Displaying publications 1 - 20 of 230 in total

Abstract:
Sort:
  1. Asmadi Hassan
    MyJurnal
    In 1994, the Government of Malaysia received 61.518 million yen to commence Kuala Lumpur
    International Airport (KLIA) project. The airport is located in the district of Sepang, Selangor, which
    was originally oil palm plantations and small villages. The construction project completed and began in
    used in the 1998. This paper is to evaluate the impact of Japan's ODA for Malaysia, particularly yen
    loan to socioeconomic. In term of socioeconomic impact, many new cities were established such as
    Bandar Baru Salak Tinggi, Bandar Baru Nilai, Banting, Bandar Enstek and Cyber Jaya. Similarly, new
    housing, schools, shopping malls and other facilities such as the Sepang International Circuit and
    Universiti Sains Islam Malaysia (USIM) were built. New roads connecting to the airport also completed
    the development of these places. In terms of employment, previously many who depended on agriculture,
    now turned to business, hospitality, services, transportation and others. In fact the huge investment
    significantly affected the surrounding population, particularly the creation of modern towns, businesses
    and educational centers which gave rise to various types of employment.
    Matched MeSH terms: Cities
  2. Lin X, Baskaran A, Zhang Y
    PMID: 36768047 DOI: 10.3390/ijerph20032679
    Green ecological development has become an inevitable choice to achieve sustainable urban development and carbon neutrality. This paper evaluates the level of green ecological city development in the Xin'an watershed as measured by green total factor productivity (GTFP), analyzes the direct and spatial effects of the Watershed Horizontal Ecological Compensation policy on GTFP, and further examines the moderating effect of the Research and Development (R&D) incentives, industrial structure, and income gap. This paper conducts difference-in-differences (DID) and spatial regression analysis on 27 cities from 2007 to 2019. The results show that GTFP progresses to varying degrees across cities over time, especially in the pilot cities. Crucially, the Watershed Horizontal Ecological Compensation policy significantly improved GTFP, although the effect was slight. Interestingly, the increase in GTFP in pilot cities that implemented the policy spatially suppressed the increase in GTFP in cities that did not implement the policy. Our evidence also shows that the positive effect of the policy is higher in regions with higher R&D incentives and industrial structure upgrading, which indicates that R&D incentives and industrial upgrading are crucial. In comparison, the income gap has not made the expected negative adjustment effect under the Chinese government's poverty alleviation policy. However, the positive policy effect is heterogeneous in the downstream and upstream pilot cities. The "forcing effect" of the policy on the downstream cities is more favorable than the "compensating effect" on the upstream cities. Therefore, policymakers should pay more attention to ensuring the effectiveness of the Watershed Horizontal Ecological Compensation policy in enhancing GTFP as a long-term strategy to guarantee the sustainability of green ecological development in Chinese cities.
    Matched MeSH terms: Cities
  3. Ujang Z, Buckley C
    Water Sci Technol, 2002;46(9):1-9.
    PMID: 12448446
    This paper summarises the paper presentation sessions at the Conference, as well giving insights on the issues related to developing countries. It also discusses the present status of practice and research on water and wastewater management, and projected future scenario based not only on the papers presented in the Conference, but also on other sources. The strategy is presented to overcome many problems in developing countries such as rapid urbanization, industrialization, population growth, financial and institutional problems and, depleting water resources. The strategy consists of Integrated Urban Water Management (IUWM), cleaner industrial production, waste minimisation and financial arrangements.
    Matched MeSH terms: Cities
  4. Murad MW, Siwar C
    Waste Manag Res, 2007 Feb;25(1):3-13.
    PMID: 17346002
    This study assesses waste management and recycling practices of the urban poor households residing as squatters and in low-cost flats of Kuala Lumpur city, Malaysia. To attain the objective, the study employed some statistical techniques such as t-tests of equality of means, one-way analysis of variance, chi-squared 'likelihood ratio' tests, and simple descriptive statistics. The statistical techniques were used to determine and analyse the factors that significantly influence the environmental behaviour of the urban poor concerning solid waste management, particularly their recycling practices. The findings of the study show that the urban poor and low-income communities have been proved to behave in ways that are consistent with and conducive to environmentally friendly solid waste management. This study provides evidence that the urban poor and low-income communities are the main recyclers, re-users, and source-reducers of their household solid waste. The study, however, suggests that policies should be formulated to focus on promoting knowledge, education, and the skills of the urban poor and, in addition, to empower them as a means of improving their quality of life.
    Matched MeSH terms: Cities*
  5. Naqvi AA, AlShayban DM, Ghori SA, Mahmoud MA, Haseeb A, Faidah HS, et al.
    Front Pharmacol, 2019;10:633.
    PMID: 31231222 DOI: 10.3389/fphar.2019.00633
    Objective: The aim was to validate the General Medication Adherence Scale (GMAS) (English version) in Saudi patients with chronic disease. Methods: A month-long study was conducted in the out-patient department of tertiary care hospitals in three cities of Saudi Arabia that collected data from a randomized sample of Saudi patients with chronic disease. The study aimed to achieve an item-to-subject ratio greater than 1:10. Factor analyses were conducted and fit indices calculated. Convergent, discriminant, known group, and concurrent validities were analysed. Internal consistency was determined using test-retest reliability using Cronbach's alpha (α), McDonald's coefficient omega (ω
    t
    ), and Pearson's correlation coefficient (ρ). Sensitivity analysis was conducted. Data were analysed through Statistical Package for Social Sciences (SPSS) version 23. The study was ethically approved (i.e., IRB-129-26/6/1439). Results: The survey gathered responses from 171 patients with a response rate of 85.5%. An item-to-subject ratio of 1:15 was achieved. Factor analysis revealed a three-factor structure with acceptable fit indices (i.e., normed fit index (NFI) = 0.93, Tucker-Lewis index (TLI) = 0.99, and comparative fit index (CFI) = 0.99), i.e., greater than 0.9. The value of root mean square error of approximation (RMSEA) was 0.01, i.e., less than 0.08. The tool established construct validity, i.e., convergent and discriminant validities. Known group and concurrent validities were also established. An α value of 0.74 and ω
    t
    value of 0.92 were reported. Test-retest reliability ρ = 0.82, p < 0.001. The tool had high sensitivity (>75%) and specificity (>80%). Conclusion: The GMAS-English was successfully validated in Saudi patients with chronic disease.
    Matched MeSH terms: Cities
  6. Afroz R, Masud MM
    Waste Manag, 2011 Apr;31(4):800-8.
    PMID: 21169007 DOI: 10.1016/j.wasman.2010.10.028
    This study employed contingent valuation method to estimate the willingness to pay (WTP) of the households to improve the waste collection system in Kuala Lumpur, Malaysia. The objective of this study is to evaluate how household WTP changes when recycling and waste separation at source is made mandatory. The methodology consisted of asking people directly about their WTP for an additional waste collection service charge to cover the costs of a new waste management project. The new waste management project consisted of two versions: version A (recycling and waste separation is mandatory) and version B (recycling and waste separation is not mandatory). The households declined their WTP for version A when they were asked to separate the waste at source although all the facilities would be given to them for waste separation. The result of this study indicates that the households were not conscious about the benefits of recycling and waste separation. Concerted efforts should be taken to raise environmental consciousness of the households through education and more publicity regarding waste separation, reducing and recycling.
    Matched MeSH terms: Cities
  7. Mitha S, ElNaem MH, Chandran J, Rajah NP, Fam TY, Babar MG, et al.
    J Pharm Bioallied Sci, 2018 12 21;10(4):216-225.
    PMID: 30568379 DOI: 10.4103/JPBS.JPBS_296_16
    Background and Objectives: Various devices have been used to maintain oral hygiene. These include toothbrush and toothpaste, mouthwash, dental floss, miswak, and toothpick. This study attempts to investigate the use of various oral cleaning devices and their perceived benefits among Malaysians.

    Methods: A quantitative cross-sectional study conducted in two different cities of Malaysia. A convenience sampling approach was adopted. A total of 787 participants agreed to participate in the current research. A validated questionnaire translated into national language was used for data collection.

    Statistical Analysis Used: Data analysis was performed using Statistical Package for Social Sciences version 20.

    Results: About 302 respondents were in the age range of 18 - 25 years old (38.4%). There were marginally more females (55.7%) than males (44.3%). Although 99.9% of the participants used a toothbrush, a significant majority (n = 590, 75%) used more than a single device to maintain their oral hygiene. Only 311 respondents knew that toothpicks were inappropriate to use to remove food between teeth and gums, while a majority (n = 592, 75.2%) did not realize that some mouthwashes can stain the teeth. Less than half (42.1%) knew that improper use of miswak might harm the teeth.

    Conclusions: Although their oral hygiene behaviors are relatively at a higher level, their perceived oral health benefits did not compare well.

    Matched MeSH terms: Cities
  8. Zhang Z, Alomirah H, Cho HS, Li YF, Liao C, Minh TB, et al.
    Environ Sci Technol, 2011 Aug 15;45(16):7044-50.
    PMID: 21732633 DOI: 10.1021/es200976k
    Bisphenol A (BPA) is an industrial chemical used in the manufacture of polycarbonate plastics and epoxy resins. Due to the potential of this compound to disrupt normal endocrinal functions, concerns over human exposure to BPA have been raised. Although several studies have reported human exposure to BPA in Western nations, little is known about exposure in Asian countries. In this study, we determined total urinary BPA concentrations (free plus conjugated) in 296 urine samples (male/female: 153/143) collected from the general population in seven Asian countries, China, India, Japan, Korea, Kuwait, Malaysia, and Vietnam, using high-performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). On the basis of urinary BPA concentrations, we estimated the total daily intake. The results indicated that BPA was detected in 94.3% of the samples analyzed, at concentrations ranging from <0.1 to 30.1 ng/mL. The geometric mean concentration of BPA for the entire sample set from seven countries was 1.20 ng/mL. The highest concentration of BPA was found in samples from Kuwait (median: 3.05 ng/mL, 2.45 μg/g creatinine), followed by Korea (2.17 ng/mL, 2.40 μg/g), India (1.71 ng/mL, 2.09 μg/g), Vietnam (1.18 ng/mL, 1.15 μg/g), China (1.10 ng/mL, 1.38 μg/g), Malaysia (1.06 ng/mL, 2.31 μg/g), and Japan (0.95 ng/mL, 0.58 μg/g). Among the five age groups studied (≤ 19, 20-29, 30-39, 40-49, and ≥ 50 years), the highest median concentration of BPA was found in urine samples from the age group of ≤ 19 years. There was no significant difference in BPA concentrations between genders (male and female) or domicile of residence (rural and urban). The estimated median daily intakes of BPA for the populations in Kuwait, Korea, India, China, Vietnam, Malaysia, and Japan were 5.19, 3.69, 2.90, 2.13, 2.01, 1.80, and 1.61 μg/day, respectively. The estimated daily intake of BPA in the seven Asian countries was significantly lower than the tolerable daily intake recommended by the U.S. Environmental Protection Agency. This is the first study to document the occurrence of and human exposure to BPA in several Asian countries.
    Matched MeSH terms: Cities
  9. Siri JG, Newell B, Proust K, Capon A
    Asia Pac J Public Health, 2016 Mar;28(2 Suppl):15S-27S.
    PMID: 26219559 DOI: 10.1177/1010539515595694
    Extreme events, both natural and anthropogenic, increasingly affect cities in terms of economic losses and impacts on health and well-being. Most people now live in cities, and Asian cities, in particular, are experiencing growth on unprecedented scales. Meanwhile, the economic and health consequences of climate-related events are worsening, a trend projected to continue. Urbanization, climate change and other geophysical and social forces interact with urban systems in ways that give rise to complex and in many cases synergistic relationships. Such effects may be mediated by location, scale, density, or connectivity, and also involve feedbacks and cascading outcomes. In this context, traditional, siloed, reductionist approaches to understanding and dealing with extreme events are unlikely to be adequate. Systems approaches to mitigation, management and response for extreme events offer a more effective way forward. Well-managed urban systems can decrease risk and increase resilience in the face of such events.
    Matched MeSH terms: Cities
  10. Elmqvist T, Siri J, Andersson E, Anderson P, Bai X, Das PK, et al.
    Sustain Sci, 2018;13(6):1549-1564.
    PMID: 30546487 DOI: 10.1007/s11625-018-0611-0
    Cities are currently experiencing serious, multifaceted impacts from global environmental change, especially climate change, and the degree to which they will need to cope with and adapt to such challenges will continue to increase. A complex systems approach inspired by evolutionary theory can inform strategies for policies and interventions to deal with growing urban vulnerabilities. Such an approach would guide the design of new (and redesign of existing) urban structures, while promoting innovative integration of grey, green and blue infrastructure in service of environmental and health objectives. Moreover, it would contribute to more flexible, effective policies for urban management and the use of urban space. Four decades ago, in a seminal paper in Science, the French evolutionary biologist and philosopher Francois Jacob noted that evolution differs significantly in its characteristic modes of action from processes that are designed and engineered de novo (Jacob in Science 196(4295):1161-1166, 1977). He labeled the evolutionary process "tinkering", recognizing its foundation in the modification and molding of existing traits and forms, with occasional dramatic shifts in function in the context of changing conditions. This contrasts greatly with conventional engineering and design approaches that apply tailor-made materials and tools to achieve well-defined functions that are specified a priori. We here propose that urban tinkering is the application of evolutionary thinking to urban design, engineering, ecological restoration, management and governance. We define urban tinkering as:A mode of operation, encompassing policy, planning and management processes, that seeks to transform the use of existing and design of new urban systems in ways that diversify their functions, anticipate new uses and enhance adaptability, to better meet the social, economic and ecological needs of cities under conditions of deep uncertainty about the future.This approach has the potential to substantially complement and augment conventional urban development, replacing predictability, linearity and monofunctional design with anticipation of uncertainty and non-linearity and design for multiple, potentially shifting functions. Urban tinkering can function by promoting a diversity of small-scale urban experiments that, in aggregate, lead to large-scale often playful innovative solutions to the problems of sustainable development. Moreover, the tinkering approach is naturally suited to exploring multi-functional uses and approaches (e.g., bricolage) for new and existing urban structures and policies through collaborative engagement and analysis. It is thus well worth exploring as a means of delivering co-benefits for environment and human health and wellbeing. Indeed, urban tinkering has close ties to systems approaches, which often are recognized as critical to sustainable development. We believe this concept can help forge much-closer, much-needed ties among engineers, architects, evolutionary ecologists, health specialists, and numerous other urban stakeholders in developing innovative, widely beneficial solutions for society and contribute to successful implementation of SDG11 and the New Urban Agenda.
    Matched MeSH terms: Cities
  11. Talukder S, Capon A, Nath D, Kolb A, Jahan S, Boufford J
    Lancet, 2015 Feb 28;385(9970):769.
    PMID: 25752169 DOI: 10.1016/S0140-6736(15)60428-7
    Matched MeSH terms: Cities/statistics & numerical data
  12. Oliveira JA, Doll CN, Siri J, Dreyfus M, Farzaneh H, Capon A
    Cad Saude Publica, 2015 Nov;31 Suppl 1:25-38.
    PMID: 26648361 DOI: 10.1590/0102-311X00010015
    The term "co-benefits" refers to positive outcomes accruing from a policy beyond the intended outcome, often or usually in other sectors. In the urban context, policies implemented in particular sectors (such as transport, energy or waste) often generate multiple co-benefits in other areas. Such benefits may be related to the reduction of local or global environmental impacts and also extend into the area of public health. A key to identifying and realising co-benefits is the adoption of systems approaches to understand inter-sectoral linkages and, in particular, the translation of this understanding to improved sector-specific and city governance. This paper reviews a range of policies which can yield health and climate co-benefits across different urban sectors and illustrates, through a series of cases, how taking a systems approach can lead to innovations in urban governance which aid the development of healthy and sustainable cities.
    Matched MeSH terms: Cities*
  13. Ling OHL, Siti Nur Afiqah Mohamed Musthafa, Abdul Rauf Abdul Rasam
    Sains Malaysiana, 2014;43:1405-1414.
    Environmental health in general is referring to the aspect of concern on healthy environment, and the interrelations between environment and human health. Due to the urbanization, urban development is changing the natural environment into a man-made environment. Along with the process, level of environmental quality and human health are decreased. Air quality as reference shows that urban ambient air is more polluted than rural. Due to high density of human population and their activities in urban areas, it produces air pollutants with higher rate as compared to less-developed areas. Air pollutants contribute to various health problems. People suffering from respiratory diseases are the most likely to be affected by air pollution. This paper aimed to examine the rate of respiratory infection among residents in an urban growth corridor (Petaling Jaya-Shah Alam-Klang) and the relationship with the urban land uses, traffic volume and air quality. There were four major types of data used in this study i.e., respiratory infection of the respondents, air quality, land use and traffic volume. A health questionnaire survey was carried out besides the secondary data collection from the various government departments. Relationship analysis was performed between respiratory health and the urban factors (air quality, traffic volume and land uses). The study found out that the relationship between the respiratory health and the urban factors is different in city-wide land use and traffic factors, as compared to the localised air quality and land use factors. To conclude, the urban factors are potentially affecting the respiratory health.
    Matched MeSH terms: Cities
  14. Heery EC, Hoeksema BW, Browne NK, Reimer JD, Ang PO, Huang D, et al.
    Mar Pollut Bull, 2018 Oct;135:654-681.
    PMID: 30301085 DOI: 10.1016/j.marpolbul.2018.07.041
    Given predicted increases in urbanization in tropical and subtropical regions, understanding the processes shaping urban coral reefs may be essential for anticipating future conservation challenges. We used a case study approach to identify unifying patterns of urban coral reefs and clarify the effects of urbanization on hard coral assemblages. Data were compiled from 11 cities throughout East and Southeast Asia, with particular focus on Singapore, Jakarta, Hong Kong, and Naha (Okinawa). Our review highlights several key characteristics of urban coral reefs, including "reef compression" (a decline in bathymetric range with increasing turbidity and decreasing water clarity over time and relative to shore), dominance by domed coral growth forms and low reef complexity, variable city-specific inshore-offshore gradients, early declines in coral cover with recent fluctuating periods of acute impacts and rapid recovery, and colonization of urban infrastructure by hard corals. We present hypotheses for urban reef community dynamics and discuss potential of ecological engineering for corals in urban areas.
    Matched MeSH terms: Cities
  15. Wirza R, Nazir S
    Rev Environ Health, 2021 Mar 26;36(1):47-61.
    PMID: 32887208 DOI: 10.1515/reveh-2020-0064
    An aquaponic system is considered to be a sustainable food production solution that follows circular economy principles and the biomimetic natural system to reduce input and waste. It is the combination of two mainly productive systems, a recirculating aquaculture system consists of fish and crustaceans farmed in a tank and hydroponic cultivation consists of vegetable cultured in medium other than soil. Both these systems are well-known around the globe by their performance of production, quality, and verified food safety. An aquaponic system is an industrious mechanism which incorporates impeccably with sustainable growth of intensive agriculture. The existing literature regarding the aquaponic production covers different species of vegetables and fish, a variety of layouts of system, and climate conditions. However, there is a lack of knowledge that can systematically present the existing state-of-the-artwork in a systematic manner. So to overcome this limitation, the proposed research presents a systematic literature review in the field of urban aquaponics. This systematic literature review will help practitioners to take help from the existing literature and propose new solutions based on the available evidence in urban aquaponics.
    Matched MeSH terms: Cities
  16. Abdollahi A, Pradhan B
    Sensors (Basel), 2021 Jul 11;21(14).
    PMID: 34300478 DOI: 10.3390/s21144738
    Urban vegetation mapping is critical in many applications, i.e., preserving biodiversity, maintaining ecological balance, and minimizing the urban heat island effect. It is still challenging to extract accurate vegetation covers from aerial imagery using traditional classification approaches, because urban vegetation categories have complex spatial structures and similar spectral properties. Deep neural networks (DNNs) have shown a significant improvement in remote sensing image classification outcomes during the last few years. These methods are promising in this domain, yet unreliable for various reasons, such as the use of irrelevant descriptor features in the building of the models and lack of quality in the labeled image. Explainable AI (XAI) can help us gain insight into these limits and, as a result, adjust the training dataset and model as needed. Thus, in this work, we explain how an explanation model called Shapley additive explanations (SHAP) can be utilized for interpreting the output of the DNN model that is designed for classifying vegetation covers. We want to not only produce high-quality vegetation maps, but also rank the input parameters and select appropriate features for classification. Therefore, we test our method on vegetation mapping from aerial imagery based on spectral and textural features. Texture features can help overcome the limitations of poor spectral resolution in aerial imagery for vegetation mapping. The model was capable of obtaining an overall accuracy (OA) of 94.44% for vegetation cover mapping. The conclusions derived from SHAP plots demonstrate the high contribution of features, such as Hue, Brightness, GLCM_Dissimilarity, GLCM_Homogeneity, and GLCM_Mean to the output of the proposed model for vegetation mapping. Therefore, the study indicates that existing vegetation mapping strategies based only on spectral characteristics are insufficient to appropriately classify vegetation covers.
    Matched MeSH terms: Cities
  17. Dieng H, Saifur RG, Ahmad AH, Salmah MR, Aziz AT, Satho T, et al.
    Asian Pac J Trop Biomed, 2012 Mar;2(3):228-32.
    PMID: 23569903 DOI: 10.1016/S2221-1691(12)60047-1
    To identify the unusual breeding sites of two dengue vectors, i.e. Aedes albopictus (Ae. albopictus) and Aedes aegypti (Ae. aegypti).
    Matched MeSH terms: Cities
  18. Chapman R, Howden-Chapman P, Capon A
    Environ Int, 2016 Sep;94:380-387.
    PMID: 27126780 DOI: 10.1016/j.envint.2016.04.014
    Understanding cities comprehensively as systems is a costly challenge and is typically not feasible for policy makers. Nevertheless, focusing on some key systemic characteristics of cities can give useful insights for policy to advance health and well-being outcomes. Moreover, if we take a coevolutionary systems view of cities, some conventional assumptions about the nature of urban development (e.g. the growth in private vehicle use with income) may not stand up. We illustrate this by examining the coevolution of urban transport and land use systems, and institutional change, giving examples of policy implications. At a high level, our concern derives from the need to better understand the dynamics of urban change, and its implications for health and well-being. At a practical level, we see opportunities to use stylised findings about urban systems to underpin policy experiments. While it is now not uncommon to view cities as systems, policy makers appear to have made little use so far of a systems approach to inform choice of policies with consequences for health and well-being. System insights can be applied to intelligently anticipate change - for example, as cities are subjected to increasing natural system reactions to climate change, they must find ways to mitigate and adapt to it. Secondly, systems insights around policy cobenefits are vital for better informing horizontal policy integration. Lastly, an implication of system complexity is that rather than seeking detailed, 'full' knowledge about urban issues and policies, cities would be well advised to engage in policy experimentation to address increasingly urgent health and climate change issues.
    Matched MeSH terms: Cities*
  19. Abdul Aziz FAB, Abd Rahman N, Mohd Ali J
    Comput Intell Neurosci, 2019;2019:6252983.
    PMID: 31239836 DOI: 10.1155/2019/6252983
    Due to the rapid development of economy and society around the world, the most urban city is experiencing tropospheric ozone or commonly known as ground-level air pollutants. The concentration of air pollutants must be identified as an early precaution step by the local environmental or health agencies. This work aims to apply the artificial neural network (ANN) in estimating the ozone concentration forecast in Bangi. It consists of input variables such as temperature, relative humidity, concentration of nitrogen dioxide, time, UVA and UVB rays obtained from routine monitoring, and data recorded. Ten hidden layer is utilized to obtain the optimized ozone concentration, which is the output layer of the ANN framework. The finding showed that the meteorology condition and emission patterns play an important part in influencing the ozone concentration. However, a single network is sufficient enough to estimate the concentration despite any circumstances. Thus, it can be concluded that ANN is able to give reliable and satisfactory estimations of ozone concentration for the following day.
    Matched MeSH terms: Cities
  20. Lan S, Tseng ML, Yang C, Huisingh D
    Sci Total Environ, 2020 Apr 10;712:136381.
    PMID: 31940512 DOI: 10.1016/j.scitotenv.2019.136381
    "Smart cities" have become the development direction pursued by city leaders to address challenges related to rapid growth in urban areas. The sustainable development of the logistics sector has important practical significance for the evolution of smart cities. This study assessed the inefficiency rate and total factor productivity (TFP) of logistics in 36 Chinese cities from 2006 to 2015. The directional distance function (DDF) and Luenberger productivity index analytical approaches were used to assess the relevant parameters. The results revealed that the logistics system inefficiency rate of the eastern region was much higher than that of the central and western regions, while that of the western region was slightly higher than that of the central region. This study identified the main constraints of the logistics TFP in different regions in China. This finding is used to promote policy-making and investment planning to improve China's competitive advantage. The results documented that the central region of China needs to accelerate logistics reforms and use its location advantage of its location to form an organic connection with the eastern and western regions. Countries can use such metrics to take actions to improve their logistics performance, as such an improvement has a causal relationship with economic development.
    Matched MeSH terms: Cities
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links