Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Wu CH, Chang YF, Chen CH, Lewiecki EM, Wüster C, Reid I, et al.
    J Clin Densitom, 2021;24(1):3-13.
    PMID: 31010789 DOI: 10.1016/j.jocd.2019.03.004
    Osteoporosis is a major health issue. By 2050, a greater than 2-fold increase in patients number with hip fractures will occur in Asia representing 50% of all hip fractures worldwide. For the Asia-Pacific (AP) region, more efforts on controlling osteoporosis and the subsequent fractures are crucial. Bone mineral density (BMD) by dual energy X-ray absorptiometry (DXA) is commonly used to diagnose osteoporosis and monitor osteoporosis treatment. However, the inconvenience, cost, limited availability of DXA and the delay in detection of BMD changes after treatment initiation support an important role for bone turnover markers (BTMs), as short-term tools to monitor therapy. With regards to low adherence rates of medical treatment of osteoporosis, the experts reached consensus on the use of BTMs for both raising awareness and short-term monitoring of osteoporosis treatment in the AP region. The experts endorse the use of BTMs, especially serum C-terminal telopeptide of type 1 collagen (CTX) and serum procollagen type 1 N propeptide (P1NP), as short-term monitoring tools to help clinicians assess the responses to osteoporosis therapies and appropriately adjust treatment regimens earlier than BMD. Either the absolute values or the degree of change from baseline in BTMs can be used to monitor the potential efficacy of osteoporosis therapies. The use of BTMs can be incorporated in osteoporosis care programs, such as fracture liaison service (FLS), to improve patient adherence and treatment outcomes. Encouraging sufficient reimbursement from health care systems may facilitate widespread use of BTMs in clinical practice in the AP region.
    Matched MeSH terms: Collagen Type I
  2. Md Noh SM, Sheikh Abdul Kadir SH, Bannur ZM, Froemming GA, Abdul Hamid Hasani N, Mohd Nawawi H, et al.
    Exp Eye Res, 2014 Oct;127:236-42.
    PMID: 25139730 DOI: 10.1016/j.exer.2014.08.005
    Anti-Vascular Endothelial Growth Factors (Anti-VEGF) agents have received recent interest as potential anti-fibrotic agents for their concurrent use with trabeculectomy. Preliminary cohort studies have revealed improved bleb morphology following trabeculectomy augmented with ranibizumab. The effects of this humanized monoclonal antibody on human Tenon's fibroblast (HTF), the key player of post trabeculectomy scar formation, are not fully understood. This study was conducted to understand the effects of ranibizumab on extracellular matrix production by HTF. The effect of ranibizumab on HTF proliferation and cell viability was determined using MTT assay (3-(4,5-dimethylthiazone-2-yl)-2,5-diphenyl tetrazolium). Ranibizumab at concentrations ranging from 0.01 to 0.5 mg/mL were administered for 24, 48 and 72 h in serum and serum free conditions. Supernatants and cell lysates from samples were assessed for collagen type 1 alpha 1 and fibronectin mRNA and protein level using quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). After 48-h, ranibizumab at 0.5 mg/mL, significantly induced cell death under serum-free culture conditions (p collagen type 1 alpha 1 (COL1A1) mRNA, but not for fibronectin (FN). Meanwhile, COL1A1 and FN protein levels were found upregulated in treated monolayers compared to control monolayers. Ranibizumab at 0.5 mg/mL significantly reduced cell viability in cultured HTF. From this study, we found that single application of ranibizumab is inadequate to induce the anti-fibrotic effects on HTF, suggesting the importance of adjunctive therapy. Further studies are underway to understand mechanism of actions of ranibizumab on HTF.
    Matched MeSH terms: Collagen Type I/genetics*; Collagen Type I/metabolism
  3. Akhir HM, Teoh PL
    Biosci Rep, 2020 12 23;40(12).
    PMID: 33245097 DOI: 10.1042/BSR20201325
    Collagen has been widely shown to promote osteogenesis of bone marrow mesenchymal stromal cells (BM-MSCs). Due to the invasive procedure of obtaining BM-MSCs, MSCs from other tissues have emerged as a promising alternative for regenerative therapy. MSCs originated from different sources, exhibiting different differentiation potentials. Therefore, the applicability of collagen type I (COL), combining with amniotic membrane (AM)-MSCs was examined through proliferation and differentiation assays together with the expression of surface markers and genes associated with stemness and differentiation under basal or induction conditions. No increase in cell growth was observed because AM-MSCs might be directed toward spontaneous osteogenesis. This was evidenced by the calcium deposition and elevated expression of osteogenic genes when AM-MSCs were cultured in collagen plate with basal media. Under the osteogenic condition, reciprocal expression of OCN and CEBPA suggested a shift toward adipogenesis. Surprisingly, adipogenic genes were not elevated upon adipogenic induction, although oil droplets deposition was observed. In conclusion, our findings demonstrated that collagen causes spontaneous osteogenesis in AM-MSCs. However, the presence of exogenous inductors could shift the direction of adipo-osteogenic gene regulatory network modulated by collagen.
    Matched MeSH terms: Collagen Type I/pharmacology*
  4. Shuid AN, Abu Bakar MF, Abdul Shukor TA, Muhammad N, Mohamed N, Soelaiman IN
    Aging Male, 2011 Sep;14(3):150-4.
    PMID: 20874437 DOI: 10.3109/13685538.2010.511327
    Osteoporosis in elderly men is becoming an important health issue with the aging society. Elderly men with androgen deficiency are exposed to osteoporosis and can be treated with testosterone replacement. In this study, Eurycoma longifolia (EL), a plant with androgenic effects, was supplemented to an androgen-deficient osteoporotic aged rat as alternative to testosterone. Aged 12 months old Sprague-Dawley rats were divided into groups of normal control (NC), sham-operated (SO), orchidectomised-control (OrxC), orchidectomised and supplemented with EL (Orx + El) and orchidectomised and given testosterone (Orx + T). After 6 weeks of treatment, serum osteocalcin, serum terminal C-telopeptide Type 1 collagen (CTX) and the fourth lumbar bone calcium were measured. There were no significant differences in the osteocalcin levels before and after treatment in all the groups. The CTX levels were also similar for all the groups before treatment. However, after treatment, orchidectomy had caused significant elevation of CTX compared to normal control rats. Testosterone replacements in orchidectomised rats were able to prevent the rise of CTX. Orchidectomy had also reduced the bone calcium level compared to normal control rats. Both testosterone replacement and EL supplementation to orchidectomised rats were able to maintain the bone calcium level, with the former showing better effects. As a conclusion, EL prevented bone calcium loss in orchidectomised rats and therefore has the potential to be used as an alternative treatment for androgen deficient osteoporosis.
    Matched MeSH terms: Collagen Type I/blood
  5. Jayusman PA, Mohamed IN, Shuid AN
    Int J Endocrinol Metab, 2018 Jul;16(3):e64038.
    PMID: 30197659 DOI: 10.5812/ijem.64038
    Background: Gonadotropin releasing hormone (GnRH) antagonists may cause chemical castration in males by suppressing the pituitary-gonadal axis, hence reducing testosterone level. There are limited data on the effects of degarelix, a newer series of potent and long acting GnRH antagonist on bone.

    Objectives: The current study aimed at determining the effects of degarelix on bone turnover, bone densitometry, and bone mechanical strength in male rats.

    Methods: Eighteen male Sprague-Dawley rats were randomly divided into sham (SHAM), orchidectomized (ORX), and degarelix-induced (DGX) groups. Chemical castration was performed by subcutaneous degarelix injection (2 mg/kg) at the scapular region. The rats were scanned for baseline bone mineral area (BMA), bone mineral content (BMC), and bone mineral density (BMD) using dual-energy x-ray absorptiometry (DXA). Following six weeks of experimental period, BMA, BMC, and BMD were measured again with DXA and blood was collected for testosterone and bone biomarkers (osteocalcin and C-terminal of type I collagen crosslink (CTX-1)) measurements. The rats were euthanized and femora were dissected for bone biomechanical strength analysis.

    Results: Bilateral orchidectomy and degarelix administration significantly lowered serum testosterone level, decreased whole body BMC, femoral BMA, femoral BMC, and femoral BMD (P < 0.05) compared with the SHAM group. However, no significant changes were observed in bone biochemical markers and bone mechanical strength in all experimental groups.

    Conclusions: In conclusion, degarelix administration had comparable effects on bone as bilateral orchidectomy. Administration of degarelix provides an alternative method of inducing testosterone deficient-osteopenia in male rats without need for removing the testes.

    Matched MeSH terms: Collagen Type I
  6. Thu HE, Mohamed IN, Hussain Z, Shuid AN
    J Ayurveda Integr Med, 2017 11 13;9(4):272-280.
    PMID: 29146110 DOI: 10.1016/j.jaim.2017.04.005
    BACKGROUND: Among the numerous well-documented medicinal herbs, Eurycoma longifolia (EL) has gained remarkable recognition due to its promising efficacy of stimulating bone formation in androgen-deficient osteoporosis. Though numerous animal studies have explored the bone-forming capacity of EL, the exact mechanism was yet to be explored.

    OBJECTIVE(S): The present study was aimed to investigate the mechanism of bone-forming capacity of EL using MC3T3-E1 as an in vitro osteoblastic model.

    MATERIALS AND METHODS: The cell differentiation capacity of EL was investigated by evaluating cell growth, alkaline phosphatase (ALP) activity, collagen deposition and mineralization. Taken together, time-mannered expression of bone-related mediators which include bone morphogenic protein-2 (BMP-2), ALP, runt-related transcription factor-2 (Runx-2), osteocalcin (OCN), type I collagen, osteopontin (OPN), transforming growth factor-β1 (TGF-β1) and androgen receptor (AR) were measured to comprehend bone-forming mechanism of EL.

    RESULTS: Results demonstrated a superior cell differentiation efficacy of EL (particularly at a dose of 25 μg/mL) that was evidenced by dramatically increased cell growth, higher ALP activity, collagen deposition and mineralization compared to the testosterone. Results analysis of the bone-related protein biomarkers indicated that the expression of these mediators was well-regulated in EL-treated cell cultures compared to the control groups. These findings revealed potential molecular mechanism of EL for the prevention and treatment of male osteoporosis.

    CONCLUSION: The resulting data suggested that EL exhibited superior efficacy in stimulating bone formation via up-regulating the expression of various mitogenic proteins and thus can be considered as a potential natural alternative therapy for the treatment of osteoporosis.

    Matched MeSH terms: Collagen Type I
  7. Mirmajidi T, Chogan F, Rezayan AH, Sharifi AM
    Int J Pharm, 2021 Mar 01;596:120213.
    PMID: 33493599 DOI: 10.1016/j.ijpharm.2021.120213
    Wound healing is a complicated process that takes a long time to complete. The three-layer nanofiber wound dressing containing melatonin is highly expected to show remarkable wound repair by reducing the wound healing time. In this study, chitosan (Cs)-polycaprolactone (PCL)/ polyvinylalcohol (PVA)-melatonin (MEL)/ chitosan-polycaprolactone three-layer nanofiber wound dressing was prepared by electrospinning for melatonin sustained release. The characteristics of the wound dressing were further evaluated. The wound dressing had a high water uptake after 24 h (401%), and the water contact angle results showed that it had hydrophilicity effect that supported the cell attachment. The wound healing effect of wound dressing was examined using a full-thickness excisional model of rat skin by the local administration of MEL. The gene expressions of transforming growth factor-beta (TGF-β1), alpha-smooth muscle actin (α-SMA), collagen type I (COL1A1), and collagen type III (COL3A1) were further studied. The histopathological evaluation showed the complete regeneration of the epithelial layer, remodeling of wounds, collagen synthesis, and reduction in inflammatory cells. The NF + 20% MEL significantly increased TGF-β1, COL1A1, COL3A1, and α-SMA mRNA expressions. This wound dressing may have a considerable potential as a wound dressing to accelerate the wound healing.
    Matched MeSH terms: Collagen Type I; Collagen Type III
  8. Md Nazir N, Zulkifly AH, Khalid KA, Zainol I, Zamli Z, Sha'ban M
    Tissue Eng Regen Med, 2019 06;16(3):285-299.
    PMID: 31205857 DOI: 10.1007/s13770-019-00191-1
    Background: This study aimed to observe the cartilaginous matrix production in SRY (sex determining region Y)-box 9 (SOX9)- and/or telomerase reverse transcriptase (TERT)-transfected chondrocytes from monolayer to three-dimensional (3D) culture.

    Methods: The genes were transferred into chondrocytes at passage-1 (P1) via lipofection. The post-transfected chondrocytes (SOX9-, TERT- and SOX9/TERT) were analysed at P1, P2 and P3. The non-transfected group was used as control. The 3D culture was established using the chondrocytes seeded in a disc-shaped PLGA/fibrin and PLGA scaffolds. The resulting 3D "cells-scaffolds" constructs were analysed at week-1, -2 and -3. The histoarchitecture was evaluated using haematoxylin and eosin, alcian blue and safranin o stains. The quantitative sulphated glycosaminoglycan (sGAG) content was measured using biochemical assay. The cartilage-specific markers expression were analysed via real-time polymerase chain reaction.

    Results: All monolayer cultured chondrocytes showed flattened, fibroblast-like appearance throughout passages. Proteoglycan and sGAG were not detected at the pericellular matrix region of the chondrocytes. The sGAG content assay indicated the matrix production depletion in the culture. The cartilage-specific markers, COL2A1 and ACAN, were downregulated. However, the dedifferentiation marker, COL1A1 was upregulated. In 3D "cells-scaffolds" constructs, regardless of transfection groups, chondrocytes seeded in PLGA/fibrin showed a more uniform distribution and produced denser matrix than the PLGA group especially at week-3. Both sGAG and proteoglycan were clearly visualised in the constructs, supported by the increment of sGAG content, quantitatively. Both COL2A1 and ACAN were upregulated in SOX9/TERT-PLGA and SOX9/TERT-PLGA/fibrin respectively. While, COL1A1 was downregulated in SOX9/TERT-PLGA.

    Conclusion: These findings indicated that the SOX9/TERT-transfected chondrocytes incorporation into 3D scaffolds facilitates the cartilage regeneration which is viable structurally and functionally.

    Matched MeSH terms: Collagen Type I/genetics; Collagen Type I/metabolism; Collagen Type II/genetics; Collagen Type II/metabolism
  9. Tan KM, Saw S, Sethi SK
    J Clin Lab Anal, 2013 Jul;27(4):301-4.
    PMID: 23852789 DOI: 10.1002/jcla.21602
    BACKGROUND: In this study, we aimed to determine the normal ranges of 25-hydroxy-vitamin D(3) (25-OHD(3)), parathyroid hormone (PTH), and the markers of bone turnover, procollagen type 1 N propeptide (P1NP) and C-terminal cross-linked telopeptide of type 1 collagen (CTX), in normal healthy women in Singapore, and to explore the relationship between vitamin D, PTH, and these markers of bone turnover in the women.

    METHODS: One hundred and ninety-seven healthy women, aged 25 to 60, were selected from a hospital staff health screening program; 68% were Chinese, 18% Malay, and 14% Indian. P1NP, CTX, and 25-OHD(3) were measured using the Roche Cobas® electrochemiluminescence immunoassay. Serum PTH was measured using the Siemens ADVIA Centaur® immunoassay.

    RESULTS: Sixty-five percent had 25-OHD(3) concentrations <50 nmol/l. Vitamin D insufficiency (25-OHD(3) < 50 nmol/l) was more prevalent in Malays (89%) and Indians (82%) compared to Chinese (56%). There was no correlation between vitamin D and age. PTH positively correlated with age, and Malays and Indians had higher PTH concentrations than Chinese. There was an inverse correlation between PTH and 25-OHD(3), but no threshold of 25-OHD(3) concentrations at which PTH plateaued. The bone turnover markers P1NP and CTX inversely correlated with age but were not different between ethnic groups. CTX and P1NP exhibited good correlation, however, there was no significant correlation between 25-OHD(3) or PTH concentrations and the bone turnover markers P1NP and CTX.

    CONCLUSIONS: Healthy women in Singapore have a high prevalence of vitamin D insufficiency. Vitamin D insufficiency was more prevalent in Malays and Indians compared to Chinese.

    Matched MeSH terms: Collagen Type I/blood
  10. Kruger MC, Chan YM, Kuhn-Sherlock B, Lau LT, Lau C, Chin YS, et al.
    Eur J Nutr, 2016 Aug;55(5):1911-21.
    PMID: 26264387 DOI: 10.1007/s00394-015-1007-x
    PURPOSE: To compare the effects of a high-calcium vitamin D-fortified milk with added FOS-inulin versus regular milk on serum parathyroid hormone, and bone turnover markers in premenopausal (Pre-M) and postmenopausal (PM) women over 12 weeks.

    METHODS: Premenopausal women (n = 136, mean age 41 (±5) years) and postmenopausal women [n = 121, mean age 59 (±4) years] were recruited, and each age group randomised into two groups to take two glasses per day of control = regular milk (500 mg calcium per day) or intervention (Int) = fortified milk (1000 mg calcium for pre-M women and 1200 mg calcium for PM women, 96 mg magnesium, 2.4 mg zinc, 15 µg vitamin D, 4 g FOS-inulin per day). At baseline, week 4 and week 12 serum minerals and bone biochemical markers were measured and bone density was measured at baseline.

    RESULTS: Mean 25-hydroxyvitamin D [25(OH) vitamin D3] levels among groups were between 49 and 65 nmol/L at baseline, and over the 12 weeks of supplementation, the fortified milk improved vitamin D status in both Int groups. CTx-1 and PINP reduced significantly in both Pre-M and PM groups over the 12 weeks, with the changes in CTx-1 being significantly different (P 

    Matched MeSH terms: Collagen Type I/blood
  11. Kruger MC, Chan YM, Lau LT, Lau CC, Chin YS, Kuhn-Sherlock B, et al.
    Eur J Nutr, 2018 Dec;57(8):2785-2794.
    PMID: 28975432 DOI: 10.1007/s00394-017-1544-6
    PURPOSE: In Malaysia, hip fracture incidence is higher in Chinese women than other ethnic groups. This study compared the effects of a high-calcium vitamin D fortified milk with added FOS-inulin versus regular milk over 1 year on aspects of bone health in Chinese postmenopausal women in Malaysia.

    METHODS: One-hundred and twenty-one women (mean age 59 (± 4) years) were randomized into two groups: control (n = 60; regular milk, 428 mg calcium per day) or intervention (n = 61; fortified milk at 1200 mg calcium, 96 mg magnesium, 2.4 mg zinc, 15 μg vitamin D and 4 g FOS-inulin per day). At baseline, weeks 12, 24, 36 and 52, parathyroid hormone (PTH), C-Telopeptide of Type I Collagen (CTx-1), Procollagen I Intact N-Terminal propeptide (PINP) and vitamin D levels were assessed. Bone density (BMD) was measured at baseline and week 52 using a GE Lunar iDXA.

    RESULTS: Body mass index, lumbar spine and femoral neck BMD did not differ between groups at baseline. Over 52 weeks, mean plasma 25 (OH) D3 levels increased to 74.8 nmol/L (intervention group) or remained at 63.1 nmol/L (control group) (p 

    Matched MeSH terms: Collagen Type I/blood
  12. Hermizi Hapidin, Hawa Mahmood, Sakinah Harith
    Sains Malaysiana, 2013;42:1191-1200.
    Menopause is the most prevalent cause of accelerated bone loss in women. Biochemical markers of bone resorption can be used clinically to predict future bone loss. This study aimed to determine the level of bone resorption markers in healthy pre and postmenopausal Malay women and determine their association with the risk. A total of 150 healthy women were recruited for this study (51 pre and 99 postmenopausal subjects). Data on socioeconomic, lifestyle habit and clinical were gained by personal interview. Fasting serum was collected to measure both C-telopeptide (CTx) and N-telopeptide (NTx) of type 1 collagen. Both markers were highly correlated with each other (r=0.568, p<0.001). Both intra- and inter-assay coefficient of variations (CV) of NTx were higher than those of CTx (8% and 12% vs 6% and 5%). The mean CTx values of pre and postmenopausal subjects were comparable with the expected values (0.2833 (0.1769) ng/mL and 0.4323 (1.851) ng/mL compared with 0.287 and 0.438 ng/mL, respectively). The NTx value for premenopausal subjects were higher than the expected values (15.2 (8.10) compared to 12.6 (3.20) nM BCE). The median was 19.929 nM BCE. The mean CTx and NTx levels of postmenopausal subjects were significantly lower than premenopausal subjects (p<0.05). The risk factors for bone resorption in this population were duration of menopause, marital status, body mass index (BMI), physical activity and education level. In conclusion, postmenopausal women showed a higher bone resorption, indicating higher bone loss. Increasing education and physical activity intervention might be effective to ensure better health in Malaysian older population.
    Matched MeSH terms: Collagen Type I
  13. Malik MMA, Othman F, Hussan F, Shuid AN, Saad QM
    Vet World, 2019 Dec;12(12):2052-2060.
    PMID: 32095059 DOI: 10.14202/vetworld.2019.2052-2060
    Background and Aim: Both virgin coconut oil (VCO) and tocotrienol-rich fraction (TRF) are rich in antioxidants and may protect the bone against bone loss induced by ovariectomy and high-fat diet. The study aimed to determine the protective effects of combined therapy of VCO and TRF on osteoporosis in ovariectomized (OVX) rat fed with high-fat diet.

    Materials and Methods: Thirty-six female Sprague-Dawley rats were divided into six groups: Sham-operated (SHAM), OVX control, OVX and given Premarin at 64.5 µg/kg (OVX+E2), OVX and given VCO at 4.29 ml/kg (OVX+V), OVX and given TRF at 30 mg/kg (OVX+T), and OVX and given a combination of VCO at 4.29 ml/kg and TRF at 30 mg/kg (OVX+VT). Following 24 weeks of treatments, blood and femora samples were taken for analyses.

    Results: There were no significant differences in serum osteocalcin levels between the groups (p>0.05), while serum C-terminal telopeptide of Type I collagen levels of the OVX+VT group were significantly lower than the other groups (p<0.05). The dynamic bone histomorphometry analysis of the femur showed that the double-labeled surface/bone surface (dLS/BS), mineral apposition rate, and bone formation rate/BS of the OVX+E2, OVX+T, and OVX+VT groups were significantly higher than the rest of the groups (p<0.05).

    Conclusion: A combination of VCO and TRF has the potential as a therapeutic agent to restore bone loss induced by ovariectomy and high-fat diet.

    Matched MeSH terms: Collagen Type I
  14. Law JX, Chowdhury SR, Aminuddin BS, Ruszymah BHI
    Cell Tissue Bank, 2017 Dec;18(4):585-595.
    PMID: 28748415 DOI: 10.1007/s10561-017-9645-2
    Fibrin has excellent biocompatibility and biological properties to support tissue regeneration and promote wound healing. However, the role of diluted fibrin in wound healing has yet to be elucidated as it is commonly used in high concentration. This study was aimed to examine the effects of diluted plasma-derived fibrin (PDF) on keratinocyte and fibroblast wound healing in term of cell proliferation, migration, extracellular matrix (ECM) production and soluble factor secretion. Two PDF concentrations, 10 and 20% (v/v) were tested on keratinocytes and fibroblasts indirectly co-cultured in the transwell system. The control group was cultured with 5% FBS. Results showed that PDF reduced the keratinocyte growth rate and fibroblast migration, and increased the fibroblast ECM gene expression whereby significant differences were found between the 20% PDF group and the 5% FBS group. Similar trend was seen for the 10% PDF group but the differences were not significant. Comparison of the soluble factors between the PDF groups demonstrated that the level of growth-related oncogene alpha, interleukin-8 and epithelial neutrophil-activating peptide-78 were significantly higher in the 10% PDF group, whilst interleukin-1 alpha and granulocyte-macrophage colony stimulating factor were significantly more concentrated in the 20% PDF group. Our results suggested that PDF selectively elevated the expression of collagen type 1 and collagen type 3 in fibroblasts but slowed down the migration in concentration-dependent manner. These novel findings provide new insight into the role of PDF in wound healing and may have important implications for the use of fibrin in skin tissue engineering.
    Matched MeSH terms: Collagen Type I/metabolism
  15. Farah Wahida I, Aminuddin BS, Munirah S, Chua KH, Fuzina NH, Isa MR, et al.
    Med J Malaysia, 2004 May;59 Suppl B:190-1.
    PMID: 15468882
    This study was to assess collagen type II and collagen type I gene expression in tissue-engineered human auricular: cartilage formed via tissue engineering technique. Large-scale culture expansions were transformed into 3D in vitro construct and were implanted subcutaneously on the dorsal of athymic mice. After 8 weeks, explanted construct was processed in the same manner of native cartilage to facilitate cells for gene expression analysis. Isolated cells from in vivo construct demonstrated expression of type II collagen gene comparable to native cartilage. This study verified that tissue-engineered auricular cartilage expressed cartilage specific gene, collagen type II after in vivo maturation.
    Matched MeSH terms: Collagen Type I/genetics*; Collagen Type II/genetics*
  16. Nur Adelina AN, Aminuddin BS, Munirah S, Chua KH, Fuzina NH, Saim L, et al.
    Med J Malaysia, 2004 May;59 Suppl B:188-9.
    PMID: 15468881
    Cartilage is regularly needed for reconstructive surgery. Basic research in tissue engineering is necessary to develop its full potential. We presented here the expression profile of type II collagen gene and type I collagen gene in human auricular monolayer culture expansion. Cultured chondrocytes documented a reduction in the expression level of collagen type II gene whilst collagen type I gene was gradually expressed through all the passages. This study demonstrated that human auricular chondrocytes lose its phenotypic expression during monolayer culture expansion. Further studies are required to enhance cartilage specific gene expression, collagen type II throughout the in vitro culture.
    Matched MeSH terms: Collagen Type I/genetics*; Collagen Type II/genetics*
  17. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:194-5.
    PMID: 15468884
    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.
    Matched MeSH terms: Collagen Type I/genetics; Collagen Type II/genetics
  18. Manira M, Khairul Anuar K, Seet WT, Ahmad Irfan AW, Ng MH, Chua KH, et al.
    Cell Tissue Bank, 2014 Mar;15(1):41-9.
    PMID: 23456438 DOI: 10.1007/s10561-013-9368-y
    Animal-derivative free reagents are preferred in skin cell culture for clinical applications. The aim of this study was to compare the performance and effects between animal-derived trypsin and recombinant trypsin for skin cells culture and expansion. Full thickness human skin was digested in 0.6 % collagenase for 6 h to liberate the fibroblasts, followed by treatment with either animal-derived trypsin; Trypsin EDTA (TE) or recombinant trypsin; TrypLE Select (TS) to liberate the keratinocytes. Both keratinocytes and fibroblasts were then culture-expanded until passage 2. Trypsinization for both cell types during culture-expansion was performed using either TE or TS. Total cells yield was determined using a haemocytometer. Expression of collagen type I, collagen type III (Col-III), cytokeratin 10, and cytokeratin 14 genes were quantified via RT-PCR and further confirmed with immunocytochemical staining. The results of our study showed that the total cell yield for both keratinocytes and fibroblasts treated with TE or TS were comparable. RT-PCR showed that expression of skin-specific genes except Col-III was higher in the TS treated group compared to that in the TE group. Expression of proteins specific to the two cell types were confirmed by immunocytochemical staining in both TE and TS groups. In conclusion, the performance of the recombinant trypsin is comparable with the well-established animal-derived trypsin for human skin cell culture expansion in terms of cell yield and expression of specific cellular markers.
    Matched MeSH terms: Collagen Type I/biosynthesis; Collagen Type III/biosynthesis
  19. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Eur Cell Mater, 2005 Jun 17;9:58-67; discussion 67.
    PMID: 15962238
    This study was to investigate the effects of insulin-transferrin-selenium (ITS) on the proliferation and quantitative gene expression of adult human nasal septum chondrocytes in monolayer culture expansion and the formation of tissue engineered hyaline cartilage. Effects of ITS on human nasal septum chondrocytes monolayer culture expansion and gene expression were evaluated in various culture media either added with 2% fetal bovine serum (FBS) or 1 ng/mL basic fibroblast growth factor plus 1 ng/mL transforming growth factor or both serum and growth factors supplementation in comparison with medium added with 10%FBS. Chondrocytes cultured in medium added with 2% fetal bovine serum and growth factors either supplemented with or without ITS were then mixed with pluronic F-127 hydrogel for in vivo tissue engineered cartilage formation in nude mice model. Engineered tissues were removed after 8 weeks of implantation and evaluated with histological staining, immunohistochemistry, transmission electron microscopy and quantitative gene expression analysis. ITS promoted human chondrocytes proliferation and reduced chondrocytes dedifferentiation in media supplemented with serum and growth factors. ITS with 2% FBS and growth factors provided 15-fold increased in chondrocytes number by the end of the culture period compared to the standard culture medium used in chondrocytes culture (medium added with 10% FBS). Engineered tissue resulted from ITS supplementation demonstrated higher quality of cartilage formation. In conclusion, our study has demonstrated the benefits of ITS supplementation in human chondrocytes monolayer culture and tissue engineering cartilage formation.
    Matched MeSH terms: Collagen Type I/genetics; Collagen Type II/genetics
  20. Chee, W.S.S., Chong, P.N., Chuah, K.A., Karupaiah, T ., Norlaila Mustafa, Seri Suniza, S., et al.
    Malays J Nutr, 2010;16(2):233-242.
    MyJurnal
    Bone health status was investigated in 178 free-living Chinese post-menopausal women in Kuala Lumpur. Body mass index (BMI), body composition (using whole body DXA), calcium intake and serum 25-OH vitamin D status were measured along with biochemical markers of bone turnover, that is, pro-collagen Type 1 N-terminal peptide (P1NP), osteocalcin (OC) and C-telopeptide ß cross
    link of Type 1 collagen (CTX- β). Bone mineral density (BMD) was measured using DXA (Hologic, USA) at the lumbar spine, femoral neck and total hip. Results showed that osteopenia was present in 50% of the subjects at the spine and 57.9% at the femoral neck. Osteoporosis was diagnosed in 10% of the subjects at both the femoral neck and spine. A total of 29.3% of the subjects had high
    levels of CTX- ß. Mean serum level of 25-OH vitamin D was 60.4+15.6 nmol/L and 50.6% of the subjects had hypovitaminosis D (defined as
    Matched MeSH terms: Collagen Type I
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links