Displaying publications 1 - 20 of 230 in total

Abstract:
Sort:
  1. Ahmed T, Moeinaddini M, Almoshaogeh M, Jamal A, Nawaz I, Alharbi F
    PMID: 34444563 DOI: 10.3390/ijerph18168813
    Crosswalks are critical locations in the urban transport network that need to be designed carefully as pedestrians are directly exposed to vehicular traffic. Although various methods are available to evaluate the level of service (LOS) at pedestrian crossings, pedestrian crossing facilities are frequently ignored in assessing crosswalk conditions. This study attempts to provide a comprehensive framework for evaluating crosswalks based on several essential indicators adopted from different guidelines. A new pedestrian crossing level of service (PCLOS) method is introduced in this research, with an aimto promote safe and sustainable operations at such locations. The new PCLOS employs an analytical point system to compare existing street crossing conditions to the guidelines' standards, taking into account the scores and coefficients of the indicators. The quantitative scores and coefficients of indicators are assigned based on field observations and respondent opinions. The method was tested to evaluate four pedestrian crosswalks in the city of Putrajaya, Malaysia. A total of 17 indicators were selected for the study after a comprehensive literature review. Survey results show that the provision of a zebra crossing was the most critical indicator at the pedestrian crossings, while drainage near crosswalks was regarded as the least important. Four indicators had a coefficient value above 4, indicating that these are very critical pedestrian crossing facilities and significantly impact the calculation of LOS for pedestrian crossings. Four crosswalks were evaluated using the proposed method in Putrajaya, Malaysia. The crosswalk at the Ministry of Domestic Trade Putrajaya got the "PCLOS A". In contrast, the midblock crossing in front of the Putrajaya Corporation was graded "PCLOS C". While the remaining two crosswalks were graded as "PCLOS B" crosswalks. Based on the assigned PCLOS grade, the proposed method could also assist in identifying current design and operation issues in existing pedestrian crossings and providing sound policy recommendations for improvements to ensure pedestrian safety.
    Matched MeSH terms: Cities
  2. Diez Roux AV, Slesinski SC, Alazraqui M, Caiaffa WT, Frenz P, Jordán Fuchs R, et al.
    Glob Chall, 2019 Apr;3(4):1800013.
    PMID: 31565372 DOI: 10.1002/gch2.201800013
    This article describes the origins and characteristics of an interdisciplinary multinational collaboration aimed at promoting and disseminating actionable evidence on the drivers of health in cities in Latin America and the Caribbean: The Network for Urban Health in Latin America and the Caribbean and the Wellcome Trust funded SALURBAL (Salud Urbana en América Latina, or Urban Health in Latin America) Project. Both initiatives have the goals of supporting urban policies that promote health and health equity in cities of the region while at the same time generating generalizable knowledge for urban areas across the globe. The processes, challenges, as well as the lessons learned to date in launching and implementing these collaborations, are described. By leveraging the unique features of the Latin American region (one of the most urbanized areas of the world with some of the most innovative urban policies), the aim is to produce generalizable knowledge about the links between urbanization, health, and environments and to identify effective ways to organize, design, and govern cities to improve health, reduce health inequalities, and maximize environmental sustainability in cities all over the world.
    Matched MeSH terms: Cities
  3. Kamble CB, Raju R, Vishnu R, Rajkanth R, Pariatamby A
    Waste Manag Res, 2021 Nov;39(11):1427-1436.
    PMID: 34494917 DOI: 10.1177/0734242X211029159
    Management of waste is one of the major challenges faced by many developing countries. This study therefore attempts to develop a circular economy (CE) model to manage wastes and closing the loop and reducing the generation of residual wastes in Indian municipalities. Through extant literature review, the researchers found 30 success factors of CE implementation. Using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) SIMOS approach, the rating and weight of decision makers (DMs) for each factor were collected. A structured questionnaire has been developed incorporating all these 30 factors, to extract the most important factors. The data was collected from top 10 officials (DMs) from the Chennai municipality, who handle three regions (metropolitan, suburbia and industrial). Based on the TOPSIS SIMOS analysis, nine CE implementing factors (critical success factors (CSFs)) among the 30 variables that were significant based on the cut-off value was identified. A CE model has been proposed based on these nine CSFs for waste management in India.
    Matched MeSH terms: Cities
  4. Shahab A, Hui Z, Rad S, Xiao H, Siddique J, Huang LL, et al.
    Environ Geochem Health, 2023 Mar;45(3):585-606.
    PMID: 35347514 DOI: 10.1007/s10653-022-01255-3
    In order to expound on the present situation and potential risk of road dust heavy metals in major cities, a total of 114 literatures mainly over the past two decades, involving more than 5000 sampling sites in 61 cities of 21 countries, were screened through the collection and analysis of research papers. The concentration, sources, distribution, health risk, sample collection, and analytical methods of heavy metal research on road dust in cities around the world are summarized. The results show that Cd, Zn, and Cu in many urban road dusts in the world are higher than the grade II of the Chinese maximum allowable concentration of potentially toxic elements in the soil. Geo-accumulation index values show that Pb > Cd > Zn > Cu had the highest contamination levels. Hazard index assessment indicates Pb and Cr had the highest potential health risk, especially for children in which ingestion was found as the main exposure pathway. Moreover, through comparative analysis, it is found that some pollutants are higher in developed and industrialized cities and transport (53%) followed by industrial emissions (35%) provide the major contributions to the sources of heavy metals.
    Matched MeSH terms: Cities
  5. Sehreen F, Masud MM, Akhtar R, Masum MRA
    Environ Monit Assess, 2019 Jun 22;191(7):457.
    PMID: 31230139 DOI: 10.1007/s10661-019-7595-9
    The city of Dhaka has been ranked repeatedly as the most polluted, the most populous, and the most unbearable city in the world. More than 19.5 million inhabitants live in Dhaka, and the population growth rate of urban areas in Bangladesh is almost double that of rural areas. Rapid urbanization is one of the leading contributors to water pollution in Dhaka and could prevent the country from achieving sustainable development. Therefore, this study estimates respondents' willingness to pay (WTP) to improve water pollution management systems and identifies factors that influence WTP in Dhaka. This study employed the contingent valuation method (CVM) to estimate WTP of the respondents. Data were collected using a structured questionnaire with CVM questions, which was distributed to households in the study areas. The results revealed that 67% of the respondents are willing to pay for an improved water pollution management system, while 31.8% of households are unwilling to pay. The study also found that socio-economic factors (e.g., income and education) and perception significantly influence WTP. Therefore, this paper will provide directives for policymakers in developing an effective policy framework, as well as sensitize all stakeholders to the management of water pollution in Dhaka. The study suggests that social institutions, financial institutions, banks, non-government organizations (NGOs), insurance companies, and the government could provide effective outreach programs for water pollution management as part of their social responsibility.
    Matched MeSH terms: Cities
  6. Wan Alwi SR, Manan ZA, Samingin MH, Misran N
    J Environ Manage, 2008 Jul;88(2):219-52.
    PMID: 17449168
    Water pinch analysis (WPA) is a well-established tool for the design of a maximum water recovery (MWR) network. MWR, which is primarily concerned with water recovery and regeneration, only partly addresses water minimization problem. Strictly speaking, WPA can only lead to maximum water recovery targets as opposed to the minimum water targets as widely claimed by researchers over the years. The minimum water targets can be achieved when all water minimization options including elimination, reduction, reuse/recycling, outsourcing and regeneration have been holistically applied. Even though WPA has been well established for synthesis of MWR network, research towards holistic water minimization has lagged behind. This paper describes a new holistic framework for designing a cost-effective minimum water network (CEMWN) for industry and urban systems. The framework consists of five key steps, i.e. (1) Specify the limiting water data, (2) Determine MWR targets, (3) Screen process changes using water management hierarchy (WMH), (4) Apply Systematic Hierarchical Approach for Resilient Process Screening (SHARPS) strategy, and (5) Design water network. Three key contributions have emerged from this work. First is a hierarchical approach for systematic screening of process changes guided by the WMH. Second is a set of four new heuristics for implementing process changes that considers the interactions among process changes options as well as among equipment and the implications of applying each process change on utility targets. Third is the SHARPS cost-screening technique to customize process changes and ultimately generate a minimum water utilization network that is cost-effective and affordable. The CEMWN holistic framework has been successfully implemented on semiconductor and mosque case studies and yielded results within the designer payback period criterion.
    Matched MeSH terms: Cities
  7. Wang G, Wan Y, Ding CJ, Liu X, Jiang Y
    Environ Sci Pollut Res Int, 2023 Oct;30(47):103513-103533.
    PMID: 37704820 DOI: 10.1007/s11356-023-29490-w
    The construction of low-carbon cities is an essential component of sustainable urban development. However, there is a lack of a comprehensive low-carbon city design and evaluation system that incorporates "carbon sink accounting-remote sensing monitoring-numerical modelling-design and application" in an all-around linkage, multi-scale coupling, and localized effects. This paper utilizes the Citespace tool to evaluate low-carbon city design applications by analyzing literature in the Web of Science (WOS) core collection database. The results reveal that low-carbon cities undergo four stages: "measurement-implementation-regulation - management." The research themes are divided into three core clustering evolutionary pathways: "extension of carbon sink functions," "spatialisation of carbon sink systems," and "full-cycle, full-dimensional decarbonisation." Applications include "Utility studies of multi-scale carbon sink assessments," "Correlation analysis of carbon sink influencing factors," "Predictive characterisation of multiple planning scenarios," and "Spatial planning applications of urban sink enhancement." Future low-carbon city construction should incorporate intelligent algorithm technology in real-time to provide a strong design basis for multi-scale urban spatial design with the features of "high-precision accounting, full-cycle assessment and low-energy concept."
    Matched MeSH terms: Cities
  8. Goh HW, Lem KS, Azizan NA, Chang CK, Talei A, Leow CS, et al.
    Environ Sci Pollut Res Int, 2019 May;26(15):14904-14919.
    PMID: 30977005 DOI: 10.1007/s11356-019-05041-0
    Bioretention systems have been implemented as stormwater best management practices (BMPs) worldwide to treat non-point sources pollution. Due to insufficient research, the design guidelines for bioretention systems in tropical countries are modeled after those of temperate countries. However, climatic factors and stormwater runoff characteristics are the two key factors affecting the capacity of bioretention system. This paper reviews and compares the stormwater runoff characteristics, bioretention components, pollutant removal requirements, and applications of bioretention systems in temperate and tropical countries. Suggestions are given for bioretention components in the tropics, including elimination of mulch layer and submerged zone. More research is required to identify suitable additives for filter media, study tropical shrubs application while avoiding using grass and sedges, explore function of soil faunas, and adopt final discharged pollutants concentration (mg/L) on top of percentage removal (%) in bioretention design guidelines.
    Matched MeSH terms: Cities
  9. Newell B, Siri J
    Environ Int, 2016 10;95:93-7.
    PMID: 27553880 DOI: 10.1016/j.envint.2016.08.003
    Cities are complex adaptive systems whose responses to policy initiatives emerge from feedback interactions between their parts. Urban policy makers must routinely deal with both detail and dynamic complexity, coupled with high levels of diversity, uncertainty and contingency. In such circumstances, it is difficult to generate reliable predictions of health-policy outcomes. In this paper we explore the potential for low-order system dynamics (LOSD) models to make a contribution towards meeting this challenge. By definition, LOSD models have few state variables (≤5), illustrate the non-linear effects caused by feedback and accumulation, and focus on endogenous dynamics generated within well-defined boundaries. We suggest that experience with LOSD models can help practitioners to develop an understanding of basic principles of system dynamics, giving them the ability to 'see with new eyes'. Because efforts to build a set of LOSD models can help a transdisciplinary group to develop a shared, coherent view of the problems that they seek to tackle, such models can also become the foundations of 'powerful ideas'. Powerful ideas are conceptual metaphors that provide the members of a policy-making group with the a priori shared context required for effective communication, the co-production of knowledge, and the collaborative development of effective public health policies.
    Matched MeSH terms: Cities
  10. Kurniawan TA, Lo W, Singh D, Othman MHD, Avtar R, Hwang GH, et al.
    Environ Pollut, 2021 May 15;277:116741.
    PMID: 33652179 DOI: 10.1016/j.envpol.2021.116741
    Recently Xiamen (China) has encountered various challenges of municipal solid waste management (MSWM) such as lack of a complete garbage sorting and recycling system, the absence of waste segregation between organic and dry waste at source, and a shortage of complete and clear information about the MSW generated. This article critically analyzes the existing bottlenecks in its waste management system and discusses the way forward for the city to enhance its MSWM by drawing lessons from Hong Kong's effectiveness in dealing with the same problems over the past decades. Solutions to the MSWM problem are not only limited to technological options, but also integrate environmental, legal, and institutional perspectives. The solutions include (1) enhancing source separation and improving recycling system; (2) improving the legislation system of the MSWM; (3) improvement of terminal disposal facilities in the city; (4) incorporating digitization into MSWM; and (5) establishing standards and definitions for recycled products and/or recyclable materials. We also evaluate and compare different aspects of MSWM in Xiamen and Hong Kong SAR (special administrative region) under the framework of 'One Country, Two Systems' concerning environmental policies, generation, composition, characteristics, treatment, and disposal of their MSW. The nexus of society, economics of the MSW, and the environment in the sustainability sphere are established by promoting local recycling industries and the standardization of recycled products and/or recyclable materials. The roles of digitization technologies in the 4th Industrial Revolution for waste reduction in the framework of circular economy (CE) are also elaborated. This technological solution may improve the city's MSWM in terms of public participation in MSW separation through reduction, recycle, reuse, recovery, and repair (5Rs) schemes. To meet top-down policy goals such as a 35% recycling rate for the generated waste by 2030, incorporating digitization into the MSWM provides the city with technology-driven waste solutions.
    Matched MeSH terms: Cities
  11. Alahmad B, Al-Hemoud A, Kang CM, Almarri F, Kommula V, Wolfson JM, et al.
    Environ Pollut, 2021 Aug 01;282:117016.
    PMID: 33848912 DOI: 10.1016/j.envpol.2021.117016
    BACKGROUND: Kuwait and the Gulf region have a desert, hyper-arid and hot climate that makes outdoor air sampling challenging. The region is also affected by intense dust storms. Monitoring challenges from the harsh climate have limited data needed to inform appropriate regulatory actions to address air pollution in the region.

    OBJECTIVES: To compare gravimetric measurements with existing networks that rely on beta-attenuation measurements in a desert climate; determine the annual levels of PM2.5 and PM10 over a two-year period in Kuwait; assess compliance with air quality standards; and identify and quantify PM2.5 sources.

    METHODS: We custom-designed particle samplers that can withstand large quantities of dust without their inlet becoming overloaded. The samplers were placed in two populated residential locations, one in Kuwait City and another near industrial and petrochemical facilities in Ali Sabah Al-Salem (ASAS) to collect PM2.5 and PM10 samples for mass and elemental analysis. We used positive matrix factorization to identify PM2.5 sources and apportion their contributions.

    RESULTS: We collected 2339 samples during the period October 2017 through October 2019. The beta-attenuation method in measuring PM2.5 consistently exceeded gravimetric measurements, especially during dust events. The annual levels for PM2.5 in Kuwait City and ASAS were 41.6 ± 29.0 and 47.5 ± 27.6 μg/m3, respectively. Annual PM2.5 levels in Kuwait were nearly four times higher than the U.S. National Ambient Air Quality Standard. Regional pollution was a major contributor to PM2.5 levels in both locations accounting for 44% in Kuwait City and 46% in ASAS. Dust storms and re-suspended road dust were the second and third largest contributors to PM2.5, respectively.

    CONCLUSIONS: The premise that frequent and extreme dust storms make air quality regulation futile is dubious. In this comprehensive particulate pollution analysis, we show that the sizeable regional anthropogenic particulate sources warrant national and regional mitigation strategies to ensure compliance with air quality standards.

    Matched MeSH terms: Cities
  12. Lee, Yi Yi, Narimah Samat, Wan Manan Wan Muda
    Malays J Nutr, 2017;23(3):397-408.
    MyJurnal
    Introduction: Physical activity has been shown to be beneficial for the prevention of
    obesity and non-communicable diseases. Our contemporary way of life that is technology
    dependent has significantly reduced physical activity. This study aimed to determine
    accelerometer-measured physical activity (moderate-to-vigorous physical activity (MVPA))
    among adults in high and low walkability neighbourhoods in Penang and Kota Bharu,
    Malaysia.

    Methods: Participants (n=490) were sampled using multistage sampling method
    from neighbourhoods with varied levels of walkability using Geographical Information
    System (GIS). Physical activity was measured objectively using Actigraph GT3X+
    accelerometers, worn by the participants on their waists for a period of 5 to 7 days.

    Results:
    The participants had a mean of 13.5 min/day of MVPA. Total MVPA was significantly
    higher among participants in high walkability neighbourhoods (19.7 min/day vs. 9.1 min/
    day). Results from t-test showed that the time spent on MVPA per day was significantly
    lower among participants residing in low walkability neighbourhoods. The final model
    of the MIXED model statistical tests showed that total MVPA was significantly associated
    with BMI, but not with WC measurements, after adjusting for covariates.

    Conclusion: Most
    of the participants had very low MVPA and did not achieve the current physical activity
    recommendations, implying that Malaysian adults residing in these two cities were not
    physically active to achieve health benefits. Results are suggestive of the importance of the
    walkability concept in neighbourhoods in encouraging physical activity and healthy body
    weight among Malaysians.
    Matched MeSH terms: Cities
  13. Chou L, Dai J, Qian X, Karimipour A, Zheng X
    Agric Water Manag, 2021 Feb 28;245:106583.
    PMID: 33100487 DOI: 10.1016/j.agwat.2020.106583
    With the development of Chinese economy, more and more attention has been paid to environmental protection, the implementation of water price policy affects economic and environmental changes in China. This paper analyzes the impact of water price policy on agricultural land use and the scale of water pollution discharge in 240 cities in China between 2001 and 2017, by including data from China Urban Statistical Yearbook and China Land & Resources Almanac. The theoretical analysis of this study indicates that the optimal scale of pollution depends on the local initial endowment, economic investment capital and the marginal cost of environmental pollution caused by government's economic activities. Furtherly, the economic activities have a worsening impact on environmental pollution, but when the government implements environmental protection and water price policy measures in response to environmental pollution caused by economic activities, it has a significant impact on the decline in the scale of pollution. The government has promoted the pollution suppression model in the formulation of water prices, which has internalized the external cost of pollution in economic activities and can effectively reduce the scale of agricultural water pollution discharge.
    Matched MeSH terms: Cities
  14. Tiraphat S, Buntup D, Munisamy M, Nguyen TH, Yuasa M, Nyein Aung M, et al.
    PMID: 32586034 DOI: 10.3390/ijerph17124523
    Promoting age-friendly environment is one of the appropriate approaches to support quality of life toward ageing populations. However, the information regarding age-friendly environments in the Association of Southeast Asian Nations (ASEAN) Plus Three countries is still limited. This study aimed to survey the perceived age-friendly environments among ASEAN Plus Three older populations. This study employed cross-sectional quantitative research using multistage cluster sampling to select a sample of older adults in the capital cities of Japan, Malaysia, Myanmar, Vietnam and Thailand. The final sample was composed of 2171 older adults aged 55 years and over, including 140 Japanese, 510 Thai, 537 Malaysian, 487 Myanmarese, and 497 Vietnamese older adults. Data collection was conducted using a quantitative questionnaire with 20 items of perceived age-friendly environments with the rating scale based on the World Health Organization (WHO) standard. The score from the 20 items were analyzed and examined high-risk groups of "bad perception level" age-friendly environments using ordinal logistic regression. The research indicated the five highest inadequacies of age-friendly environments including: (1) participating in an emergency-response training session or drill which addressed the needs of older residents; (2) enrolling in any form of education or training, either formal or non-formal in any subject; (3) having opportunities for paid employment; (4) involvement in decision making about important political, economic and social issues in the community; and (5) having personal care or assistance needs met in the older adult's home setting by government/private care services. Information regarding the inadequacy of age-friendliness by region was evidenced to guide policy makers in providing the right interventions towards older adults' needs.
    Matched MeSH terms: Cities
  15. Ng SI, Lim XJ, Hsu HC, Chou CC
    Health Promot Int, 2023 Jun 01;38(3).
    PMID: 35437585 DOI: 10.1093/heapro/daac040
    The purpose of this study was to examine the association between age-friendliness of a city, loneliness and depression moderated by internet use among older people during the coronavirus disease 2019 (COVID-19) pandemic. The survey was from 'The 2020 Survey of Needs Assessment for a Safe Community and Age-Friendly City' in Xinyi District, Taipei, which was conducted by face-to-face interviews with community-based older adults who were aged 65 and above from one district of Taipei City from May to June 2020 (n = 335). Partial least square structural equation modeling and the SPSS PROCESS macro were used for data analysis. Two domains of an age-friendly city (housing and community support and health services) were found to be associated with reduced loneliness, while one (respect and social inclusion) was associated with decreased depression. The age-friendliness of cities mitigates depression through moderator (internet use) and mediation (loneliness) mechanisms. Although some age-friendly domains of the city reduced loneliness and depression directly, the age-friendliness-loneliness-depression mechanism held true only for older adults who used the internet and not for nonusers. Maintaining the age-friendliness of an environment is beneficial to mental health, and internet use is a necessary condition to gain optimum benefits from age-friendly initiatives. Policy suggestions are discussed.
    Matched MeSH terms: Cities
  16. Arora S, Sawaran Singh NS, Singh D, Rakesh Shrivastava R, Mathur T, Tiwari K, et al.
    Comput Intell Neurosci, 2022;2022:9755422.
    PMID: 36531923 DOI: 10.1155/2022/9755422
    In this study, the air quality index (AQI) of Indian cities of different tiers is predicted by using the vanilla recurrent neural network (RNN). AQI is used to measure the air quality of any region which is calculated on the basis of the concentration of ground-level ozone, particle pollution, carbon monoxide, and sulphur dioxide in air. Thus, the present air quality of an area is dependent on current weather conditions, vehicle traffic in that area, or anything that increases air pollution. Also, the current air quality is dependent on the climate conditions and industrialization in that area. Thus, the AQI is history-dependent. To capture this dependency, the memory property of fractional derivatives is exploited in this algorithm and the fractional gradient descent algorithm involving Caputo's derivative has been used in the backpropagation algorithm for training of the RNN. Due to the availability of a large amount of data and high computation support, deep neural networks are capable of giving state-of-the-art results in the time series prediction. But, in this study, the basic vanilla RNN has been chosen to check the effectiveness of fractional derivatives. The AQI and gases affecting AQI prediction results for different cities show that the proposed algorithm leads to higher accuracy. It has been observed that the results of the vanilla RNN with fractional derivatives are comparable to long short-term memory (LSTM).
    Matched MeSH terms: Cities
  17. Ravindiran G, Hayder G, Kanagarathinam K, Alagumalai A, Sonne C
    Chemosphere, 2023 Oct;338:139518.
    PMID: 37454985 DOI: 10.1016/j.chemosphere.2023.139518
    Clean air is critical component for health and survival of human and wildlife, as atmospheric pollution is associated with a number of significant diseases including cancer. However, due to rapid industrialization and population growth, activities such as transportation, household, agricultural, and industrial processes contribute to air pollution. As a result, air pollution has become a significant problem in many cities, especially in emerging countries like India. To maintain ambient air quality, regular monitoring and forecasting of air pollution is necessary. For that purpose, machine learning has emerged as a promising technique for predicting the Air Quality Index (AQI) compared to conventional methods. Here we apply the AQI to the city of Visakhapatnam, Andhra Pradesh, India, focusing on 12 contaminants and 10 meteorological parameters from July 2017 to September 2022. For this purpose, we employed several machine learning models, including LightGBM, Random Forest, Catboost, Adaboost, and XGBoost. The results show that the Catboost model outperformed other models with an R2 correlation coefficient of 0.9998, a mean absolute error (MAE) of 0.60, a mean square error (MSE) of 0.58, and a root mean square error (RMSE) of 0.76. The Adaboost model had the least effective prediction with an R2 correlation coefficient of 0.9753. In summary, machine learning is a promising technique for predicting AQI with Catboost being the best-performing model for AQI prediction. Moreover, by leveraging historical data and machine learning algorithms enables accurate predictions of future urban air quality levels on a global scale.
    Matched MeSH terms: Cities
  18. Khan MF, Hamid AH, Bari MA, Tajudin ABA, Latif MT, Nadzir MSM, et al.
    Sci Total Environ, 2019 Feb 10;650(Pt 1):1195-1206.
    PMID: 30308807 DOI: 10.1016/j.scitotenv.2018.09.072
    Equatorial warming conditions in urban areas can influence the particle number concentrations (PNCs), but studies assessing such factors are limited. The aim of this study was to evaluate the level of size-resolved PNCs, their potential deposition rate in the human respiratory system, and probable local and transboundary inputs of PNCs in Kuala Lumpur. Particle size distributions of a 0.34 to 9.02 μm optical-equivalent size range were monitored at a frequency of 60 s between December 2016 and January 2017 using an optical-based compact scanning mobility particle sizer (SMPS). Diurnal and correlation analysis showed that traffic emissions and meteorological confounding factors were potential driving factors for changes in the PNCs (Dp ≤1 μm) at the modeling site. Trajectory modeling showed that a PNC <100/cm3 was influenced mainly by Indo-China region air masses. On the other hand, a PNC >100/cm3 was influenced by air masses originating from the Indian Ocean and Indochina regions. Receptor models extracted five potential sources of PNCs: industrial emissions, transportation, aged traffic emissions, miscellaneous sources, and a source of secondary origin coupled with meteorological factors. A respiratory deposition model for male and female receptors predicted that the deposition flux of PM1 (particle mass ≤1 μm) into the alveolar (AL) region was higher (0.30 and 0.25 μg/h, respectively) than the upper airway (UA) (0.29 and 0.24 μg/h, respectively) and tracheobronchial (TB) regions (0.02 μg/h for each). However, the PM2.5 deposition flux was higher in the UA (2.02 and 1.68 μg/h, respectively) than in the TB (0.18 and 0.15 μg/h, respectively) and the AL regions (1.09 and 0.91 μg/h, respectively); a similar pattern was also observed for PM10.
    Matched MeSH terms: Cities
  19. Chew KW, Khoo KS, Foo HT, Chia SR, Walvekar R, Lim SS
    Chemosphere, 2020 Dec 15;268:129322.
    PMID: 33359993 DOI: 10.1016/j.chemosphere.2020.129322
    With the rapid urbanisation happening around the world followed by the massive demand for clean energy resources, green cities play a pivotal role in building a sustainable future for the people. The continuing depletion of natural resources has led to the development of renewable energy with algae as the promising source. The high growth rate of microalgae and their strong bio-fixation ability to convert CO2 into O2 have been gaining attention globally and intensive research has been conducted regarding the microalgae benefits. The focus on potential of microalgae in contributing to the development of green cities is rising. The advantage of microalgae is their ability to gather energy from sunlight and carbon dioxide, followed by transforming the nutrients into biomass and oxygen. This leads to the creation of green cities through algae cultivation as waste and renewable materials can be put to good use. The challenges that arise when using algae and the future prospect in terms of SDGs and economy will also be covered in this review. The future of green cities can be enhanced with the adaptation of algae as the source of renewable plants to create a better outlook of an algae green city.
    Matched MeSH terms: Cities
  20. Leal Filho W, Echevarria Icaza L, Emanche VO, Quasem Al-Amin A
    PMID: 29257100 DOI: 10.3390/ijerph14121600
    The impacts of climate changes on cities, which are home to over half of the world's population, are already being felt. In many cases, the intensive speed with which urban centres have been growing means that little attention has been paid to the role played by climatic factors in maintaining quality of life. Among the negative consequences of rapid city growth is the expansion of the problems posed by urban heat islands (UHIs), defined as areas in a city that are much warmer than other sites, especially in comparison with rural areas. This paper analyses the consistency of the UHI-related literature in three stages: first it outlines its characteristics and impacts in a wide variety of cities around the world, which poses pressures to public health in many different countries. Then it introduces strategies which may be employed in order to reduce its effects, and finally it analyses available tools to systematize the initial high level assessment of the phenomenon for multidisciplinary teams involved in the urban planning process. The analysis of literature on the characteristics, impacts, strategies and digital tools to assess on the UHI, reveals the wide variety of parameters, methods, tools and strategies analysed and suggested in the different studies, which does not always allow to compare or standardize the diagnosis or solutions.
    Matched MeSH terms: Cities
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links