Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Eshaghi M, Ali AM, Jamal F, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Feb;6(1):23-8.
    PMID: 12186779
    Streptococcus pyogenes ST4547 is an opacity factor negative strain, which has been recently reported as a new emm type from Malaysia. Nucleotide sequencing of the mga regulon of this strain showed the existence of two emm-like genes. The emm gene located upstream of the scpA gene comprises 1305 nucleotides encoding the putative precursor M protein of 435 amino acids in length with an M(r) of 49 kDa. or a predicted mature protein of 394 amino acids with an M(r) of 44.8 kDa. Another gene mrpST4547 was located upstream of the emm gene and downstream of the mga gene. The sequence of this mrp gene comprises 1167 nucleotides encoding a predicted protein of 388 amino acids in length with an M(r) of 42.2 kDa. or a predicted mature protein of 347 amino acids with an M(r) of 37.9 kDa. The mga regulon of strain ST4547 has a mosaic structure comprising segments, which originated from different OF positive and OF negative strains. The sequences flanking the hyper-variable and C repeats of the emmST4547 gene showed high similarity to corresponding regions in the mga regulon of OF positive strains notably M15, M4, M22 and M50. In contrast, the sequence within the hyper-variable and C repeat regions of the emmST4547 gene revealed high similarity to equivalent regions in the OF negative strains. These data indicates that horizontal transfer of emm-like gene could have occurred between OF positive and OF negative strains resulting in architectural divergence in the mga regulon.
    Matched MeSH terms: Codon
  2. Mohamed Z, Ahmad R, Yoke NS, Zakaria Z, Ahmad H, Yew TH
    Cancer Sci, 2003 Aug;94(8):725-8.
    PMID: 12901799 DOI: 10.1111/j.1349-7006.2003.tb01509.x
    The present study was carried out to characterize the causative genetic mutation in a medium-sized Malaysian Chinese pedigree of three generations affected with familial adenomatous polyposis (FAP). Clinical data and genetic studies revealed considerable phenotypic variability in affected individuals in this family. Blood was obtained from members of the FAP-01 family and genomic DNA was extracted. Mutation screening of the adenomatous polyposis coli (APC) gene was carried out using the single strand conformation polymorphism (SSCP) technique. The possibility of exon skipping was predicted by splicing motif recognition software (ESEfinder release2.0). SSCP results showed mobility shifts in exon 8 of the APC gene which segregated with affected members of the family. Sequence analysis revealed that the affected individuals are heterozygous for a C847T transition, whilst all the unaffected family members and control individuals are homozygous C at the same position. This nucleotide substitution generates a stop codon at amino acid position 283, in place of the usual arginine (Arg283Ter). We conclude that an Arg283Ter mutation in the APC gene is causative of the FAP phenotype in this family, although there is considerable variation in the presentation of this disease among affected individuals. Computational analysis predicts that this mutation occurs within sequences that may function as splicing signals, so that the sequence change may affect normal splicing.
    Matched MeSH terms: Codon, Nonsense/genetics*
  3. Md Hatta MA, Ghosh S, Athiyannan N, Richardson T, Steuernagel B, Yu G, et al.
    Mol Plant Microbe Interact, 2020 Nov;33(11):1286-1298.
    PMID: 32779520 DOI: 10.1094/MPMI-01-20-0018-R
    In the last 20 years, severe wheat stem rust outbreaks have been recorded in Africa, Europe, and Central Asia. This previously well controlled disease, caused by the fungus Puccinia graminis f. sp. tritici, has reemerged as a major threat to wheat cultivation. The stem rust (Sr) resistance gene Sr22 encodes a nucleotide-binding and leucine-rich repeat receptor which confers resistance to the highly virulent African stem rust isolate Ug99. Here, we show that the Sr22 gene is conserved among grasses in the Triticeae and Poeae lineages. Triticeae species contain syntenic loci with single-copy orthologs of Sr22 on chromosome 7, except Hordeum vulgare, which has experienced major expansions and rearrangements at the locus. We also describe 14 Sr22 sequence variants obtained from both Triticum boeoticum and the domesticated form of this species, T. monococcum, which have been postulated to encode both functional and nonfunctional Sr22 alleles. The nucleotide sequence analysis of these alleles identified historical sequence exchange resulting from recombination or gene conversion, including breakpoints within codons, which expanded the coding potential at these positions by introduction of nonsynonymous substitutions. Three Sr22 alleles were transformed into wheat cultivar Fielder and two postulated resistant alleles from Schomburgk (hexaploid wheat introgressed with T. boeoticum segment carrying Sr22) and T. monococcum accession PI190945, respectively, conferred resistance to P. graminis f. sp. tritici race TTKSK, thereby unequivocally confirming Sr22 effectiveness against Ug99. The third allele from accession PI573523, previously believed to confer susceptibility, was confirmed as nonfunctional against Australian P. graminis f. sp. tritici race 98-1,2,3,5,6.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
    Matched MeSH terms: Codon
  4. Zulhabri O, Rahman J, Ismail S, Isa MR, Wan Zurinah WN
    Singapore Med J, 2012 Jan;53(1):26-31.
    PMID: 22252179
    K-ras gene mutations in codons 12 and 13 are one of the earliest events in colon carcinogenesis.
    Matched MeSH terms: Codon
  5. Amiruddin N, Lee XW, Blake DP, Suzuki Y, Tay YL, Lim LS, et al.
    BMC Genomics, 2012 Jan 13;13:21.
    PMID: 22244352 DOI: 10.1186/1471-2164-13-21
    BACKGROUND: Eimeria tenella is an apicomplexan parasite that causes coccidiosis in the domestic fowl. Infection with this parasite is diagnosed frequently in intensively reared poultry and its control is usually accorded a high priority, especially in chickens raised for meat. Prophylactic chemotherapy has been the primary method used for the control of coccidiosis. However, drug efficacy can be compromised by drug-resistant parasites and the lack of new drugs highlights demands for alternative control strategies including vaccination. In the long term, sustainable control of coccidiosis will most likely be achieved through integrated drug and vaccination programmes. Characterisation of the E. tenella transcriptome may provide a better understanding of the biology of the parasite and aid in the development of a more effective control for coccidiosis.

    RESULTS: More than 15,000 partial sequences were generated from the 5' and 3' ends of clones randomly selected from an E. tenella second generation merozoite full-length cDNA library. Clustering of these sequences produced 1,529 unique transcripts (UTs). Based on the transcript assembly and subsequently primer walking, 433 full-length cDNA sequences were successfully generated. These sequences varied in length, ranging from 441 bp to 3,083 bp, with an average size of 1,647 bp. Simple sequence repeat (SSR) analysis identified CAG as the most abundant trinucleotide motif, while codon usage analysis revealed that the ten most infrequently used codons in E. tenella are UAU, UGU, GUA, CAU, AUA, CGA, UUA, CUA, CGU and AGU. Subsequent analysis of the E. tenella complete coding sequences identified 25 putative secretory and 60 putative surface proteins, all of which are now rational candidates for development as recombinant vaccines or drug targets in the effort to control avian coccidiosis.

    CONCLUSIONS: This paper describes the generation and characterisation of full-length cDNA sequences from E. tenella second generation merozoites and provides new insights into the E. tenella transcriptome. The data generated will be useful for the development and validation of diagnostic and control strategies for coccidiosis and will be of value in annotation of the E. tenella genome sequence.

    Matched MeSH terms: Codon
  6. Monajemi H, M Zain S, Wan Abdullah WAT
    PMID: 34047250 DOI: 10.1080/15257770.2021.1923742
    The translational accuracy in protein synthesis is contributed to by several mechanisms in the ribosome, generally called kinetic proofreading. This process in the ribosome inhibits the non-cognate codon-anticodon interaction. However, it is not sufficient for fidelity of protein synthesis since a wrong amino acid can easily be added to the growing polypeptide chain if a tRNA while cognate to the mRNA, carries a non-cognate amino acid. Therefore, additional to the kinetic proofreading, there must be some hitherto unknown characteristic in misacylated-tRNAs to stop the process of protein synthesis if such misacylated-tRNA is accommodated in the ribosomal A-site. In order to understand this characteristic, we have performed computational quantum chemistry analysis on five different tRNA molecules, each one attached to five different amino acids with one being cognate to the tRNA and the other four non-cognate. This study shows the importance of aminoacyl-tRNA binding energy in ensuring fidelity of protein synthesis.
    Matched MeSH terms: Codon
  7. Sermwittayawong N, Nishibuchi M, Sawangjaroen N, Vuddhakul V
    PMID: 26867373
    During 2009 to 2010, a total of 408 blood samples collected from malaria patients in Ranong (149) and Yala (259) Provinces, Thailand were investigated for Plasmodium spp using microscopic examination. There are no statistical differences in the prevalence of P. falciparum and P. vivax in samples collected from Ranong and Yala (46% vs 52%, and 54% vs 45%, respectively). Single nucleotide polymorphism of codon 86 in pfmdr1 (encoding P. falciparum multidrug resistance protein 1) was investigated among 75 samples of P. falciparum and 2 samples of P. knowlesi. A pfmdr1 N86Y mutation was detected in 1 out of 29 samples and 45 out of 46 samples obtained from Ranong and Yala Provinces, respectively. It is interesting that pfmdr1 was detected in two P. knowlesi DNA samples obtained previously from Ranong Province which was 99% homologous to pfmdr1 obtained from falciparum parasites in the same area but the mutation was not observed. The difference in multidrug resistance protein in Plasmodium obtained from those two border areas of Thailand will be of use in monitoring drug resistance in these border regions of the country.
    Matched MeSH terms: Codon
  8. Chakraborty S, Deb B, Barbhuiya PA, Uddin A
    Virus Res, 2019 04 02;263:129-138.
    PMID: 30664908 DOI: 10.1016/j.virusres.2019.01.011
    Codon usage bias (CUB) is the unequal usage of synonymous codons of an amino acid in which some codons are used more often than others and is widely used in understanding molecular biology, genetics, and functional regulation of gene expression. Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal disease in both humans and animals. NiV was first identified during an outbreak of a disease in Malaysia in 1998 and then occurred periodically since 2001 in India, Bangladesh, and the Philippines. We used bioinformatics tools to analyze the codon usage patterns in a genome-wide manner among 11 genomes of NiV as no work was reported yet. The compositional properties revealed that the overall GC and AT contents were 41.96 and 58.04%, respectively i.e. Nipah virus genes were AT-rich. Correlation analysis between overall nucleotide composition and its 3rd codon position suggested that both mutation pressure and natural selection might influence the CUB across Nipah genomes. Neutrality plot revealed natural selection might have played a major role while mutation pressure had a minor role in shaping the codon usage bias in NiV genomes.
    Matched MeSH terms: Codon*
  9. Lim CK, Tan JT, Khoo JB, Ravichandran A, Low HM, Chan YC, et al.
    Int J Med Sci, 2006;3(1):14-20.
    PMID: 16421626
    This study was carried out to determine the effects of hepatitis B virus genotypes, core promoter mutations (A1762G1764-->T1762A1764) as well as precore stop codon mutations (TGG-->TAG) on HBeAg expression and HBeAg/ anti-HBe status. Study was also performed on the effects of codon 15 variants (C1858/ T1858) on the predisposition of precore stop codon mutations (TGG-->TAG). A total of 77 sera samples were analyzed. Fifty one samples were successfully genotyped of which the predominant genotype was genotype B (29/ 51, 56.9 %), followed by genotype C (16/ 51, 31.4 %). Co-infections by genotypes B and C were observed in four samples (7.8 %). To a lesser degree, genotypes D and E (2.0 % each) were also observed. For core promoter mutations, the prevalence was 68.8 % (53/ 77) for A1762G1764 wild-type and 14.3 % (11/ 77) for T1762A1764 mutant while 9.1 % (7/ 77) was co-infected by both strains. The prevalence of codon 15 variants was found to be 42.9 % (33/ 77) for T1858 variant and 16.9 % (13/ 77) for C1858 variant. No TAG mutation was found. In our study, no associations were found between genotypes (B and C) and core promoter mutations as well as codon 15 variants. Also no correlation was observed between HBeAg/ anti-HBe status with genotypes (B and C) and core promoter mutations.
    Matched MeSH terms: Codon, Terminator
  10. Ton SH, Iskandar K, Noriah R, Thanaletchimy N
    Scand. J. Infect. Dis., 1996;28(6):543-8.
    PMID: 9060053
    As most published studies on precore mutants have been carried out on isolates from patients with liver diseases, and it is unclear whether HBsAg carriers with viraemia in the absence of HBeAg are also generally infected by such mutants, it was decided to sequence the precore region in some HBV-DNA isolated from HBsAg-positive carriers. Precore sequences of HBV-DNA from 43 HBsAg carriers in Malaysia were studied. Three HBV subtypes were identified according to the nucleotide sequence of the precore region. Most of the carriers were found to be infected by the subtype adr. Mutations were detected in the precore regions. The most common conserved mutation was a silent mutation involving conversion from T to C (CCT to CCC) at position 1858 at codon 15 (proline). It was found that 4/43 (9.3%) had a mutation at the penultimate codon where TGG was changed to TAG. All 4 isolates with the TAG mutation had nt T at position 1858. Of the 4 carriers who were infected by these mutant viruses, 2 were coinfected with the wild type, 1 was infected only by a variant with the mutation at position 1896, while another was infected by a variant with mutations at positions 1896 and 1899. Three of the 4 were anti-HBe positive while 1 was HBeAg positive. Alanine aminotransaminase activities in all 4 carriers were normal. This study therefore demonstrated that variants with stop codons at the penultimate codon could be found in asymptomatic carriers in Malaysia.
    Matched MeSH terms: Codon, Terminator
  11. Puah SM, Lian LH, Chew CH, Chua KH, Tan SY
    Lupus, 2007;16(9):750-4.
    PMID: 17728371 DOI: 10.1177/0961203307079454
    The aim of the present study was to investigate the association of C4 gene mutations with systemic lupus erythematosus, in 130 Malaysian SLE patients and 130 healthy controls. Generally, various PCR approaches were used to screen the mutations of the C4 genes, which included 2 bp (+TC) insertions at codon 1213 in exon 29, 1 bp deletions (-C) at codon 811 in exon 20, 1 bp (-C), 2 bp (-GT) deletions at codons 522 and 497 in exon 13 and null alleles. No mutations located at exons 13, 20 and 29 of the C4 gene, were detected amongst the patient and control samples in this study. C4A*Q0 was found in two out of the 130 control samples, while C4B*Q0 was present in two out of the 130 SLE patients. Overall, our results do not demonstrate a significant association to these known C4 mutations identified by previous studies, in the Malaysian scenario.
    Matched MeSH terms: Codon
  12. Harrisson K, Pavlova A, Gan HM, Lee YP, Austin CM, Sunnucks P
    Heredity (Edinb), 2016 Jun;116(6):506-15.
    PMID: 26883183 DOI: 10.1038/hdy.2016.8
    Climatic differences across a taxon's range may be associated with specific bioenergetic demands and may result in genetics-based metabolic adaptation, particularly in aquatic ectothermic organisms that rely on heat exchange with the environment to regulate key physiological processes. Extending down the east coast of Australia, the Great Dividing Range (GDR) has a strong influence on climate and the evolutionary history of freshwater fish species. Despite the GDR acting as a strong contemporary barrier to fish movement, many species, and species with shared ancestries, are found on both sides of the GDR, indicative of historical dispersal events. We sequenced complete mitogenomes from the four extant species of the freshwater cod genus Maccullochella, two of which occur on the semi-arid, inland side of the GDR, and two on the mesic coastal side. We constructed a dated phylogeny and explored the relative influences of purifying and positive selection in the evolution of mitogenome divergence among species. Results supported mid- to late-Pleistocene divergence of Maccullochella across the GDR (220-710 thousand years ago), bringing forward previously reported dates. Against a background of pervasive purifying selection, we detected potentially functionally relevant fixed amino acid differences across the GDR. Although many amino acid differences between inland and coastal species may have become fixed under relaxed purifying selection in coastal environments rather than positive selection, there was evidence of episodic positive selection acting on specific codons in the Mary River coastal lineage, which has consistently experienced the warmest and least extreme climate in the genus.
    Matched MeSH terms: Codon
  13. Pavlova A, Gan HM, Lee YP, Austin CM, Gilligan DM, Lintermans M, et al.
    Heredity (Edinb), 2017 05;118(5):466-476.
    PMID: 28051058 DOI: 10.1038/hdy.2016.120
    Genetic variation in mitochondrial genes could underlie metabolic adaptations because mitochondrially encoded proteins are directly involved in a pathway supplying energy to metabolism. Macquarie perch from river basins exposed to different climates differ in size and growth rate, suggesting potential presence of adaptive metabolic differences. We used complete mitochondrial genome sequences to build a phylogeny, estimate lineage divergence times and identify signatures of purifying and positive selection acting on mitochondrial genes for 25 Macquarie perch from three basins: Murray-Darling Basin (MDB), Hawkesbury-Nepean Basin (HNB) and Shoalhaven Basin (SB). Phylogenetic analysis resolved basin-level clades, supporting incipient speciation previously inferred from differentiation in allozymes, microsatellites and mitochondrial control region. The estimated time of lineage divergence suggested an early- to mid-Pleistocene split between SB and the common ancestor of HNB+MDB, followed by mid-to-late Pleistocene splitting between HNB and MDB. These divergence estimates are more recent than previous ones. Our analyses suggested that evolutionary drivers differed between inland MDB and coastal HNB. In the cooler and more climatically variable MDB, mitogenomes evolved under strong purifying selection, whereas in the warmer and more climatically stable HNB, purifying selection was relaxed. Evidence for relaxed selection in the HNB includes elevated transfer RNA and 16S ribosomal RNA polymorphism, presence of potentially mildly deleterious mutations and a codon (ATP6113) displaying signatures of positive selection (ratio of nonsynonymous to synonymous substitution rates (dN/dS) >1, radical change of an amino-acid property and phylogenetic conservation across the Percichthyidae). In addition, the difference could be because of stronger genetic drift in the smaller and historically more subdivided HNB with low per-population effective population sizes.
    Matched MeSH terms: Codon
  14. Shardiwal RK, Sohrab SS
    Int J Bioinform Res Appl, 2010;6(3):223-9.
    PMID: 20615831
    Relative Synonymous Codon Usage (RSCU) and Relative Adaptiveness of a Codon (RAC) table bias importance in gene expression are well documented in the literature. However, to improve the gene expression we need to figure out which codons are optimal for the expression in order to synthesise an appropriate DNA sequence. An alternative to the manual approach, which is obviously a tedious task, is to set up software on your computer to perform this. Though such kinds of programs are available on the internet, none of them are open-source libraries. Here, one can use our Perl program to do his or her task more easily and efficiently. It is free for everyone.
    Matched MeSH terms: Codon*
  15. Cheek, Ken Lim, So, Har Ton
    Medicine & Health, 2007;2(1):1-25.
    MyJurnal
    Infection by hepatitis B virus (HBV) is a major global health-care problem. HBV is an accepted factor in the elevated risks for liver disease such as cirrhosis and development of hepatocellular carcinoma. This problem is particularly prevalent in the Asia-Pacific region which includes Malaysia. During infection, the hepatitis B e antigen (HBeAg) is produced in the hosts. This antigen is an important serological marker for diagnosing chronic hepatitis B. Seroconversion to anti-body (anti-HBe) corresponds to the improvement of disease prognosis. However, certain mutations such as the core promoter dual mutations (A1762G1764→T1762A1764), the codon 15 variants (C1858/ T1858) and the precore stop codon mutations (TGG→TAG) can affect the HBeAg expression. This has diagnostic and clinical implications. Besides that, the HBV can be grouped into eight genotypes (A to H). Moreover, genotypic subtypes and recombinants have been observed as well. Studies have observed that these can differ in their affiliations with the mutations above as well as with disease prognosis.
    Matched MeSH terms: Codon, Terminator
  16. Sastu UR, Abdullah NR, Norahmad NA, Saat MN, Muniandy PK, Jelip J, et al.
    Malar J, 2016;15:63.
    PMID: 26850038 DOI: 10.1186/s12936-016-1109-9
    Malaria cases persist in some remote areas in Sabah and Sarawak despite the ongoing and largely successful malaria control programme conducted by the Vector Borne Disease Control Programme, Ministry Of Health, Malaysia. Point mutations in the genes that encode the two enzymes involved in the folate biosynthesis pathway, dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) enzymes confer resistance to pyrimethamine and sulfadoxine respectively, in both Plasmodium falciparum and P. vivax. The aim of the current study was to determine the mutation on both pvdhfr at codon 13, 33, 57, 58, 61, 117, and 173 and pvdhps genes at codon 383 and 553, which are potentially associated with resistance to pyrimethamine and sulfadoxine in P. vivax samples in Sabah.
    Matched MeSH terms: Codon
  17. Phillips MJ, Shazwani Zakaria S
    Mol Phylogenet Evol, 2021 05;158:107082.
    PMID: 33482383 DOI: 10.1016/j.ympev.2021.107082
    Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.
    Matched MeSH terms: Codon
  18. Choong ML, Koay ES, Khoo KL, Khaw MC, Sethi SK
    Clin Chem, 1997 Jun;43(6 Pt 1):916-23.
    PMID: 9191540
    The Arg-to-Trp substitution at codon 3500 in the apolipoprotein (apo) B-100 gene is established as a cause of familial defective apo B-100 (FDB), a functional mutation, resulting in reduced LDL receptor binding and manifest hypercholesterolemia. In a search for similar mutations in 163 Malaysians, we screened the putative receptor-binding region (codons 3456-3553) of the apo B-100 gene by PCR amplification and denaturing gradient-gel electrophoresis. Four single-base mutations were detected and confirmed by DNA sequencing. Two females, a Chinese and a Malay, had the same CGG3500-->TGG mutation, resulting in an Arg3500-to-Trp substitution. This is the second published report of such an independent mutation involving the same codon as the established Arg3500-to-Gln mutation. The two other mutations detected, CTT3517-->CTG and GCC3527-->GCT, resulted in degenerate codons with no amino acid substitutions. All four mutations were associated with a unique apo B haplotype, different from those found in Caucasian FDB patients but concurring with that previously reported for two other Asians with FDB.
    Matched MeSH terms: Codon
  19. Asiful Islam M, Alam F, Kamal MA, Gan SH, Wong KK, Sasongko TH
    Curr Pharm Des, 2017;23(11):1598-1609.
    PMID: 27875971 DOI: 10.2174/1381612823666161122142950
    Nonsense mutations contribute to approximately 10-30% of the total human inherited diseases via disruption of protein translation. If any of the three termination codons (UGA, UAG and UAA) emerges prematurely [known as premature termination codon (PTC)] before the natural canonical stop codon, truncated nonfunctional proteins or proteins with deleterious loss or gain-of-function activities are synthesized, followed by the development of nonsense mutation-mediated diseases. In the past decade, PTC-associated diseases captured much attention in biomedical research, especially as molecular therapeutic targets via nonsense suppression (i.e. translational readthrough) regimens. In this review, we highlighted different treatment strategies of PTC targeting readthrough therapeutics including the use of aminoglycosides, ataluren (formerly known as PTC124), suppressor tRNAs, nonsense-mediated mRNA decay, pseudouridylation and CRISPR/Cas9 system to treat PTC-mediated diseases. In addition, as thrombotic disorders are a group of disease with major burdens worldwide, 19 potential genes containing a total of 705 PTCs that cause 21 thrombotic disorders have been listed based on the data reanalysis from the 'GeneCards® - Human Gene Database' and 'Human Gene Mutation Database' (HGMD®). These PTC-containing genes can be potential targets amenable for different readthrough therapeutic strategies in the future.
    Matched MeSH terms: Codon, Nonsense/drug effects*; Codon, Nonsense/genetics*
  20. Chan MK, Othman R, Zubir D, Salmijah S
    PMID: 11879780
    The relationship between a putative metallothionein gene (MT) and exposure to cadmium (Cd) in blood cockles (Anadara granosa) is reported. In a 96-h dose-response experiment, mortality of cockles was found to proportionately increase in the range of 0.2-5.0 mg/l Cd with a calculated LC(50) of 2.94 mg/l. Exposure to 0.25 mg/l Cd for 16 days caused significant increases (P<0.05) in Cd concentrations in whole tissues, gills and hepatopancreas, and the accumulation of Cd in these tissues increased with the duration of exposure. Two cDNA libraries constructed using the hepatopancreas from control and Cd-treated cockles gave titres of 5.62 x 10(5) and 1.94 x 10(5) pfu/microg vector, respectively. A putative MT gene, AnaMT, of 510 nucleotides in length, was isolated from the treated cDNA library using a heterologous probe MT20 from the blue mussel, Mytilus edulis. Northern analyses using AnaMT as a probe indicated low expression of the MT mRNA in control animals. In cockles treated with 0.25 mg/l Cd for 4 days, MT mRNA level increased to approximately 168%, but declined to 108% at day 8. After 12 and 16 days of Cd treatment, expression of the MT gene was 138% and 187%, respectively, compared to the controls. These observations suggest that induction of the MT gene by a sublethal dose of Cd is rapid, occurring within 4 days of treatment.
    Matched MeSH terms: Codon
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links