutin CSNPs) size range was from 211.1 to 284 dn.m. PdI for all nanoparticles remained between 0.2-0.3 while the zeta potential was between 41.6-52.1 mV. The optimum encapsulation efficiency and loading capacity for 0.4% α-arbutin CSNPs were 71 and 77%, respectively. As for β-arbutin, CSNP optimum encapsulation efficiency and loading capacity for 0.4% concentration were 68 and 74%, respectively. Scanning electron microscopy for α-arbutin CSNPs showed a more spherical shape compared to β-arbutin CSNPs where rod-shaped particles were observed. However, under transmission electron microscopy, the shapes of both α- and β-arbutin CSNP nanoparticles were spherical. The crystal phase identification of the studied samples was carried out using X-ray diffraction (XRD), and the XRD of both α and β-arbutin CSNPs showed to be more crystalline in comparison to their free form. FTIR spectra showed intense characteristic peaks of chitosan appearing at 3438.3 cm-1 (-OH stretching), 2912 cm-1 (-CH stretching), represented 1598.01 cm-1 (-NH2) for both nanoparticles. Stability studies conducted for 90 days revealed that both α- and β-arbutin CSNPs were stable in solution. Finally, release studies of both α- and β-arbutin CSNPs showed a significantly higher percentage release in comparison to α- and β-arbutin in their free form. Chitosan nanoparticles demonstrate considerable promise as a carrier system for α- and β-arbutin, the use of which is anticipated to improve delivery of arbutin through the skin, in order to improve its efficacy as a whitening agent.
    Matched MeSH terms: Chitosan/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links