Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Abdelwahab SI, Mohan S, Mohamed Elhassan M, Al-Mekhlafi N, Mariod AA, Abdul AB, et al.
    PMID: 21234328 DOI: 10.1155/2011/156765
    Antiapoptotic and antioxidant activities of aqueous-methanolic extract (CAME) of Orthosiphonstamineus Benth(OS), and its hexane (HF), chloroform (CF), n-butanol (NBF), ethyl acetate (EAF) and water (WF) fractions were investigated. Antioxidant properties were evaluated using the assays of Folin-Ciocalteu, aluminiumtrichloride, β-carotene bleaching and DPPH. The role of OS against hydrogen peroxide induced apoptosis on MDA-M231 epithelial cells was examined using MTT assay, phase contrast microscope, colorimetric assay of caspase-3, western blot and quantitative real-time PCR. Results showed that EAF showed the highest total phenolic content followed by CAME, NBF, WF, CF and HF, respectively. Flavonoid content was in the order of the CF > EAF > HF > CAME > NBF > WF. The IC(50) values on DPPH assay for different extract/fractions were 126.2 ± 23, 31.25 ± 1.2, 15.25 ± 2.3, 13.56 ± 1.9, 23.0 ± 3.2, and 16.66 ± 1.5 μg/ml for HF, CF, EAF, NBF, WF and CAME, respectively. OSreduced the oxidation of β-carotene by hydroperoxides. Cell death was dose-dependently inhibited by pretreatment with OS. Caspase-3 and distinct morphological features suggest the anti-apoptotic activities of OS. This plant not only increased the expression of Bcl-2, but also decreased Bax expression, and ultimately reduced H(2)O(2)-induced apoptosis. The current results showed that phenolics may provide health and nutritional benefits.
    Matched MeSH terms: Colorimetry
  2. Abdullah N, Yuzir A, Curtis TP, Yahya A, Ujang Z
    Bioresour Technol, 2013 Jan;127:181-7.
    PMID: 23131639 DOI: 10.1016/j.biortech.2012.09.047
    Understanding the relationship between microbial community and mechanism of aerobic granulation could enable wider applications of granules for high-strength wastewater treatment. The majority of granulation studies principally determine the engineering aspects of granules formation with little emphasis on the microbial diversity. In this study, three identical reactors namely R1, R2 and R3 were operated using POME at volumetric loadings of 1.5, 2.5 and 3.5 kg COD m(-3) d(-1), respectively. Aeration was provided at a volumetric flow rate of 2.5 cms(-1). Aerobic granules were successfully developed in R2 and R3 while bioflocs dominated R1 until the end of experiments. Fractal dimension (D(f)) averaged at 1.90 suggesting good compactness of granules. The PCR-DGGE results indicated microbial evolutionary shift throughout granulation despite different operating OLRs based on decreased Raup and Crick similarity indices upon mature granule formation. The characteristics of aerobic granules treating high strength agro-based wastewater are determined at different volumetric loadings.
    Matched MeSH terms: Colorimetry
  3. Abdullah P, Nainggolan H
    Environ Monit Assess, 1991 Oct;19(1-3):423-31.
    PMID: 24233958 DOI: 10.1007/BF00401330
    Phenolic chemicals with their very low taste and odour thresholds, high persistence and toxicity, are of growing concern as water pollutants. The compounds are known to exist in raw water as well as in treated water. The level of phenolic priority pollutants in water within the catchment area of the Linggi River Treatment Plant in Negeri Sembilan, Malaysia, which includes the Linggi river basin, was monitored. The 4-aminoantipyrin colourimetric method was used to determine total phenols whereas capillary column gas chromatography was used to determine the individual compounds. The results show that at most sampling stations, particularly those within the Seremban municipality, the level of phenols was found to exceed the recommended Malaysian standard of 2.0 μg/L(-1) for raw water. This is seen as the direct impact of industrial and urbanization of the area and clearly indicates the unhealthy state of the Linggi river. The results also indicate the need to improve the water quality if the river is going to be used as a source of raw water.
    Matched MeSH terms: Colorimetry
  4. Abdullah WZ, Idris SZ, Bashkar S, Hassan R
    Singapore Med J, 2009 Jun;50(6):604-9.
    PMID: 19551314
    The fibrinolytic system plays an important role in normal haemostasis and endothelial function. This study was conducted to compare three fibrinolytic markers, i.e. plasminogen, tissue-plasminogen activator (t-PA) and plasminogen activator inhibitor type-1 (PAI-1) between acute stroke and stable non-stroke patients and to investigate the clinical significance of these markers.
    Matched MeSH terms: Colorimetry/methods
  5. Abu Bakar MF, Abdul Karim F, Suleiman M, Isha A, Rahmat A
    PMID: 26640502 DOI: 10.1155/2015/936215
    The study aimed to investigate the phytochemical contents, antioxidant and antiproliferative activity of 80% methanol extract of Lepidozia borneensis. The total phenolic and total flavonoid contents were analysed using Folin-Ciocalteu and aluminium chloride colorimetric methods. Antioxidant properties were evaluated by using FRAP, ABTS, and DPPH assays while the effects of L. borneensis on the proliferation of MCF-7 cell line were evaluated by using MTT assay. The results showed that the total phenolic and flavonoid contents were 12.42 ± 0.47 mg GAE/g and 9.36 ± 1.29 mg CE/g, respectively. The GC-MS analysis revealed the presence of at least 35 compounds. The extract was found to induce cytotoxicity against MCF-7 cell line with IC50 value of 47.33 ± 7.37 µg/mL. Cell cycle analysis showed that the extract induced significant arrest at G0/G1 at 24 hours of treatment. After 72 hours of treatment, the proportion of cells in G0/G1 and G2-M phases had decreased significantly as compared to their control. Apoptosis occurred during the first 24 hours and significantly increased to 30.8% after 72 hours of treatment. No activation of caspase 3 was observed. These findings suggest that L. borneensis extract has the potential as natural antioxidant and anticancer agents.
    Matched MeSH terms: Colorimetry
  6. Ahmad Faris AN, Ahmad Najib M, Mohd Nazri MN, Hamzah ASA, Aziah I, Yusof NY, et al.
    Int J Environ Res Public Health, 2022 Aug 25;19(17).
    PMID: 36078284 DOI: 10.3390/ijerph191710570
    Water- and food-related health issues have received a lot of attention recently because food-poisoning bacteria, in particular, are becoming serious threats to human health. Currently, techniques used to detect these bacteria are time-consuming and laborious. To overcome these challenges, the colorimetric strategy is attractive because it provides simple, rapid and accurate sensing for the detection of Salmonella spp. bacteria. The aim of this study is to review the progress regarding the colorimetric method of nucleic acid for Salmonella detection. A literature search was conducted using three databases (PubMed, Scopus and ScienceDirect). Of the 88 studies identified in our search, 15 were included for further analysis. Salmonella bacteria from different species, such as S. Typhimurium, S. Enteritidis, S. Typhi and S. Paratyphi A, were identified using the colorimetric method. The limit of detection (LoD) was evaluated in two types of concentrations, which were colony-forming unit (CFU) and CFU per mL. The majority of the studies used spiked samples (53%) rather than real samples (33%) to determine the LoDs. More research is needed to assess the sensitivity and specificity of colorimetric nucleic acid in bacterial detection, as well as its potential use in routine diagnosis.
    Matched MeSH terms: Colorimetry*
  7. Ahmad NA, Yook Heng L, Salam F, Mat Zaid MH, Abu Hanifah S
    Sensors (Basel), 2019 Nov 05;19(21).
    PMID: 31694284 DOI: 10.3390/s19214813
    A developed colorimetric pH sensor film based on edible materials for real-time monitoring of food freshness is described. The mixed natural dyes from edible plants Clitoria sp and Brassica sp were extracted and incorporated into ι-carrageenan film as a colorimetric pH sensor film for monitoring food spoilage and its freshness. The color changes of the developed colorimetric sensor film were measured with chromametry and UV-vis spectroscopy, respectively. Experimental results show that colorimetric pH sensor film demonstrated statistically significant differences (p < 0.05) between CIE-L*a*b* coordinates color system indicated that the developed colorimetric sensor film was able to give a gradual change in color over a wide pH range. The color of the colorimetric sensor film also changes discretely and linearly with factors that contribute to food spoilage using shrimp and durian samples. Moreover, the developed colorimetric pH sensor film has the potential to be used as a safe, non-destructive testing and also a flexibly visual method for direct assessment of food freshness indicator during storage.
    Matched MeSH terms: Colorimetry/instrumentation*
  8. Ahmed SR, Sherazee M, Das P, Shalauddin M, Akhter S, Basirun WJ, et al.
    Biosens Bioelectron, 2024 Feb 15;246:115857.
    PMID: 38029708 DOI: 10.1016/j.bios.2023.115857
    This study unveils the electrochemically-enhanced nanozymatic activity exhibited by borophene during the reaction of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2. Herein, the surface of the pristine borophene was first modified with the addition of thiocyanate groups to improve hydroxyl radical (•OH) scavenging activity. Then, the oxidation reaction of TMB was accelerated under applied electrochemical potential. Both factors significantly improved the detection limit and drastically decreased the detection time. DPPH testing revealed that the radical scavenging nature of borophene was more than 70%, boosting its catalytic activity. In the presence of H2O2, borophene catalyzed the oxidation of TMB and produced a blue-colored solution that was linearly correlated with the concentration of H2O2 and allowed for the detection of H2O2 up to 38 nM. The present finding was further extended to nanozymatic detection of tetracyclines (TCs) using a target-specific aptamer, and the results were colorimetrically quantifiable up to 1 μM with a LOD value of 150 nM. Moreover, transferring the principles of the discussed detection method to form a portable and disposable paper-based system enabled the quantification of TCs up to 0.2 μM. All the sensing experiments in this study indicate that the nanozymatic activity of borophene has significantly improved under electrochemical potential compared to conventional nanozyme-based colorimetric detection. Hence, the present discovery of electrochemically-enhanced nanozymatic activity would be promising for various sensitive and time-dependent colorimetric sensor development initiatives in the future.
    Matched MeSH terms: Colorimetry/methods
  9. Al-Jadi AM, Kanyan Enchang F, Mohd Yusoff K
    Turk J Med Sci, 2014;44(5):733-40.
    PMID: 25539538
    BACKGROUND/AIM: To examine, for the first time, the effect of a selected Malaysian honey and its major components on the proliferation of cultured fibroblasts.

    MATERIALS AND METHODS: Honey and some of its components, which include the sugars, the proteins, the hydrogen peroxide produced, and the phenolics, were exposed to cultured fibroblasts. The MTT colorimetric assay was used to assess cell viability and proliferation.

    RESULTS: The stimulatory effect of honey on fibroblast proliferation was observed to be time- and dose-dependent. The continuous production of hydrogen peroxide by the honey-glucose oxidase system also acts to stimulate cell proliferation in a time- and dose-dependent manner. The presence of phenolics with antioxidant properties, on the other hand, renders protection to the cells against the toxic effect of hydrogen peroxide. However, the presence of a growth factor-like substance in honey could not be ascertained.

    CONCLUSION: For the first time, honey and its major components were shown to exert stimulatory effects on cultured fibroblasts. Honey is therefore potentially useful in medicinal practices.

    Matched MeSH terms: Colorimetry
  10. Ali AH, Agustar HK, Hassan NI, Latip J, Embi N, Sidek HM
    Data Brief, 2020 Dec;33:106592.
    PMID: 33318979 DOI: 10.1016/j.dib.2020.106592
    Aromatic (ar)-turmerone is one of the aromatic constituents abundant in turmeric essential oil from Curcuma longa. Ar-turmerone exhibited anti-inflammatory properties. So far, antiplasmodial data for ar-turmerone is still not reported. The data showed the in vitro antiplasmodial effect of ar-turmerone against Plasmodium falciparum 3D7 (chloroquine-sensitive) via Plasmodium lactate dehydrogenase assay (pLDH) and cytotoxic effect against Vero mammalian kidney cells using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) colourimetric assay. Selectivity indexes of ar-turmerone were calculated based on inhibition concentration at 50% of parasite growth (IC50) from MTT and pLDH assays and the effects of ar-turmerone were compared to the antimalarial reference drug chloroquine diphosphate. The inhibitory effect of ar-turmerone at the intraerythrocytic stages of plasmodial lifecycles was evaluated via a stage-dependant susceptibility test. The antiplasmodial and cytotoxic activities of ar-turmerone revealed IC50 values of 46.8 ± 2.4 μM and 820.4 ± 1.5 μM respectively. The selectivity index of ar-turmerone was 17.5. Ar-turmerone suppressed the ring-trophozoite transition stage of the intraerythrocytic life cycle of P. falciparum 3D7.
    Matched MeSH terms: Colorimetry
  11. Amran EN, Sudik S, Omar AF, Mail MH, Seeni A
    Photodiagnosis Photodyn Ther, 2019 Sep;27:380-384.
    PMID: 31301437 DOI: 10.1016/j.pdpdt.2019.07.006
    The objective of this research is to examine the relationship between the color changes of phenol red and the growth of cancer cells, i.e., HeLa and DU145 cells, over a specific period of time. Normal mouse skin fibroblasts (L929 cells) were used as a reference. In this research, the color changes of phenol red due to the acidification of the cell culture medium from the growth of the cells over a period of nine hours showed potential colorimetric characteristics of cancer cells. The color changes of phenol red were observed using visible absorbance spectroscopy. The transformation of the absorbance spectra into coefficients of determination against the examined range of wavelengths created a distinctive spectral signature that signifies phenol red discoloration in cancer and normal cell culture lines.
    Matched MeSH terms: Colorimetry/methods*
  12. Ang HY, Subramani T, Yeap SK, Omar AR, Ho WY, Abdullah MP, et al.
    Exp Ther Med, 2014 Jun;7(6):1733-1737.
    PMID: 24926376
    Immunomodulators are agents that are able to stimulate or inhibit the immune response. The leaf extracts from Potentilla indica and Dendrophthoe pentandra were analyzed in vitro for immunomodulatory activity and an MTT colorimetric assay was conducted to determine the proliferation of mice splenocytes and thymocytes. A bromodeoxyuridine assay was performed to analyze DNA synthesis and the Trypan blue exclusion method was conducted to evaluate the changes in total cell population. The results indicated that treatment with P. indica and D. pentandra produced a time- and dose-dependent increase in cell viability and proliferation. Following 72 h of treatment with P. indica and D. pentandra, thymocyte proliferation was augmented by 18 and 41%, respectively and splenocyte proliferation increased by 35 and 42%, respectively, when compared with untreated cells. The present study demonstrated that these extracts may act as potential immunostimulants and, thus, represent an alternative source of immunomodulatory compounds for the treatment of human immune-mediated diseases.
    Matched MeSH terms: Colorimetry
  13. Arul P, Nandhini C, Huang ST, Gowthaman NSK, Huang CH
    Food Chem, 2023 Jul 15;414:135747.
    PMID: 36841102 DOI: 10.1016/j.foodchem.2023.135747
    A simple and rapid screening of biomarkers in clinical and food matrices is urgently needed to diagnose cardiovascular diseases. The cholesterol (Chol) and hydrogen peroxide (H2O2) are critical bio-indicators, which require more inventive detection techniques to be applied to real food, and bio-samples. In this study, a robust dual sensor was developed for Chol and H2O2 using hybrid catalyst. Bovine serum albumin (BSA)-capped nanocatalyst was potentially catalyzed 3,3',5,5'-tetramethylbenzidine (TMB), and H2O2. The enzymatic nanoelectrocatalyst delivered a wide range of signaling concentrations from 250 nM to 3.0 mM and 100 nM to 10 mM, limit of detection (LOD) of 53.2 nM and 18.4 nM for Chol and H2O2. The cholesterol oxidase-BSA-AuNPs-metal-free organic framework (ChOx-BSA-AuNPs-MFOF) based electrode surface effectively operated in live-cells and real-food samples. The enzymatic sensor exhibits adequate recovery of real-food samples (96.96-99.44%). Finally, the proposed system is a suitable choice for the potential applications of Chol and H2O2 in clinical and food chemistry.
    Matched MeSH terms: Colorimetry/methods
  14. Azizah N, Hashim U, Gopinath SCB, Nadzirah S
    Int J Biol Macromol, 2017 Jan;94(Pt A):571-575.
    PMID: 27771413 DOI: 10.1016/j.ijbiomac.2016.10.060
    Nanoparticles have been investigated as flagging tests for the sensitive DNA recognition that can be utilized as a part of field applications to defeat restrictions. Gold nanoparticles (AuNPs) have been widely utilized due to its optical property and capacity to get functionalized with a mixed bag of biomolecules. This study exhibits the utilization of AuNPs functionalized with single-stranded oligonucleotide (AuNP-oligo test) for fast the identification of Human Papillomavirus (HPV). This test is displayed on interdigitated electrode sensor and supported by colorimetric assay. DNA conjugated AuNP has optical property that can be controlled for the applications in diagnostics. With its identification abilities, this methodology incorporates minimal effort, strong reagents and basic identification of HPV.
    Matched MeSH terms: Colorimetry/methods*
  15. Balakrishnan KN, Abdullah AA, Bala JA, Jesse FFA, Abdullah CAC, Noordin MM, et al.
    Virol J, 2020 Oct 27;17(1):164.
    PMID: 33109247 DOI: 10.1186/s12985-020-01436-5
    BACKGROUND: Cytomegalovirus (CMV) is an opportunistic pathogen that causes severe complications in congenitally infected newborns and non-immunocompetent individuals. Developing an effective vaccine is a major public health priority and current drugs are fronting resistance and side effects on recipients. In the present study, with the aim of exploring new strategies to counteract CMV replication, several anti-CMV siRNAs targeting IE2 and DNA polymerase gene regions were characterized and used as in combinations for antiviral therapy.

    METHODS: The rat embryo fibroblast (REF) cells were transfected with multi siRNA before infecting with CMV strain ALL-03. Viral growth inhibition was measured by tissue culture infectious dose (TCID50), cytopathic effect (CPE) and droplet digital PCR (ddPCR) while IE2 and DNA polymerase gene knockdown was determined by real-time PCR. Ganciclovir was deployed as a control to benchmark the efficacy of antiviral activities of respective individual siRNAs.

    RESULTS: There was no significant cytotoxicity encountered for all the combinations of siRNAs on REF cells analyzed by MTT colorimetric assay (P > 0.05). Cytopathic effects (CPE) in cells infected by RCMV ALL-03 had developed significantly less and at much slower rate compared to control group. The expression of targeted genes was downregulated successfully resulted in significant reduction (P 

    Matched MeSH terms: Colorimetry
  16. Baskaran G, Masdor NA, Syed MA, Shukor MY
    ScientificWorldJournal, 2013;2013:678356.
    PMID: 24194687 DOI: 10.1155/2013/678356
    Heavy metals pollution has become a great threat to the world. Since instrumental methods are expensive and need skilled technician, a simple and fast method is needed to determine the presence of heavy metals in the environment. In this study, an inhibitive enzyme assay for heavy metals has been developed using crude proteases from Coriandrum sativum. In this assay, casein was used as a substrate and Coomassie dye was used to denote the completion of casein hydrolysis. In the absence of inhibitors, casein was hydrolysed and the solution became brown, while in the presence of metal ions such as Hg²⁺ and Zn²⁺, the hydrolysis of casein was inhibited and the solution remained blue. Both Hg²⁺ and Zn²⁺ exhibited one-phase binding curve with IC₅₀ values of 3.217 mg/L and 0.727 mg/L, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for Hg were 0.241 and 0.802 mg/L, respectively, while the LOD and LOQ for Zn were 0.228 and 0.761 mg/L, respectively. The enzyme exhibited broad pH ranges for activity. The crude proteases extracted from Coriandrum sativum showed good potential for the development of a rapid, sensitive, and economic inhibitive assay for the biomonitoring of Hg²⁺ and Zn²⁺ in the aquatic environments.
    Matched MeSH terms: Colorimetry/methods*
  17. Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M
    Biomed Res Int, 2014;2014:146723.
    PMID: 25110655 DOI: 10.1155/2014/146723
    A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.
    Matched MeSH terms: Colorimetry
  18. Britton S, Cheng Q, Sutherland CJ, McCarthy JS
    Malar J, 2015;14:335.
    PMID: 26315027 DOI: 10.1186/s12936-015-0848-3
    To detect all malaria infections in elimination settings sensitive, high throughput and field deployable diagnostic tools are required. Loop-mediated isothermal amplification (LAMP) represents a possible field-applicable molecular diagnostic tool. However, current LAMP platforms are limited by their capacity for high throughput.
    Matched MeSH terms: Colorimetry/methods*
  19. Britton S, Cheng Q, Grigg MJ, William T, Anstey NM, McCarthy JS
    Am J Trop Med Hyg, 2016 07 06;95(1):120-2.
    PMID: 27162264 DOI: 10.4269/ajtmh.15-0670
    The simian parasite Plasmodium knowlesi is now the commonest cause of malaria in Malaysia and can rapidly cause severe and fatal malaria. However, microscopic misdiagnosis of Plasmodium species is common, rapid antigen detection tests remain insufficiently sensitive and confirmation of P. knowlesi requires polymerase chain reaction (PCR). Thus available point-of-care diagnostic tests are inadequate. This study reports the development of a simple, sensitive, colorimetric, high-throughput loop-mediated isothermal amplification assay (HtLAMP) diagnostic test using novel primers for the detection of P. knowlesi. This assay is able to detect 0.2 parasites/μL, and compared with PCR has a sensitivity of 96% for the detection of P. knowlesi, making it a potentially field-applicable point-of-care diagnostic tool.
    Matched MeSH terms: Colorimetry
  20. Buttery JE, de Witt GF, Ahmad UO
    Med J Malaya, 1969 Jun;23(4):265-8.
    PMID: 4242173
    Matched MeSH terms: Colorimetry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links