Displaying publications 1 - 20 of 104 in total

Abstract:
Sort:
  1. Ahmad NA, Yook Heng L, Salam F, Mat Zaid MH, Abu Hanifah S
    Sensors (Basel), 2019 Nov 05;19(21).
    PMID: 31694284 DOI: 10.3390/s19214813
    A developed colorimetric pH sensor film based on edible materials for real-time monitoring of food freshness is described. The mixed natural dyes from edible plants Clitoria sp and Brassica sp were extracted and incorporated into ι-carrageenan film as a colorimetric pH sensor film for monitoring food spoilage and its freshness. The color changes of the developed colorimetric sensor film were measured with chromametry and UV-vis spectroscopy, respectively. Experimental results show that colorimetric pH sensor film demonstrated statistically significant differences (p < 0.05) between CIE-L*a*b* coordinates color system indicated that the developed colorimetric sensor film was able to give a gradual change in color over a wide pH range. The color of the colorimetric sensor film also changes discretely and linearly with factors that contribute to food spoilage using shrimp and durian samples. Moreover, the developed colorimetric pH sensor film has the potential to be used as a safe, non-destructive testing and also a flexibly visual method for direct assessment of food freshness indicator during storage.
    Matched MeSH terms: Coloring Agents/chemistry
  2. Sadiq AC, Olasupo A, Ngah WSW, Rahim NY, Suah FBM
    Int J Biol Macromol, 2021 Nov 30;191:1151-1163.
    PMID: 34600954 DOI: 10.1016/j.ijbiomac.2021.09.179
    The presence of dyes in the aquatic environment as a result of anthropogenic activities, especially textile industries, is a critical environmental challenge that hinders the availability of potable water. Different wastewater treatment approaches have been used to remediate dyes in aquatic environments; however, most of these approaches are limited by factors ranging from high cost to the incomplete removal of the dyes and contaminants. Thus, the use of adsorption as a water treatment technology to remove dyes and other contaminants has been widely investigated using different adsorbents. This study evaluated the significance of chitosan as a viable adsorbent for removing dyes from water treatment. We summarised the literature and research results obtained between 2009 and 2020 regarding the adsorption of dyes onto chitosan and modified chitosan-based adsorbents prepared through physical and chemical processing, including crosslinking impregnation, grafting, and membrane preparation. Furthermore, we demonstrated the effects of various chitosan-based materials and modifications; they all improve the properties of chitosan by promoting the adsorption of dyes. Hence, the application of chitosan-based materials with various modifications should be considered a cutting-edge approach for the remediation of dyes and other contaminants in aquatic environments toward the global aim of making potable water globally available.
    Matched MeSH terms: Coloring Agents/chemistry*
  3. Lee SL, Ho LN, Ong SA, Wong YS, Voon CH, Khalik WF, et al.
    Chemosphere, 2017 Jan;166:118-125.
    PMID: 27693872 DOI: 10.1016/j.chemosphere.2016.09.082
    Photocatalytic fuel cell (PFC) is a potential wastewater treatment technology that can generate electricity from the conversion of chemical energy of organic pollutants. An immobilized ZnO/Zn fabricated by sonication and heat attachment method was applied as the photoanode and Pt/C plate was used as the cathode of the PFC in this study. Factors that affect the decolorization efficiency and electricity generation of the PFC such as different initial dye concentrations and pH were investigated. Results revealed that the degradation of Reactive Green 19 (RG19) was enhanced in a closed circuit PFC compared with that of a opened circuit PFC. Almost 100% decolorization could be achieved in 8 h when 250 mL of 30 mg L(-1) of RG19 was treated in a PFC without any supporting electrolyte. The highest short circuit current of 0.0427 mA cm(-2) and maximum power density of 0.0102 mW cm(-2) was obtained by PFC using 30 mg L(-1) of RG19. The correlation between dye degradation, conductivity and voltage output were also investigated and discussed.
    Matched MeSH terms: Coloring Agents/chemistry*
  4. Hameed BH, Krishni RR, Sata SA
    J Hazard Mater, 2009 Feb 15;162(1):305-11.
    PMID: 18573607 DOI: 10.1016/j.jhazmat.2008.05.036
    In this paper, pineapple stem (PS) waste, an agricultural waste available in large quantity in Malaysia, was utilized as low-cost adsorbent to remove basic dye (methylene blue, MB) from aqueous solution by adsorption. Batch mode experiments were conducted at 30 degrees C to study the effects of initial concentration of methylene blue, contact time and pH on dye adsorption. Equilibrium adsorption isotherms and kinetic were investigated. The experimental data were analyzed by the Langmuir and Freundlich models and the isotherm data fitted well to the Langmuir isotherm with monolayer adsorption capacity of 119.05mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first-order and pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model. The PS was found to be very effective adsorbent for MB adsorption.
    Matched MeSH terms: Coloring Agents/chemistry*
  5. Siyal AA, Shamsuddin MR, Khan MI, Rabat NE, Zulfiqar M, Man Z, et al.
    J Environ Manage, 2018 Oct 15;224:327-339.
    PMID: 30056352 DOI: 10.1016/j.jenvman.2018.07.046
    The world water resources are contaminated due to discharge of a large number of pollutants from industrial and domestic sources. A variety of a single and multiple units of physical, chemical, and biological processes are employed for pollutants removal from wastewater. Adsorption is the most widely utilized process due to high efficiency, simple procedure and cost effectiveness. This paper reviews the research work carried out on the use of geopolymer materials for the adsorption of heavy metals and dyes. Geopolymers possess good surface properties, heterogeneous microstructure and amorphous structure. The performance of geopolymers in the removal of heavy metals and dyes is reported comparable to other materials. The pseudo-second order kinetics and Langmuir isotherm models mostly fit to the adsorption data suggesting homogeneous distribution of adsorption sites with the formation of monolayer adsorbate on the surface of geopolymers. Adsorption of heavy metals and dyes onto geopolymers is spontaneous, endothermic and entropy driven process. Future research should focus on the enhancement of geopolymer performance, testing on pollutants other than heavy metals and dyes, and verification on real wastewater in continuous operation.
    Matched MeSH terms: Coloring Agents/chemistry
  6. Habiba U, Islam MS, Siddique TA, Afifi AM, Ang BC
    Carbohydr Polym, 2016 09 20;149:317-31.
    PMID: 27261756 DOI: 10.1016/j.carbpol.2016.04.127
    Chitosan/PVA/Na-titanate/TiO2 composite was synthesized by solution casting method. The composite was analyzed via Fourier Transform Infrared Spectroscopy, X-ray diffraction, Field Emission Scanning Electron Microscopy, Thermal gravimetric analysis and water stability test. Incorporation of Na-titanate shown decrease of crystallinity for chitosan but increase water stability. However, the composite structure was deteriorated with considerable weight loss in acidic medium. Two anionic dyes, methyl orange and congo red were used for the adsorption test. The adsorption behavior of the composites were described by pseudo-second-order kinetic model and Lagergren-first-order model for methyl orange and congo red, respectively. For methyl orange, adsorption was started with a promising decolorization rate. 99.9% of methyl orange dye was removed by the composite having higher weightage of chitosan and crystalline TiO2 phase. On the other hand, for the congo red the composite having higher chitosan and Na-titanate showed an efficient removal capacity of 95.76%. UV-vis results showed that the molecular backbone of methyl orange and congo red was almost destroyed when equilibrium was obtained, and the decolorization rate was reaching 100%. Kinetic study results showed that the photocatalytic degradation of methyl orange and congo red could be explained by Langmuir-Hinshelwood model. Thus, chitosan/PVA/Na-titanate/TiO2 possesses efficient adsorptivity and photocatalytic property for dye degradation.
    Matched MeSH terms: Coloring Agents/chemistry*
  7. Oyekanmi AA, Ahmad A, Hossain K, Rafatullah M
    PLoS One, 2019;14(5):e0216878.
    PMID: 31091269 DOI: 10.1371/journal.pone.0216878
    The adsorption of rhodamine B (RhB) using acid modified banana peels has been examined. Chemical characteristics of the adsorbents were observed in order to determine active functional groups. The major functional groups on the surface were OH, C = O, C = C and C-O-C. Interactions between operational parameters were studied using the central composite design (CCD) of response surface methodology (RSM). The predictions of the model output indicated that operational factors influenced responses at a confidence level of 95% (P<0.05). The optimum conditions for adsorption were pH 2 at a 0.2 g/L dose within 60 minutes of contact time. Isotherm studies were carried out using the optimized process variables. The data revealed that RhB adsorption fitted the Langmuir isotherm equation while the reduction of COD followed the Freundlich isotherm. Kinetic experiments fitted the pseudo second order model for RhB removal and COD reduction. The adsorption mechanism was not the only rate controlling step. Diffusion through the boundary layer described the pattern of adsorption.
    Matched MeSH terms: Coloring Agents/chemistry*
  8. Khasri A, Ahmad MA
    Environ Sci Pollut Res Int, 2018 Nov;25(31):31508-31519.
    PMID: 30203351 DOI: 10.1007/s11356-018-3046-3
    The adsorption behavior of basic, methylene blue (MB), and reactive, remazol brilliant violet 5R (RBV), dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon (IBSAC) was executed via batch and column studies. The produced activated carbon was characterized through Brunauer-Emmett-Teller (BET) surface area and pore structural analysis, proximate and ultimate, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Batch studies were performed to investigate the effects of contact time, initial concentration, and solution pH. The equilibrium data for both MB and RBV adsorption better fits Langmuir model with maximum adsorption capacity of 434.78 and 212.77 mg/g, respectively. Kinetic studies for both MB and RBV dyes showed that the adsorption process followed a pseudo-second-order and intraparticle diffusion kinetic models. For column mode, the breakthrough curves were plotted by varying the flow rate, bed height, and initial concentration and the breakthrough data were best correlated with the Yoon-Nelson model compared to Thomas and Adams-Bohart model. The adsorption activity of IBSAC shows good stability even after four consecutive cycles.
    Matched MeSH terms: Coloring Agents/chemistry
  9. Tan IA, Ahmad AL, Hameed BH
    J Hazard Mater, 2008 Jun 15;154(1-3):337-46.
    PMID: 18035483
    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 degrees C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (DeltaH degrees), standard entropy (DeltaS degrees) and standard free energy (DeltaG degrees) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.
    Matched MeSH terms: Coloring Agents/chemistry*
  10. Hameed BH, Din AT, Ahmad AL
    J Hazard Mater, 2007 Mar 22;141(3):819-25.
    PMID: 16956720
    Bamboo, an abundant and inexpensive natural resource in Malaysia was used to prepare activated carbon by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO(2)) as the activating agents at 850 degrees C for 2h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 30 degrees C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 454.2mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue could be best described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.
    Matched MeSH terms: Coloring Agents/chemistry
  11. Abdullah AH, Abdullah EA, Zainal Z, Hussein MZ, Ban TK
    Water Sci Technol, 2012;65(9):1632-8.
    PMID: 22508126 DOI: 10.2166/wst.2012.057
    The adsorption of methyl orange dye from aqueous solution onto penta-bismuth hepta-oxide nitrate, Bi(5)O(7)NO(3), synthesized by precipitation method, was studied in a batch adsorption system. The effects of operation parameters such as adsorbent dose, initial dye concentration, pH and temperature were investigated. The adsorption equilibrium and mechanism of adsorption was evaluated by Langmuir and Freundlich isotherm and different kinetic models, respectively. The results indicate that adsorption is highly dependent on all operation parameters. At optimum conditions, the adsorption capacity was found to be 18.9 mg/g. The adsorption data fits well with the Langmuir isotherm model indicating monolayer coverage of adsorbate molecules on the surface of Bi(5)O(7)NO(3). The kinetic studies show that the adsorption process is a second-order kinetic reaction. Although intra-particle diffusion limits the rate of adsorption, the multi-linearity plot of intra-particle model shows the importance of both film and intra-particle diffusion as the rate-limiting steps of the dye removal. Thermodynamic parameters show that the adsorption process is endothermic, spontaneous and favourable at high temperature.
    Matched MeSH terms: Coloring Agents/chemistry*
  12. Khan MSJ, Sidek LM, Kamal T, Asiri AM, Khan SB, Basri H, et al.
    Int J Biol Macromol, 2024 Feb;257(Pt 1):128544.
    PMID: 38061525 DOI: 10.1016/j.ijbiomac.2023.128544
    This work reports silver nanoparticles (AgNPs) supported on biopolymer carboxymethyl cellulose beads (Ag-CMC) serves as an efficient catalyst in the reduction process of p-nitrophenol (p-NP) and methyl orange (MO). For Ag-CMC synthesis, first CMC beads were prepared by crosslinking the CMC solution in aluminium nitrate solution and then the CMC beads were introduced into AgNO3 solution to adsorb Ag ions. Field emission scanning electron microscopy (FE-SEM) analysis suggests the uniform distribution of Ag nanoparticles on the CMC beads. The X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis revealed the metallic and fcc planes of AgNPs, respectively, in the Ag-CMC catalyst. The Ag-CMC catalyst exhibits remarkable reduction activity for the p-NP and MO dyes with the highest rate constant (kapp) of a chemical reaction is 0.519 and 0.697 min-1, respectively. Comparative reduction studies of Ag-CMC with CMC, Fe-CMC and Co-CMC disclosed that Ag-CMC containing AgNPs is an important factore in reducing the organic pollutants like p-NP and MO dyes. During the recyclability tests, the Ag-CMC also maintained high reduction activity, which suggests that CMC protects the AgNPs from leaching during dye reduction reactions.
    Matched MeSH terms: Coloring Agents/chemistry
  13. Yau XH, Low FW, Khe CS, Lai CW, Tiong SK, Amin N
    PLoS One, 2020;15(2):e0228322.
    PMID: 32012195 DOI: 10.1371/journal.pone.0228322
    This study investigates the effects of stirring duration on the synthesis of graphene oxide (GO) using an improved Hummers' method. Various samples are examined under different stirring durations (20, 40, 60, 72, and 80 h). The synthesized GO samples are evaluated through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The GO sample with 72 h stirring duration (GO72) has the highest d-spacing in the XRD results, highest atomic percentage of oxygen in EDX (49.57%), highest intensity of oxygen functional group in FTIR spectra, and highest intensity ratio in Raman analysis (ID/IG = 0.756). Results show that GO72 with continuous stirring has the highest degree of oxidation among other samples. Electrochemical impedance spectroscopy analysis shows that GO72-titanium dioxide (TiO2) exhibits smaller charge transfer resistance and higher electron lifetime compared with the TiO2-based photoanode. The GO72 sample incorporating TiO2 nanocomposites achieves 6.25% photoconversion efficiency, indicating an increase of more than twice than that of the mesoporous TiO2 sample. This condition is fully attributed to the efficient absorption rate of nanocomposites and the reduction of the recombination rate of TiO2 by GO in dye-sensitized solar cells.
    Matched MeSH terms: Coloring Agents/chemistry*
  14. Xu FX, Ooi CW, Liu BL, Song CP, Chiu CY, Wang CY, et al.
    Int J Biol Macromol, 2021 Jun 30;181:508-520.
    PMID: 33775766 DOI: 10.1016/j.ijbiomac.2021.03.151
    This study aimed to develop a novel electrospun polyacrylonitrile (PAN) nanofiber membrane with the enhanced antibacterial property. The PAN nanofiber membrane was first subjected to alkaline hydrolysis treatment, and the treated membrane was subsequently grafted with chitosan (CS) to obtain a CS-modified nanofiber membrane (P-COOH-CS). The modified membrane was then coupled with different dye molecules to form P-COOH-CS-Dye membranes. Lastly, poly(hexamethylene biguanide) hydrochloride (PHMB) was immobilized on the modified membrane to produce P-COOH-CS-Dye-PHMB. Physical characterization studies were conducted on all the synthesized nanofiber membranes. The antibacterial efficacies of nanofiber membranes prepared under different synthesis conditions were evaluated systematically. Under the optimum synthesis conditions, P-COOH-CS-Dye-PHMB was highly effective in disinfecting a high concentration of Escherichia coli, with an antibacterial efficacy of approximately 100%. Additionally, the P-COOH-CS-Dye-PHMB exhibited an outstanding wash durability as its antibacterial efficacy was only reduced in the range of 5%-7% even after 5 repeated cycles of treatment. Overall, the experimental results of this study suggested that the P-COOH-CS-Dye-PHMB is a promising antibacterial nanofiber membrane that can be adopted in the food, pharmaceutical, and textile industries.
    Matched MeSH terms: Coloring Agents/chemistry*
  15. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, et al.
    Carbohydr Polym, 2014 Nov 26;113:115-30.
    PMID: 25256466 DOI: 10.1016/j.carbpol.2014.07.007
    Chitosan based adsorbents have received a lot of attention for adsorption of dyes. Various modifications of this polysaccharide have been investigated to improve the adsorption properties as well as mechanical and physical characteristics of chitosan. This review paper discusses major research topics related to chitosan and its derivatives for application in the removal of dyes from water. Modification of chitosan changes the original properties of this material so that it can be more suitable for adsorption of different types of dye. Many chitosan derivatives have been obtained through chemical and physical modifications of raw chitosan that include cross-linking, grafting and impregnation of the chitosan backbone. Better understanding of these varieties and their affinity toward different types of dye can help future research to be properly oriented to address knowledge gaps in this area. This review provides better opportunity for researchers to better explore the potential of chitosan-derived adsorbents for removal of a great variety of dyes.
    Matched MeSH terms: Coloring Agents/chemistry*
  16. Show PL, Ooi CW, Lee XJ, Yang CL, Liu BL, Chang YK
    Int J Biol Macromol, 2020 Nov 01;162:1711-1724.
    PMID: 32805284 DOI: 10.1016/j.ijbiomac.2020.08.065
    Adsorption of lysozyme on the dye-affinity nanofiber membranes was investigated in batch and dynamic modes. The membrane matrix was made of electrospun polyacrylonitrile nanofibers that were grafted with ethylene diamine (EDA) and/or chitosan (CS) for the coupling of Reactive Blue 49 dye. The physicochemical properties of these dye-immobilized nanofiber membranes (P-EDA-Dye and P-CS-Dye) were characterized microscopically, spectroscopically and thermogravimetrically. The capacities of lysozyme adsorption by the dye-affinity nanofiber membranes were evaluated under various conditions, namely pH, dye immobilized density, and loading flow rate. The adsorption of lysozyme to the dye-affinity nanofiber membranes was well fitted by Langmuir isotherm and pseudo-second kinetic models. P-CS-Dye nanofiber membrane had a better performance in the dynamic adsorption of lysozyme from complex chicken egg white solution. It was observed that after five cycles of adsorption-desorption, the dye-affinity nanofiber membrane did not show a significant loss in its capacity for lysozyme adsorption. The robustness as well as high dynamic adsorption capability of P-CS-Dye nanofiber membrane are promising for the efficient recovery of lysozyme from complex feedstock via nanofiber membrane chromatography.
    Matched MeSH terms: Coloring Agents/chemistry
  17. Hameed BH, El-Khaiary MI
    J Hazard Mater, 2008 Jun 15;154(1-3):237-44.
    PMID: 18022316
    Oil palm trunk fibre (OPTF)--an agricultural solid waste--was used as low-cost adsorbent to remove malachite green (MG) from aqueous solutions. The operating variables studied were contact time, initial dye concentration, and solution pH. Equilibrium adsorption data were analyzed by three isotherms, namely the Freundlich isotherm, the Langmuir isotherm, and the multilayer adsorption isotherm. The best fit to the data was obtained with the multilayer adsorption. The monolayer adsorption capacity of OPTF was found to be 149.35 mg/g at 30 degrees C. Adsorption kinetic data were modeled using the Lagergren pseudo-first-order, Ho's pseudo-second-order and Elovich models. It was found that the Lagergren's model could be used for the prediction of the system's kinetics. The overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, then for initial MG concentrations of 25, 50, 100, 150, and 300 mg/L the rate-control changed to intraparticle diffusion at a later stage, but for initial MG concentrations 200 and 250 mg/L no evidence was found of intraparticle diffusion at any period of adsorption. It was found that with increasing the initial concentration of MG, the pore-diffusion coefficient increased while the film-diffusion coefficient decreased.
    Matched MeSH terms: Coloring Agents/chemistry*
  18. Chen SH, Yien Ting AS
    J Environ Manage, 2015 Mar 01;150:274-280.
    PMID: 25527986 DOI: 10.1016/j.jenvman.2014.09.014
    Triphenylmethane dyes (TPM) are recalcitrant colorants brought into the environment. In this study, a lesser-known white rot fungus Coriolopsis sp. (1c3), isolated from compost of Empty Fruit Bunch (EFB) of oil palm, was explored for its decolorization potential of TPM dyes. The isolate 1c3 demonstrated good decolorization efficiencies in the treatment of Crystal Violet (CV; 100 mg l(-1)), Methyl Violet (MV; 100 mg l(-1)) and Cotton Blue (CB; 50 mg(-1)), with 94%, 97% and 91%, within 7, 7 and 1 day(s), respectively. Malachite Green (MG; 100 mg l(-1)) was the most recalcitrant dye, with 52% decolorization after 9 days. Dye removal by 1c3 was presumably via biosorption, whereby the process was determined to be influenced by fungal biomass, initial dye concentrations and oxygen requirements. Biodegradation was also a likely mechanism responsible for dye removal by 1c3, occurred as indicated by the reduction of dye spectra peaks. Detection of laccase, lignin peroxidase and NADH-DCIP reductase activities further substantiate the possible occurrence of biodegradation of TPM dyes by 1c3.
    Matched MeSH terms: Coloring Agents/chemistry
  19. Surendra TV, Mohana Roopan S, Khan MR
    Biotechnol Prog, 2019 07;35(4):e2823.
    PMID: 31017346 DOI: 10.1002/btpr.2823
    The rare earth metal oxide nanoparticles such as gadolinium oxide nanoparticles (Gd2 O3 NPs) have been synthesized by green synthesis process using methanolic extract of Moringa oleifera (M oleifera) peel. In this process, the Gd2 O3 NPs formation was observed at 280-300 nm in UV-Vis spectroscopy. The XRD pattern of the synthesized Gd2 O3 NPs was exactly matched with JCPDS No 3-065-3181which confirms the crystalline nature of Gd2 O3 NPs. In addition, Energy-dispersive X-ray spectroscopy (EDX) analysis was stated that Gd and O elements were present as 70.31 and 29.69%, respectively in Gd2 O3 NPs. The SEM and TEM analysis were said Gd2 O3 NPs are in rod shape and 26 ± 2 nm in size. Further the synthesized Gd2 O3 NPs were confirmed by X-ray photoemission spectroscopy (XPS). The synthesized Gd2 O3 NPs were further examined for anti-fungal activity against Alternaria saloni (A saloni) and Sclerrotium rolfsii (S rolfsii) and it showed moderate activity. Also, Gd2 O3 NPs evaluated as good antibacterial agent against different Gram +ve and Gram -ve bacteria. Moreover, the toxicity of the Gd2 O3 NPs on red blood cells (RBCs) of the human blood was determined using hemolytic assay, the obtained results were stated the synthesized Gd2 O3 NPs are nontoxic to the human erythrocytes. The photocatalytic activity against malachite green (MG) dye was tested and confirmed as 92% of dye was degraded within 2 hr by Gd2 O3 NPs. The results were stated the green synthesized Gd2 O3 NPs are good anti-fungal agents, nontoxic and we can use as a photocatalyst. Copyright © 2019 John Wiley & Sons, Ltd.
    Matched MeSH terms: Coloring Agents/chemistry*
  20. Goudarzi M, Mir N, Mousavi-Kamazani M, Bagheri S, Salavati-Niasari M
    Sci Rep, 2016 09 01;6:32539.
    PMID: 27581681 DOI: 10.1038/srep32539
    In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).
    Matched MeSH terms: Food Coloring Agents/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links