Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Bokhari RA, Lau SF, Mohamed S
    Menopause, 2018 02;25(2):202-210.
    PMID: 28926512 DOI: 10.1097/GME.0000000000000980
    OBJECTIVE: Orthosiphon stamineus (OS) or Misai Kucing (Java tea) is a popular herbal supplement from Southeast Asia for various metabolic, age-related diseases. This study investigated the potential use of OS leaf extracts to ameliorate osteoporosis in ovariectomized rats.

    METHODS: Fifty-six female Sprague-Dawley rats were randomly allocated into eight groups (n = 7): SHAM (healthy sham control); OVX (ovarietomized) nontreated rats (negative control); OVX + Remifemin (100 mg/kg body weight), and 2% green tea extract (positive controls); OVX + OS 50% ethanolic and aqueous extracts, both at either 150 or 300 mg/kg. After 16 weeks, the rats' bones and blood were evaluated for osteoporosis indicators (protein and mRNA expressions), micro-computed tomography for bone histomorphometry, and three-point bending test for tibia mechanical strength.

    RESULTS: The extracts dose-dependently and significantly (P collagen-1 synthesis (collagen type 1 alpha-1) mRNA expressions, and down-regulated bone resorption (TNFSF11 and nuclear factor-kappa B) mRNA expressions. Both the water and 50% ethanolic extract were effective. The effective dose is equivalent to 25 to 50 mg/kg extract for humans.

    CONCLUSIONS: The extract showed bone-protective and antiosteoporotic effects (improving bone strength, flexibility, bone density, and bone morphometry) by reducing inflammation and the bone resorption biomarkers, while enhancing bone formation biomarkers and collagen synthesis.

    Matched MeSH terms: Collagen Type I/genetics
  2. Xian LJ, Chowdhury SR, Bin Saim A, Idrus RB
    Cytotherapy, 2015 Mar;17(3):293-300.
    PMID: 25456581 DOI: 10.1016/j.jcyt.2014.10.005
    Platelet-rich plasma (PRP) has been found to contain a high concentration of growth factors that are present during the process of healing. Studies conducted found that application of PRP accelerates wound healing. In this study, we characterized the skin cell suspension harvested using the co-isolation technique and evaluated the effects of PRP (10% and 20%, v/v) on co-cultured keratinocytes and fibroblasts in terms of wound healing.
    Matched MeSH terms: Collagen Type I/metabolism; Collagen Type III/metabolism
  3. Lai PS, Chua SS, Chew YY, Chan SP
    J Clin Pharm Ther, 2011 Oct;36(5):557-67.
    PMID: 21916908 DOI: 10.1111/j.1365-2710.2010.01210.x
    Studies have shown that comprehensive interventions by pharmacists can improve adherence and persistence to osteoporosis therapy, but the association between adherence and bone turnover markers (BTMs) has never been studied. Therefore, the aim of this study was to evaluate the effects of pharmaceutical care on medication adherence (and its effects on BTMs), as well as persistence of postmenopausal osteoporotic women to prescribed bisphosphonates.
    Matched MeSH terms: Collagen Type I/blood
  4. Berahim Z, Moharamzadeh K, Rawlinson A, Jowett AK
    J. Periodontol., 2011 May;82(5):790-7.
    PMID: 21080786 DOI: 10.1902/jop.2010.100533
    Cell-based therapy using autologous cells has been suggested as a potential approach for periodontal tissue regeneration. Spheroid systems are a form of three-dimensional cell culture that promotes cell matrix interaction, which could recapitulate the aspect of cell homeostasis in vivo. The aim of this study is to assess the interaction of periodontal fibroblast spheroids with synthetic and collagen-based membranes that have been used in guided tissue regeneration.
    Matched MeSH terms: Collagen Type I/analysis
  5. Lim CK, Halim AS, Yaacob NS, Zainol I, Noorsal K
    J Biosci Bioeng, 2013 Apr;115(4):453-8.
    PMID: 23177217 DOI: 10.1016/j.jbiosc.2012.10.010
    The effects of locally produced chitosan (CPSRT-NC-bicarbonate) in the intervention of keloid pathogenesis were investigated in vitro. A human keratinocyte-fibroblast co-culture model was established to investigate the protein levels of human collagen type-I, III and V in a western blotting analysis, the secreted transforming growth factor-β1 (TGF-β1) in an enzyme-linked immunosorbent assay (ELISA) and the mRNA levels of TGF-β1's intracellular signaling molecules (SMAD2, 3, 4 and 7) in a real-time PCR analysis. Keratinocyte-fibroblast co-cultures were maintained in DKSFM:DMEM:F12 (2:2:1) medium. Collagen type-I was found to be the dominant form in primary normal human dermal fibroblast (pNHDF) co-cultures, whereas collagen type-III was more abundant in primary keloid-derived human dermal fibroblast (pKHDF) co-cultures. Collagen type-V was present as a minor component in the skin. TGF-β1, SMAD2 and SMAD4 were expressed more in the pKHDF than the pNHDF co-cultures. Co-cultures with normal keratinocytes suppressed collagen type-III, SMAD2, SMAD4 and TGF-β1 expressions and CPSRT-NC-bicarbonate enhanced this effect. In conclusion, the CPSRT-NC-bicarbonate in association with normal-derived keratinocytes demonstrated an ability to reduce TGF-β1, SMAD2 and SMAD4 expressions in keloid-derived fibroblast cultures, which may be useful in keloid intervention.
    Matched MeSH terms: Collagen Type I/metabolism; Collagen Type III/metabolism
  6. Kruger MC, Chan YM, Kuhn-Sherlock B, Lau LT, Lau C, Chin YS, et al.
    Eur J Nutr, 2016 Aug;55(5):1911-21.
    PMID: 26264387 DOI: 10.1007/s00394-015-1007-x
    PURPOSE: To compare the effects of a high-calcium vitamin D-fortified milk with added FOS-inulin versus regular milk on serum parathyroid hormone, and bone turnover markers in premenopausal (Pre-M) and postmenopausal (PM) women over 12 weeks.

    METHODS: Premenopausal women (n = 136, mean age 41 (±5) years) and postmenopausal women [n = 121, mean age 59 (±4) years] were recruited, and each age group randomised into two groups to take two glasses per day of control = regular milk (500 mg calcium per day) or intervention (Int) = fortified milk (1000 mg calcium for pre-M women and 1200 mg calcium for PM women, 96 mg magnesium, 2.4 mg zinc, 15 µg vitamin D, 4 g FOS-inulin per day). At baseline, week 4 and week 12 serum minerals and bone biochemical markers were measured and bone density was measured at baseline.

    RESULTS: Mean 25-hydroxyvitamin D [25(OH) vitamin D3] levels among groups were between 49 and 65 nmol/L at baseline, and over the 12 weeks of supplementation, the fortified milk improved vitamin D status in both Int groups. CTx-1 and PINP reduced significantly in both Pre-M and PM groups over the 12 weeks, with the changes in CTx-1 being significantly different (P 

    Matched MeSH terms: Collagen Type I/blood
  7. Lim SY, Zalilah MS, Chin YS, Ramachandran V, Chan YM
    Nutrients, 2018 Jul 17;10(7).
    PMID: 30018240 DOI: 10.3390/nu10070915
    The interaction of dietary and genetic factors may affect the development of bone deterioration. This study investigated whether the effects of dietary acid load (DAL) on bone loss in postmenopausal Chinese women were moderated by the insulin-like growth factor-1 (IGF-1) single nucleotide polymorphism, a known gene that plays a role in the regulation of bone formation and bone remodeling. A total of 217 healthy participants were recruited from the National Council of Senior Citizens Organizations Malaysia. Serum collagen type 1 cross-linked C-telopeptide was used as a surrogate bone marker to assess bone resorption and Agena® MassARRAY genotyping analysis was used to identify the signaling of IGF-1 rs35767. The dietary acid load was measured by potential renal acid load score while physical activity was ascertained using the Global Physical Activity Questionnaire. Hierarchical regression was applied to test the main and interaction effects of DAL and IGF-1 genotypes in bone resorption. The result supported the diet-dependent acid-base balance theory that higher DAL was positively associated with bone resorption (β = 0.152, p = 0.031, F(6,207) = 2.11, sig-F = 0.036, R² = 0.079). However, the results indicated that there was no significant correlation between IGF-1 and bone resorption, or any significant interaction between DAL and IGF-1. In conclusion, there was no moderating effect of IGF-1 on the relationship between DAL and bone resorption.
    Matched MeSH terms: Collagen Type I/blood
  8. Chin CY, Ng PY, Ng SF
    Drug Deliv Transl Res, 2019 04;9(2):453-468.
    PMID: 29560587 DOI: 10.1007/s13346-018-0510-z
    Previously, Moringa oleifera leaf (MOL) standardised aqueous extract-loaded films were successfully developed and they showed potential wound healing activity in vitro. The objective of this study was to evaluate in vivo dermal safety as well as wound healing efficacy of these MOL film dressings (containing 0.1, 0.5 and 1% MOL) on diabetic rat model. The acute dermal toxicity was carried out on healthy rats, and signs of toxicity over 14 days were observed. For wound healing studies, excision and abrasion wounds were created out on the STZ/HFD-induced diabetic rat model and the wound healing was studied over 21 days. The wound healing evaluation determined by histology staining, hydroxyproline assay and ELISA assays on wound healing related-growth factors, cytokines and chemokines. MOL film formulations exhibited no signs of dermal toxicities. In excision wound model, 0.5% film significantly enhanced the wound closure by 77.67 ± 7.28% at day 7 compared to control group. While in abrasion wounds, 0.5% MOL films accelerated wound closure significantly at 81 ± 4.5% as compared to the control. The histology findings and hydroxyproline assay revealed that high collagen deposition and complete re-epithelialisation were observed for the wounds treated with 0.5 and 1% MOL films. All MOL film dressings had successfully tested non-toxic via in vivo safety dermal toxicity. It was concluded that the 0.5% MOL extract-loaded film had proven to be the most promising approach to accelerate diabetic wound healing process in both full-thickness excision and partial thickness abrasion wounds on the HFD/STZ-induced diabetic type II model.
    Matched MeSH terms: Collagen Type I/metabolism
  9. Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, et al.
    Colloids Surf B Biointerfaces, 2016 Mar 1;139:68-78.
    PMID: 26700235 DOI: 10.1016/j.colsurfb.2015.11.053
    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering.
    Matched MeSH terms: Collagen Type I/genetics; Collagen Type I/metabolism; Collagen Type I/pharmacology*
  10. Siew Ching H, Thirumulu Ponnuraj K, Luddin N, Ab Rahman I, Nik Abdul Ghani NR
    Polymers (Basel), 2020 Sep 17;12(9).
    PMID: 32957636 DOI: 10.3390/polym12092125
    This study aimed to investigate the effects of nanohydroxyapatite-silica-glass ionomer cement (nanoHA-silica-GIC) on the differentiation of dental pulp stem cells (DPSCs) into odontogenic lineage. DPSCs were cultured in complete Minimum Essential Medium Eagle-Alpha Modification (α-MEM) with or without nanoHA-silica-GIC extract and conventional glass ionomer cement (cGIC) extract. Odontogenic differentiation of DPSCs was evaluated by real-time reverse transcription polymerase chain reaction (rRT-PCR) for odontogenic markers: dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), osteocalcin (OCN), osteopontin (OPN), alkaline phosphatase (ALP), collagen type I (COL1A1), and runt-related transcription factor 2 (RUNX2) on day 1, 7, 10, 14, and 21, which were normalized to the house keeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Untreated DPSCs were used as a control throughout the study. The expressions of DSPP and DMP1 were higher on days 7 and 10, that of OCN on day 10, those of OPN and ALP on day 14, and that of RUNX2 on day 1; COL1A1 exhibited a time-dependent increase from day 7 to day 14. Despite the above time-dependent variations, the expressions were comparable at a concentration of 6.25 mg/mL between the nanoHA-silica-GIC and cGIC groups. This offers empirical support that nanoHA-silica-GIC plays a role in the odontogenic differentiation of DPSCs.
    Matched MeSH terms: Collagen Type I
  11. Boyle ST, Mittal P, Kaur G, Hoffmann P, Samuel MS, Klingler-Hoffmann M
    J Proteome Res, 2020 10 02;19(10):4093-4103.
    PMID: 32870688 DOI: 10.1021/acs.jproteome.0c00511
    Tumorigenesis involves a complex interplay between genetically modified cancer cells and their adjacent normal tissue, the stroma. We used an established breast cancer mouse model to investigate this inter-relationship. Conditional activation of Rho-associated protein kinase (ROCK) in a model of mammary tumorigenesis enhances tumor growth and progression by educating the stroma and enhancing the production and remodeling of the extracellular matrix. We used peptide matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to quantify the proteomic changes occurring within tumors and their stroma in their regular spatial context. Peptides were ranked according to their ability to discriminate between the two groups, using a receiver operating characteristic tool. Peptides were identified by liquid chromatography tandem mass spectrometry, and protein expression was validated by quantitative immunofluorescence using an independent set of tumor samples. We have identified and validated four key proteins upregulated in ROCK-activated mammary tumors relative to those expressing kinase-dead ROCK, namely, collagen I, α-SMA, Rab14, and tubulin-β4. Rab14 and tubulin-β4 are expressed within tumor cells, whereas collagen I is localized within the stroma. α-SMA is predominantly localized within the stroma but is also expressed at higher levels in the epithelia of ROCK-activated tumors. High expression of COL1A, the gene encoding the pro-α 1 chain of collagen, correlates with cancer progression in two human breast cancer genomic data sets, and high expression of COL1A and ACTA2 (the gene encoding α-SMA) are associated with a low survival probability (COLIA, p = 0.00013; ACTA2, p = 0.0076) in estrogen receptor-negative breast cancer patients. To investigate whether ROCK-activated tumor cells cause stromal cancer-associated fibroblasts (CAFs) to upregulate expression of collagen I and α-SMA, we treated CAFs with medium conditioned by primary mammary tumor cells in which ROCK had been activated. This led to abundant production of both proteins in CAFs, clearly highlighting the inter-relationship between tumor cells and CAFs and identifying CAFs as the potential source of high levels of collagen 1 and α-SMA and associated enhancement of tissue stiffness. Our research emphasizes the capacity of MALDI-MSI to quantitatively assess tumor-stroma inter-relationships and to identify potential prognostic factors for cancer progression in human patients, using sophisticated mouse cancer models.
    Matched MeSH terms: Collagen Type I
  12. Tan HY, Tan SL, Teo SH, Roebuck MM, Frostick SP, Kamarul T
    PeerJ, 2020;8:e8740.
    PMID: 32587790 DOI: 10.7717/peerj.8740
    Background: Type 2 diabetes mellitus (T2DM) had been reported to be associated with tendinopathy. However, the underlying mechanisms of diabetic tendinopathy still remain largely to be discovered. The purpose of this study was to develop insulin resistance (IR) model on primary human tenocytes (hTeno) culture with tumour necrosis factor-alpha (TNF-α) treatment to study tenocytes homeostasis as an implication for diabetic tendinopathy.

    Methods: hTenowere isolated from human hamstring tendon. Presence of insulin receptor beta (INSR-β) on normal tendon tissues and the hTeno monolayer culture were analyzed by immunofluorescence staining. The presence of Glucose Transporter Type 1 (GLUT1) and Glucose Transporter Type 4 (GLUT4) on the hTeno monolayer culture were also analyzed by immunofluorescence staining. Primary hTeno were treated with 0.008, 0.08, 0.8 and 8.0 µM of TNF-α, with and without insulin supplement. Outcome measures include 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) assay to determine the glucose uptake activity; colourimetric total collagen assay to quantify the total collagen expression levels; COL-I ELISA assay to measure the COL-I expression levels and real-time qPCR to analyze the mRNA gene expressions levels of Scleraxis (SCX), Mohawk (MKX), type I collagen (COL1A1), type III collagen (COL3A1), matrix metalloproteinases (MMP)-9 and MMP-13 in hTeno when treated with TNF-α. Apoptosis assay for hTeno induced with TNF-α was conducted using Annexin-V FITC flow cytometry analysis.

    Results: Immunofluorescence imaging showed the presence of INSR-β on the hTeno in the human Achilles tendon tissues and in the hTeno in monolayer culture. GLUT1 and GLUT4 were both positively expressed in the hTeno. TNF-α significantly reduced the insulin-mediated 2-NBDG uptake in all the tested concentrations, especially at 0.008 µM. Total collagen expression levels and COL-I expression levels in hTeno were also significantly reduced in hTeno treated with 0.008 µM of TNF-α. The SCX, MKX and COL1A1 mRNA expression levels were significantly downregulated in all TNF-α treated hTeno, whereas the COL3A1, MMP-9 and MMP-13 were significantly upregulated in the TNF-α treated cells. TNF-α progressively increased the apoptotic cells at 48 and 72 h.

    Conclusion: At 0.008 µM of TNF-α, an IR condition was induced in hTeno, supported with the significant reduction in glucose uptake, as well as significantly reduced total collagen, specifically COL-I expression levels, downregulation of candidate tenogenic markers genes (SCX and MKX), and upregulation of ECM catabolic genes (MMP-9 and MMP-13). Development of novel IR model in hTeno provides an insight on how tendon homeostasis could be affected and can be used as a tool for further discovering the effects on downstream molecular pathways, as the implication for diabetic tendinopathy.

    Matched MeSH terms: Collagen Type I; Collagen Type III
  13. Ooi KS, Haszman S, Wong YN, Soidin E, Hesham N, Mior MAA, et al.
    Materials (Basel), 2020 Sep 30;13(19).
    PMID: 33007893 DOI: 10.3390/ma13194352
    The eminent aim for advance wound management is to provide a great impact on the quality of life. Therefore, an excellent strategy for an ideal wound dressing is being developed that eliminates certain drawbacks while promoting tissue regeneration for the prevention of bacterial invasion. The aim of this study is to develop a bilayer hybrid biomatrix of natural origin for wound dressing. The bilayer hybrid bioscaffold was fabricated by the combination of ovine tendon collagen type I and palm tree-based nanocellulose. The fabricated biomatrix was then post-cross-linked with 0.1% (w/v) genipin (GNP). The physical characteristics were evaluated based on the microstructure, pore size, porosity, and water uptake capacity followed by degradation behaviour and mechanical strength. Chemical analysis was performed using energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectrophotometry (FTIR), and X-ray diffraction (XRD). The results demonstrated a uniform interconnected porous structure with optimal pore size ranging between 90 and 140 μm, acceptable porosity (>70%), and highwater uptake capacity (>1500%). The biodegradation rate of the fabricated biomatrix was extended to 22 days. Further analysis with EDX identified the main elements of the bioscaffold, which contains carbon (C) 50.28%, nitrogen (N) 18.78%, and oxygen (O) 30.94% based on the atomic percentage. FTIR reported the functional groups of collagen type I (amide A: 3302 cm-1, amide B: 2926 cm-1, amide I: 1631 cm-1, amide II: 1547 cm-1, and amide III: 1237 cm-1) and nanocellulose (pyranose ring), thus confirming the presence of collagen and nanocellulose in the bilayer hybrid scaffold. The XRD demonstrated a smooth wavy wavelength that is consistent with the amorphous material and less crystallinity. The combination of nanocellulose with collagen demonstrated a positive effect with an increase of Young's modulus. In conclusion, the fabricated bilayer hybrid bioscaffold demonstrated optimum physicochemical and mechanical properties that are suitable for skin wound dressing.
    Matched MeSH terms: Collagen Type I
  14. Chee, W.S.S., Chong, P.N., Chuah, K.A., Karupaiah, T ., Norlaila Mustafa, Seri Suniza, S., et al.
    Malays J Nutr, 2010;16(2):233-242.
    MyJurnal
    Bone health status was investigated in 178 free-living Chinese post-menopausal women in Kuala Lumpur. Body mass index (BMI), body composition (using whole body DXA), calcium intake and serum 25-OH vitamin D status were measured along with biochemical markers of bone turnover, that is, pro-collagen Type 1 N-terminal peptide (P1NP), osteocalcin (OC) and C-telopeptide ß cross
    link of Type 1 collagen (CTX- β). Bone mineral density (BMD) was measured using DXA (Hologic, USA) at the lumbar spine, femoral neck and total hip. Results showed that osteopenia was present in 50% of the subjects at the spine and 57.9% at the femoral neck. Osteoporosis was diagnosed in 10% of the subjects at both the femoral neck and spine. A total of 29.3% of the subjects had high
    levels of CTX- ß. Mean serum level of 25-OH vitamin D was 60.4+15.6 nmol/L and 50.6% of the subjects had hypovitaminosis D (defined as
    Matched MeSH terms: Collagen Type I
  15. Mirmajidi T, Chogan F, Rezayan AH, Sharifi AM
    Int J Pharm, 2021 Mar 01;596:120213.
    PMID: 33493599 DOI: 10.1016/j.ijpharm.2021.120213
    Wound healing is a complicated process that takes a long time to complete. The three-layer nanofiber wound dressing containing melatonin is highly expected to show remarkable wound repair by reducing the wound healing time. In this study, chitosan (Cs)-polycaprolactone (PCL)/ polyvinylalcohol (PVA)-melatonin (MEL)/ chitosan-polycaprolactone three-layer nanofiber wound dressing was prepared by electrospinning for melatonin sustained release. The characteristics of the wound dressing were further evaluated. The wound dressing had a high water uptake after 24 h (401%), and the water contact angle results showed that it had hydrophilicity effect that supported the cell attachment. The wound healing effect of wound dressing was examined using a full-thickness excisional model of rat skin by the local administration of MEL. The gene expressions of transforming growth factor-beta (TGF-β1), alpha-smooth muscle actin (α-SMA), collagen type I (COL1A1), and collagen type III (COL3A1) were further studied. The histopathological evaluation showed the complete regeneration of the epithelial layer, remodeling of wounds, collagen synthesis, and reduction in inflammatory cells. The NF + 20% MEL significantly increased TGF-β1, COL1A1, COL3A1, and α-SMA mRNA expressions. This wound dressing may have a considerable potential as a wound dressing to accelerate the wound healing.
    Matched MeSH terms: Collagen Type I; Collagen Type III
  16. Jayusman PA, Mohamed IN, Shuid AN
    Int J Endocrinol Metab, 2018 Jul;16(3):e64038.
    PMID: 30197659 DOI: 10.5812/ijem.64038
    Background: Gonadotropin releasing hormone (GnRH) antagonists may cause chemical castration in males by suppressing the pituitary-gonadal axis, hence reducing testosterone level. There are limited data on the effects of degarelix, a newer series of potent and long acting GnRH antagonist on bone.

    Objectives: The current study aimed at determining the effects of degarelix on bone turnover, bone densitometry, and bone mechanical strength in male rats.

    Methods: Eighteen male Sprague-Dawley rats were randomly divided into sham (SHAM), orchidectomized (ORX), and degarelix-induced (DGX) groups. Chemical castration was performed by subcutaneous degarelix injection (2 mg/kg) at the scapular region. The rats were scanned for baseline bone mineral area (BMA), bone mineral content (BMC), and bone mineral density (BMD) using dual-energy x-ray absorptiometry (DXA). Following six weeks of experimental period, BMA, BMC, and BMD were measured again with DXA and blood was collected for testosterone and bone biomarkers (osteocalcin and C-terminal of type I collagen crosslink (CTX-1)) measurements. The rats were euthanized and femora were dissected for bone biomechanical strength analysis.

    Results: Bilateral orchidectomy and degarelix administration significantly lowered serum testosterone level, decreased whole body BMC, femoral BMA, femoral BMC, and femoral BMD (P < 0.05) compared with the SHAM group. However, no significant changes were observed in bone biochemical markers and bone mechanical strength in all experimental groups.

    Conclusions: In conclusion, degarelix administration had comparable effects on bone as bilateral orchidectomy. Administration of degarelix provides an alternative method of inducing testosterone deficient-osteopenia in male rats without need for removing the testes.

    Matched MeSH terms: Collagen Type I
  17. Hermizi Hapidin, Hawa Mahmood, Sakinah Harith
    Sains Malaysiana, 2013;42:1191-1200.
    Menopause is the most prevalent cause of accelerated bone loss in women. Biochemical markers of bone resorption can be used clinically to predict future bone loss. This study aimed to determine the level of bone resorption markers in healthy pre and postmenopausal Malay women and determine their association with the risk. A total of 150 healthy women were recruited for this study (51 pre and 99 postmenopausal subjects). Data on socioeconomic, lifestyle habit and clinical were gained by personal interview. Fasting serum was collected to measure both C-telopeptide (CTx) and N-telopeptide (NTx) of type 1 collagen. Both markers were highly correlated with each other (r=0.568, p<0.001). Both intra- and inter-assay coefficient of variations (CV) of NTx were higher than those of CTx (8% and 12% vs 6% and 5%). The mean CTx values of pre and postmenopausal subjects were comparable with the expected values (0.2833 (0.1769) ng/mL and 0.4323 (1.851) ng/mL compared with 0.287 and 0.438 ng/mL, respectively). The NTx value for premenopausal subjects were higher than the expected values (15.2 (8.10) compared to 12.6 (3.20) nM BCE). The median was 19.929 nM BCE. The mean CTx and NTx levels of postmenopausal subjects were significantly lower than premenopausal subjects (p<0.05). The risk factors for bone resorption in this population were duration of menopause, marital status, body mass index (BMI), physical activity and education level. In conclusion, postmenopausal women showed a higher bone resorption, indicating higher bone loss. Increasing education and physical activity intervention might be effective to ensure better health in Malaysian older population.
    Matched MeSH terms: Collagen Type I
  18. Malik MMA, Othman F, Hussan F, Shuid AN, Saad QM
    Vet World, 2019 Dec;12(12):2052-2060.
    PMID: 32095059 DOI: 10.14202/vetworld.2019.2052-2060
    Background and Aim: Both virgin coconut oil (VCO) and tocotrienol-rich fraction (TRF) are rich in antioxidants and may protect the bone against bone loss induced by ovariectomy and high-fat diet. The study aimed to determine the protective effects of combined therapy of VCO and TRF on osteoporosis in ovariectomized (OVX) rat fed with high-fat diet.

    Materials and Methods: Thirty-six female Sprague-Dawley rats were divided into six groups: Sham-operated (SHAM), OVX control, OVX and given Premarin at 64.5 µg/kg (OVX+E2), OVX and given VCO at 4.29 ml/kg (OVX+V), OVX and given TRF at 30 mg/kg (OVX+T), and OVX and given a combination of VCO at 4.29 ml/kg and TRF at 30 mg/kg (OVX+VT). Following 24 weeks of treatments, blood and femora samples were taken for analyses.

    Results: There were no significant differences in serum osteocalcin levels between the groups (p>0.05), while serum C-terminal telopeptide of Type I collagen levels of the OVX+VT group were significantly lower than the other groups (p<0.05). The dynamic bone histomorphometry analysis of the femur showed that the double-labeled surface/bone surface (dLS/BS), mineral apposition rate, and bone formation rate/BS of the OVX+E2, OVX+T, and OVX+VT groups were significantly higher than the rest of the groups (p<0.05).

    Conclusion: A combination of VCO and TRF has the potential as a therapeutic agent to restore bone loss induced by ovariectomy and high-fat diet.

    Matched MeSH terms: Collagen Type I
  19. Chua, S.K., Singh, Devinder K.A., Rajaratnam, B.S., Mokhtar, Sabarul A., Sridharan, R., Gan, K.B., et al.
    MyJurnal
    Older adults are at risk of osteoporotic fractures. Osteoporotic vertebral fractures are associated with a reduced cross-sectional area and muscle strength of the back extensor muscles, increased intramuscular fat infiltration and thoracic and lumbar curvature alterations. This study proposed a protocol to examine in more detail the contributions of altered spinal morphological, physical performance and biochemical markers to the risk of developing osteoporotic vertebral fractures. In this cross-sectional study, we plan to recruit 100 adults aged 50 years and above from an orthopaedic clinic, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia. The fracture prediction tool (FRAX) will be used to categorise high and low risk groups. Back muscle strength will be quantified using a load cell system. Thoracolumbar curvatures will be examined using an electromagnetic tracking system and intramuscular fat infiltration in the lumbar muscles will be measured using Magnetic Resonance Imaging. The Short Physical Performance Battery and JAMA dynamometer will quantify physical performance and the European Quality of Life Questionnaire will be used to assess self-perceived quality of life. Biochemical markers of serum C terminal telopeptide and N terminal propeptide of type I procollagen will be assessed using an enzyme-linked immunosorbent assays kit. A spine-specific model using regression analysis will be developed to predict osteoporotic vertebral fractures using the measured parameters in the present study.
    Matched MeSH terms: Collagen Type I
  20. Chin KY, Ima-Nirwana S
    Clin Interv Aging, 2014;9:1247-59.
    PMID: 25120355 DOI: 10.2147/CIA.S67016
    BACKGROUND: Previous animal models have demonstrated that tocotrienol is a potential treatment for postmenopausal osteoporosis. This study evaluated the antiosteoporotic effects of annatto-derived tocotrienol (AnTT) using a testosterone-deficient osteoporotic rat model.
    METHODS: Forty rats were divided randomly into baseline, sham, orchidectomized, AnTT, and testosterone groups. The baseline group was euthanized without undergoing any surgical treatment or intervention. The remaining groups underwent orchidectomy, with the exception of the sham group. AnTT 60 mg/kg/day was given orally to the AnTT group, while the testosterone group received testosterone enanthate 7 mg/kg per week intramuscularly for 8 weeks. Structural changes in trabecular bone at the proximal tibia were examined using microcomputed tomography. Structural and dynamic changes at the distal femur were examined using histomorphometric methods. Serum osteocalcin and C-terminal of type 1 collagen crosslinks were measured. Bone-related gene expression in the distal femur was examined.
    RESULTS: There were significant degenerative changes in structural indices in the orchidectomized group (P<0.05), but no significant changes in dynamic indices, bone remodeling markers, or gene expression (P>0.05) when compared with the sham group. The AnTT group showed significant improvement in structural indices at the femur (P<0.05) and significantly increased expression of bone formation genes (P<0.05). Testosterone was more effective than AnTT in preventing degeneration of bone structural indices in the femur and tibia (P<0.05).
    CONCLUSION: AnTT supplementation improves bone health in testosterone-deficient rats by enhancing bone formation. Its potential should be evaluated further by varying the dosage and treatment duration.
    KEYWORDS: bone remodeling; osteoporosis; testosterone; tocotrienol
    Matched MeSH terms: Collagen Type I/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links