Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Munusamy SM, Helen-Ng LC, Farook MS
    BMC Oral Health, 2024 Feb 01;24(1):162.
    PMID: 38302972 DOI: 10.1186/s12903-024-03905-7
    BACKGROUND: Computer-aided design/computer-aided manufacturing (CAD/CAM) dental composites were introduced with superior mechanical properties than conventional dental composites. However, little is known on effects of dietary solvents on microhardness or inorganic elemental composition of CAD/CAM composites.

    OBJECTIVES: The objectives of this study were to evaluate the degradation effects of each dietary solvent on the microhardness of the different CAD/CAM dental composites and to observe the degradation effects of dietary solvent on the inorganic elements of the dental composites investigated.

    METHODS: Fifty specimens with dimensions 12 mm x 14 mm x 1.5 mm were prepared for direct composite (Filtek Z350 XT [FZ]), indirect composite (Shofu Ceramage [CM]), and three CAD/CAM composites (Lava Ultimate [LU], Cerasmart [CS], and Vita Enamic [VE]). The specimens were randomly divided into 5 groups (n = 10) and conditioned for 1-week at 37°C in the following: air (control), distilled water, 0.02 N citric acid, 0.02 N lactic acid and 50% ethanol-water solution. Subsequently, the specimens were subjected to microhardness test (KHN) using Knoop hardness indenter. Air (control) and representative postconditioning specimens with the lowest mean KHN value for each material were analyzed using energy dispersive X-ray spectroscopy (EDX). Statistical analysis was done using one-way ANOVA and post hoc Bonferroni test at a significance level of p = 0.05.

    RESULTS: Mean KHN values ranged from 39.7 ± 2.7 kg/mm2 for FZ conditioned in 50% ethanol-water solution to 79.2 ± 3.4 kg/mm2 for VE conditioned in air (control). With exception to LU, significant differences were observed between materials and dietary solvents for other dental composites investigated. EDX showed stable peaks of the inorganic elements between air (control) and representative postconditioning specimens.

    CONCLUSIONS: The microhardness of dental composites was significantly affected by dietary solvents, except for one CAD/CAM composite [LU]. However, no changes were observed in the inorganic elemental composition of dental composites between air (control) and 1-week postconditioning.

    Matched MeSH terms: Computer-Aided Design
  2. Farook TH, Ahmed S, Jamayet NB, Rashid F, Barman A, Sidhu P, et al.
    Sci Rep, 2023 Jan 28;13(1):1561.
    PMID: 36709380 DOI: 10.1038/s41598-023-28442-1
    The current multiphase, invitro study developed and validated a 3-dimensional convolutional neural network (3D-CNN) to generate partial dental crowns (PDC) for use in restorative dentistry. The effectiveness of desktop laser and intraoral scanners in generating data for the purpose of 3D-CNN was first evaluated (phase 1). There were no significant differences in surface area [t-stat(df) = - 0.01 (10), mean difference = - 0.058, P > 0.99] and volume [t-stat(df) = 0.357(10)]. However, the intraoral scans were chosen for phase 2 as they produced a greater level of volumetric details (343.83 ± 43.52 mm3) compared to desktop laser scanning (322.70 ± 40.15 mm3). In phase 2, 120 tooth preparations were digitally synthesized from intraoral scans, and two clinicians designed the respective PDCs using computer-aided design (CAD) workflows on a personal computer setup. Statistical comparison by 3-factor ANOVA demonstrated significant differences in surface area (P 
    Matched MeSH terms: Computer-Aided Design*
  3. Farook TH, Rashid F, Jamayet NB, Abdullah JY, Dudley J, Khursheed Alam M
    J Prosthet Dent, 2022 Oct;128(4):830-836.
    PMID: 33642077 DOI: 10.1016/j.prosdent.2020.12.041
    STATEMENT OF PROBLEM: The anatomic complexity of the ear challenges conventional maxillofacial prosthetic rehabilitation. The introduction of specialized scanning hardware integrated into computer-aided design and computer-aided manufacturing (CAD-CAM) workflows has mitigated these challenges. Currently, the scanning hardware required for digital data acquisition is expensive and not readily available for prosthodontists in developing regions.

    PURPOSE: The purpose of this virtual analysis study was to compare the accuracy and precision of 3-dimensional (3D) ear models generated by scanning gypsum casts with a smartphone camera and a desktop laser scanner.

    MATERIAL AND METHODS: Six ear casts were fabricated from green dental gypsum and scanned with a laser scanner. The resultant 3D models were exported as standard tessellation language (STL) files. A stereophotogrammetry system was fabricated by using a motorized turntable and an automated microcontroller photograph capturing interface. A total of 48 images were captured from 2 angles on the arc (20 degrees and 40 degrees from the base of the turntable) with an image overlap of 15 degrees, controlled by a stepper motor. Ear 1 was placed on the turntable and captured 5 times with smartphone 1 and tested for precision. Then, ears 1 to 6 were scanned once with a laser scanner and with smartphones 1 and 2. The images were converted into 3D casts and compared for accuracy against their laser scanned counterparts for surface area, volume, interpoint mismatches, and spatial overlap. Acceptability thresholds were set at <0.5 mm for interpoint mismatches and >0.70 for spatial overlap.

    RESULTS: The test for smartphone precision in comparison with that of the laser scanner showed a difference in surface area of 774.22 ±295.27 mm2 (6.9% less area) and in volume of 4228.60 ±2276.89 mm3 (13.4% more volume). Both acceptability thresholds were also met. The test for accuracy among smartphones 1, 2, and the laser scanner showed no statistically significant differences (P>.05) in all 4 parameters among the groups while also meeting both acceptability thresholds.

    CONCLUSIONS: Smartphone cameras used to capture 48 overlapping gypsum cast ear images in a controlled environment generated 3D models parametrically similar to those produced by standard laser scanners.

    Matched MeSH terms: Computer-Aided Design
  4. Afiqah Hamzah N, Razak NAA, Sayuti Ab Karim M, Gholizadeh H
    Proc Inst Mech Eng H, 2021 Dec;235(12):1359-1374.
    PMID: 34304625 DOI: 10.1177/09544119211035200
    The development of the CAD/CAM (Computer-aided design and computer-aided manufacturing) system has globally changed the fabrication and delivery of prosthetics and orthotics. Furthermore, since the introduction of CAD/CAM in the 1980s, many successful CAD/CAM system are available in the market today. However, less than 20% of amputees have access to digital fabrication technology and large portion of the amputees are from the developing countries. This review designed to examine selected studies from 1980 to 2019 on CAD/CAM systems in the production of transtibial prosthetic sockets. A review was conducted based on articles gathered from Web of Science, Pubmed and Science Direct. From the findings, 92 articles found related to CAD/CAM-derived transtibial prosthetic socket (TPS). After a further screening of the articles, 20 studies were chosen and only one study was done in a developing country. The results showed an increase interest in CAD/CAM application in Transtibial prosthetic socket (TPS) production for both developed and developing countries, yet the technology has not fully utilised in the developing countries. Factors such as resources, accessibility, knowledge-gap and lack of experienced prosthetists remain the major causes of the lack of CAD/CAM system studies. Large-scale trials are required to employ digital fabrication in the developing regions, consequently advancing the production of high-quality CAD-CAM-derived TPS where most prosthetic and orthotics are needed.
    Matched MeSH terms: Computer-Aided Design
  5. Hassan LA, Goo CL
    Dent Mater J, 2021 Sep 30;40(5):1189-1195.
    PMID: 34078778 DOI: 10.4012/dmj.2020-408
    This research aimed to evaluate the effect of cement space on the marginal discrepancy and retention of computer-aided design/computer-aided manufacturing (CAD/CAM) crowns. A total of 30 premolar Frasaco teeth were machined to receive crowns with cement spaces of 70, 90, and 110 μm. The marginal discrepancy measurements were done before and after cementation. Pull-off test was conducted using universal testing machine (UTM). Data was analyzed using two-way mixed ANOVA with post-hoc Bonferroni test and Kruskal-Wallis test. The crowns with cement space of 70 μm showed a significantly higher absolute marginal discrepancy than those with 90 and 110 μm. No significant effect on the crown retention was found. Within the limitations of this study, modifying cement space to 90 μm and 110 μm may improve the marginal adaptation of CAD/CAM crown, whereas adjusting cement space from 70 to 110 μm did not significantly affect the crown retention.
    Matched MeSH terms: Computer-Aided Design
  6. Farook TH, Barman A, Abdullah JY, Jamayet NB
    J Prosthodont, 2021 Jun;30(5):420-429.
    PMID: 33200429 DOI: 10.1111/jopr.13286
    PURPOSE: Mesh optimization reduces the texture quality of 3D models in order to reduce storage file size and computational load on a personal computer. This study aims to explore mesh optimization using open source (free) software in the context of prosthodontic application.

    MATERIALS AND METHODS: An auricular prosthesis, a complete denture, and anterior and posterior crowns were constructed using conventional methods and laser scanned to create computerized 3D meshes. The meshes were optimized independently by four computer-aided design software (Meshmixer, Meshlab, Blender, and SculptGL) to 100%, 90%, 75%, 50%, and 25% levels of original file size. Upon optimization, the following parameters were virtually evaluated and compared; mesh vertices, file size, mesh surface area (SA), mesh volume (V), interpoint discrepancies (geometric similarity based on virtual point overlapping), and spatial similarity (volumetric similarity based on shape overlapping). The influence of software and optimization on surface area and volume of each prosthesis was evaluated independently using multiple linear regression.

    RESULTS: There were clear observable differences in vertices, file size, surface area, and volume. The choice of software significantly influenced the overall virtual parameters of auricular prosthesis [SA: F(4,15) = 12.93, R2 = 0.67, p < 0.001. V: F(4,15) = 9.33, R2 = 0.64, p < 0.001] and complete denture [SA: F(4,15) = 10.81, R2 = 0.67, p < 0.001. V: F(4,15) = 3.50, R2 = 0.34, p = 0.030] across optimization levels. Interpoint discrepancies were however limited to <0.1mm and volumetric similarity was >97%.

    CONCLUSION: Open-source mesh optimization of smaller dental prostheses in this study produced minimal loss of geometric and volumetric details. SculptGL models were most influenced by the amount of optimization performed.

    Matched MeSH terms: Computer-Aided Design
  7. Kul E, Abdulrahim R, Bayındır F, Matori KA, Gül P
    Dent Med Probl, 2021 5 14;58(2):187-191.
    PMID: 33982454 DOI: 10.17219/dmp/126745
    BACKGROUND: If a temporary restoration is in the esthetic area and needs to be worn for a long time, the color stability of temporary materials becomes an important factor.

    OBJECTIVES: The aim of this in vitro study was to evaluate the long-term effects of various staining solutions on the color stability of different temporary materials produced with the computer-aided design and computer-aided manufacturing (CAD/CAM) technology.

    MATERIAL AND METHODS: In the study, the following materials were used: VITA CAD-Temp® (group 1); Ceramill® Temp (group 2); and Telio® CAD (group 3). Forty disk-shaped specimens (10 mm in diameter, 2 mm in thickness) of each material (N = 120) were produced with a CAD/CAM system. Staining solutions - of tea (A), of coffee (B) and cola (C) - and distilled water (D, control) were used, and color was evaluated before and after storing the samples in the solutions. Measurements were taken with a spectrophotometer and the color parameters (L*, a*, b*, and ΔE) were calculated according to the Commission internationale de l'éclairage system (CIELab). The results were evaluated with the two-way analysis of variance (ANOVA) and Tukey's tests (α = 0.05).

    RESULTS: Clinically perceivable (ΔE00 > 0.8) and statistically significant (p < 0.001) color differences were detected in all specimens. The highest ΔE00 value was found in the Ceramill Temp specimens. In addition, the highest ΔE00 values were noted for the specimens stored in cola and the coffee solution for all groups. The lowest ΔE00 value was observed for the groups stored in the tea solution.

    CONCLUSIONS: Clinically perceivable color changes were observed in all the specimens kept in the solutions. Color changes were greater for cola and coffee as compared to tea.

    Matched MeSH terms: Computer-Aided Design*
  8. Farook TH, Jamayet NB, Asif JA, Din AS, Mahyuddin MN, Alam MK
    Sci Rep, 2021 04 19;11(1):8469.
    PMID: 33875672 DOI: 10.1038/s41598-021-87240-9
    Palatal defects are rehabilitated by fabricating maxillofacial prostheses called obturators. The treatment incorporates taking deviously unpredictable impressions to facsimile the palatal defects into plaster casts for obturator fabrication in the dental laboratory. The casts are then digitally stored using expensive hardware to prevent physical damage or data loss and, when required, future obturators are digitally designed, and 3D printed. Our objective was to construct and validate an economic in-house smartphone-integrated stereophotogrammetry (SPINS) 3D scanner and to evaluate its accuracy in designing prosthetics using open source/free (OS/F) digital pipeline. Palatal defect models were scanned using SPINS and its accuracy was compared against the standard laser scanner for virtual area and volumetric parameters. SPINS derived 3D models were then used to design obturators by using (OS/F) software. The resultant obturators were virtually compared against standard medical software designs. There were no significant differences in any of the virtual parameters when evaluating the accuracy of both SPINS, as well as OS/F derived obturators. However, limitations in the design process resulted in minimal dissimilarities. With further improvements, SPINS based prosthetic rehabilitation could create a viable, low cost method for rural and developing health services to embrace maxillofacial record keeping and digitised prosthetic rehabilitation.
    Matched MeSH terms: Computer-Aided Design
  9. Farook TH, Abdullah JY, Jamayet NB, Alam MK
    J Prosthet Dent, 2021 Feb 15.
    PMID: 33602541 DOI: 10.1016/j.prosdent.2020.07.039
    STATEMENT OF PROBLEM: Computer-aided design (CAD) of maxillofacial prostheses is a hardware-intensive process. The greater the mesh detail is, the more processing power is required from the computer. A reduction in mesh quality has been shown to reduce workload on computers, yet no reference value of reduction is present for intraoral prostheses that can be applied during the design.

    PURPOSE: The purpose of this simulation study was to establish a reference percentage value that can be used to effectively reduce the size and polygons of the 3D mesh without drastically affecting the dimensions of the prosthesis itself.

    MATERIAL AND METHODS: Fifteen different maxillary palatal defects were simulated on a dental cast and scanned to create 3D casts. Digital bulbs were fabricated from the casts. Conventional bulbs for the defects were fabricated, scanned, and compared with the digital bulb to serve as a control. The polygon parameters of digital bulbs were then reduced by different percentages (75%, 50%, 25%, 10%, 5%, and 1% of the original mesh) which created a total of 105 meshes across 7 mesh groups. The reduced mesh files were compared individually with the original design in an open-source point cloud comparison software program. The parameters of comparison used in this study were Hausdorff distance (HD), Dice similarity coefficient (DSC), and volume.

    RESULTS: The reduction in file size was directly proportional to the amount of mesh reduction. There were minute yet insignificant differences in volume (P>.05) across all mesh groups, with significant differences (P

    Matched MeSH terms: Computer-Aided Design
  10. Ang Y, Tew IM
    J Conserv Dent, 2021 02 11;23(6):644-647.
    PMID: 34083924 DOI: 10.4103/JCD.JCD_533_20
    Restoring extensively damaged endodontically treated posterior teeth is always a challenge in dentistry. The use of endocrowns has gained popularity in restoring severely damaged endodontically treated teeth (ETT) in recent years. In this clinical report, a structurally compromised mandibular second molar with symptomatic irreversible pulpitis and normal apical tissue was endodontically treated. Surgical crown lengthening was attempted thereafter to increase the crown height. However, marginal periodontal tissue re-growth occurred after surgical crown lengthening. The tooth was subsequently restored with endocrown which was fabricated using computer-aided design and computer-aided manufacturing-based hybrid-ceramic. In conclusion, endocrown can be a viable restorative modality for ETT with compromised clinical crown height.
    Matched MeSH terms: Computer-Aided Design
  11. Ahmed N, Abbasi MS, Haider S, Ahmed N, Habib SR, Altamash S, et al.
    Biomed Res Int, 2021;2021:3194433.
    PMID: 34532499 DOI: 10.1155/2021/3194433
    Objective: Analyzing and comparing the fit and accuracy of removable partial denture (RPDs) frameworks fabricated with CAD/CAM and rapid prototyping methods with conventional techniques.

    Materials and Methods: The present systematic review was carried out according to PRISMA guidelines. The search was carried out on PubMed/MEDLINE, Cochrane collaboration, Science direct, and Scopus scientific engines using selected MeSH keywords. The articles fulfilling the predefined selection criteria based on the fit and accuracy of removable partial denture (RPD) frameworks constructed from digital workflow (CAD/CAM; rapid prototyping) and conventional techniques were included.

    Results: Nine full-text articles comprising 6 in vitro and 3 in vivo studies were included in this review. The digital RPDs were fabricated in all articles by CAD/CAM selective laser sintering and selective laser melting techniques. The articles that have used CAD/CAM and rapid prototyping technique demonstrated better fit and accuracy as compared to the RPDs fabricated through conventional techniques. The least gaps between the framework and cast (41.677 ± 15.546 μm) were found in RPDs constructed through digital CAD/CAM systems.

    Conclusion: A better accuracy was achieved using CAD/CAM and rapid prototyping techniques. The RPD frameworks fabricated by CAD/CAM and rapid prototyping techniques had clinically acceptable fit, superior precision, and better accuracy than conventionally fabricated RPD frameworks.

    Matched MeSH terms: Computer-Aided Design/trends
  12. Cheung JPY, Cheung PWH, Shigematsu H, Takahashi S, Kwan MK, Chan CYW, et al.
    J Orthop Surg (Hong Kong), 2020 6 13;28(2):2309499020930291.
    PMID: 32529908 DOI: 10.1177/2309499020930291
    PURPOSE: To determine consensus among Asia-Pacific surgeons regarding nonoperative management for adolescent idiopathic scoliosis (AIS).

    METHODS: An online REDCap questionnaire was circulated to surgeons in the Asia-Pacific region during the period of July 2019 to September 2019 to inquire about various components of nonoperative treatment for AIS. Aspects under study included access to screening, when MRIs were obtained, quality-of-life assessments used, role of scoliosis-specific exercises, bracing criteria, type of brace used, maturity parameters used, brace wear regimen, follow-up criteria, and how braces were weaned. Comparisons were made between middle-high income and low-income countries, and experience with nonoperative treatment.

    RESULTS: A total of 103 responses were collected. About half (52.4%) of the responders had scoliosis screening programs and were particularly situated in middle-high income countries. Up to 34% obtained MRIs for all cases, while most would obtain MRIs for neurological problems. The brace criteria were highly variable and was usually based on menarche status (74.7%), age (59%), and Risser staging (92.8%). Up to 52.4% of surgeons elected to brace patients with large curves before offering surgery. Only 28% of responders utilized CAD-CAM techniques for brace fabrication and most (76.8%) still utilized negative molds. There were no standardized criteria for brace weaning.

    CONCLUSION: There are highly variable practices related to nonoperative treatment for AIS and may be related to availability of resources in certain countries. Relative consensus was achieved for when MRI should be obtained and an acceptable brace compliance should be more than 16 hours a day.

    Matched MeSH terms: Computer-Aided Design
  13. Farook TH, Jamayet NB, Abdullah JY, Asif JA, Rajion ZA, Alam MK
    Comput Biol Med, 2020 03;118:103646.
    PMID: 32174323 DOI: 10.1016/j.compbiomed.2020.103646
    OBJECTIVE: To design and compare the outcome of commercial (CS) and open source (OS) software-based 3D prosthetic templates for rehabilitation of maxillofacial defects using a low powered personal computer setup.

    METHOD: Medical image data for five types of defects were selected, segmented, converted and decimated to 3D polygon models on a personal computer. The models were transferred to a computer aided design (CAD) software which aided in designing the prosthesis according to the virtual models. Two templates were designed for each defect, one by an OS (free) system and one by CS. The parameters for analyses were the virtual volume, Dice similarity coefficient (DSC) and Hausdorff's distance (HD) and were executed by the OS point cloud comparison tool.

    RESULT: There was no significant difference (p > 0.05) between CS and OS when comparing the volume of the template outputs. While HD was within 0.05-4.33 mm, evaluation of the percentage similarity and spatial overlap following the DSC showed an average similarity of 67.7% between the two groups. The highest similarity was with orbito-facial prostheses (88.5%) and the lowest with facial plate prosthetics (28.7%).

    CONCLUSION: Although CS and OS pipelines are capable of producing templates which are aesthetically and volumetrically similar, there are slight comparative discrepancies in the landmark position and spatial overlap. This is dependent on the software, associated commands and experienced decision-making. CAD-based templates can be planned on current personal computers following appropriate decimation.

    Matched MeSH terms: Computer-Aided Design*
  14. Kim KT, Morton S, Howe S, Chiew YS, Knopp JL, Docherty P, et al.
    Trials, 2020 Feb 01;21(1):130.
    PMID: 32007099 DOI: 10.1186/s13063-019-4035-7
    BACKGROUND: Positive end-expiratory pressure (PEEP) at minimum respiratory elastance during mechanical ventilation (MV) in patients with acute respiratory distress syndrome (ARDS) may improve patient care and outcome. The Clinical utilisation of respiratory elastance (CURE) trial is a two-arm, randomised controlled trial (RCT) investigating the performance of PEEP selected at an objective, model-based minimal respiratory system elastance in patients with ARDS.

    METHODS AND DESIGN: The CURE RCT compares two groups of patients requiring invasive MV with a partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio ≤ 200; one criterion of the Berlin consensus definition of moderate (≤ 200) or severe (≤ 100) ARDS. All patients are ventilated using pressure controlled (bi-level) ventilation with tidal volume = 6-8 ml/kg. Patients randomised to the control group will have PEEP selected per standard practice (SPV). Patients randomised to the intervention will have PEEP selected based on a minimal elastance using a model-based computerised method. The CURE RCT is a single-centre trial in the intensive care unit (ICU) of Christchurch hospital, New Zealand, with a target sample size of 320 patients over a maximum of 3 years. The primary outcome is the area under the curve (AUC) ratio of arterial blood oxygenation to the fraction of inspired oxygen over time. Secondary outcomes include length of time of MV, ventilator-free days (VFD) up to 28 days, ICU and hospital length of stay, AUC of oxygen saturation (SpO2)/FiO2 during MV, number of desaturation events (SpO2 

    Matched MeSH terms: Computer-Aided Design
  15. Ahmad Sofian, Shminan, Rehman, Ullah Khan, Wan Norizan, Wan Hashim, Iswandy, Jamaludin
    MyJurnal
    The world has suffered from a critical shortage of Personal Protective Equipment (PPE) (Riva et al., 2007) during the pandemic of Covid-19 for medical staffs, the front liners. Like the whole world, Malaysia also imposed the stay-at-home and Movement Control Order (MCO) to break the chain of infections and flatten the curve of cases. The supply of PPE became a challenge during the lock down. There have been joined efforts from various parties stepping up, with different ways to help the production process of these key equipment but mostly focus on PPTs for male. Another challenge was face mask for Muslim lady health workers who wear hijab. This paper is about how to overcome these challenges and designed a novel face mask clip for hijab, using 3D printing. The face mask clip is for wearing a mask over hijab and is designed by generating a 3D digital file using computer-aided design (Hourcade, Bullock-Rest, & Hansen, 2012) software. Then the 3D design was converted to Standard Tessellation Language (STL) format, for the use of 3D printing systems. Then the design was split into layers for precise printing. The clips were tested by the staff in faculty of Cognitive Sciences and Human Development, Universiti Malaysia Sarawak. Feedbacks were collected by an online survey using the modified System Usability Scale. The participants reported that the clips are very comfortable and easy to use.
    Matched MeSH terms: Computer-Aided Design
  16. Jalal Abdullah S, Shaikh Mohammed J
    Disabil Rehabil Assist Technol, 2019 11;14(8):849-858.
    PMID: 30556753 DOI: 10.1080/17483107.2018.1539130
    Purpose: Some wheelchair users continue to struggle in maneuvering a wheelchair and navigating through manual doors. Several smart wheelchairs and robotic manipulators were developed to minimize such challenges facing disabled people. Disappointingly, a majority of these high-tech solutions are restricted to laboratories and are not extensively available as commercial products. Previously, a low-tech wheelchair accessory (arc-shaped with many wheels) for pushing doors was modelled and simulated. This work demonstrates the fabrication and testing of the first-generation prototype of the accessory.Materials and methods: The accessory has side portions with a straight arrangement of wheels and a front portion with a straight-arc-straight arrangement of wheels. The accessory was fabricated using conventional manufacturing, off-the-shelf components, and 3D printed ABS fasteners. Stress analysis simulations were done for the fasteners that attach the front accessory to the wheelchair frame. The proof-of-concept of the prototype installed onto a powered wheelchair was tested with a door and an obstacle, each with ∼50 N resistance force.Results: Prototype tests demonstrate the ability of the accessory along with the mechanical robustness of the 3D printed fasteners to push open doors allowing easy navigation through doors and to push/glide against obstacles. The accessory is foldable and detachable.Conclusion: The low-cost of the accessory makes it affordable to many users intending to improve their quality of life. The current study provides an engineering perspective of the accessory, and a clinical perspective is crucial. Other potential applications of the wheelchair accessory include use with scooters, walkers and stretchers.Implications for rehabilitationLow-cost, low-tech accessory is foldable and detachable.Accessory is effective for pushing doors and pushing/gliding against obstacles.Protective nature of the front accessory could prove highly beneficial to some wheelchair users.
    Matched MeSH terms: Computer-Aided Design
  17. Alkhatib SE, Tarlochan F, Mehboob H, Singh R, Kadirgama K, Harun WSBW
    Artif Organs, 2019 Jul;43(7):E152-E164.
    PMID: 30805945 DOI: 10.1111/aor.13444
    The mismatch between stiffness of the femoral dense stem and host bone causes complications to patients, such as aseptic loosening and bone resorption. Three-dimensional finite-element models of homogeneous porous (HGP) and functionally graded porous (FGP) stems incorporating body-centered cubic (BCC) structures are proposed in this article as an alternative to the dense stems. The relationship between the porosity and strut thickness of the BCC structure was developed to construct the finite-element models. Three levels of porosities (20%, 50%, and 80%) were modeled in HGP and FGP stems. The porosity of the stems was decreased distally according to the sigmoid function (n = 0.1, n = 1 and n = 10) with 3 grading exponents. The results showed that FGP stems transferred 120%-170% higher stresses to the femur (Gruen zone 7) as compared to the solid stem. Conversely, the stresses in HGP and FGP stems were 12%-34% lower than the dense stem. The highest micromotions (105-147 µm) were observed for stems of 80% overall porosity, and the lowest (42-46 µm) was for stems of 20% overall porosity. Finally, FGP stems with a grading exponent of n = 10 resulted in an 11%-28% reduction in micromotions.
    Matched MeSH terms: Computer-Aided Design*
  18. Abdul Hamid NF, Wan Bakar WZ, Ariffin Z
    Eur J Dent, 2019 Feb;13(1):17-21.
    PMID: 31170751 DOI: 10.1055/s-0039-1688740
    OBJECTIVE: This study was carried out to assess and compare the marginal gap of conventionally used metal onlays and new resin nanoceramic (RNC) (Lava Ultimate block) onlays.

    MATERIALS AND METHODS: This is an in vitro study using two extracted sound human mandibular molars. One tooth was prepared to receive the metal onlays and another one for the RNC onlays which were fabricated using the computer-aided design and computer-aided manufacturing (CAD/CAM) technology. Twelve metals and 12 ceramic onlays were fabricated before they were placed at their respective preparation and examined under the Leica stereomicroscope, M125C (Leica Microsystems, Wetzlar, Germany) for a marginal analysis. The gap width was measured at 10 predefined landmarks which included 3 points on the buccal and lingual surfaces each and 2 points each on the mesial and distal surfaces, respectively.

    STATISTICAL ANALYSIS: Mann-Whitney post hoc test was used for statistical analysis (P ≤ 0.05).

    RESULTS: Overall, the RNC onlays showed significant lower marginal gap with the exception of the landmarks 5 and 6 (on distolingual) and no significant difference at landmark 7 (on midlingual). It was observed that the marginal gap were all within the clinically acceptable limit of 120 μm.

    CONCLUSIONS: Based on the results obtained, it can be concluded that the RNC CAD/CAM onlays are a promising alternative to the metal onlays.

    Matched MeSH terms: Computer-Aided Design
  19. Nadia Abdul Rani, Faieza Abdul Aziz, Rohidatun M,W.
    MyJurnal
    Interactive learning is a pedagogical model that encourages students to be part of the lesson instead of passive observers, quietly sitting at a desk taking notes or memorizing information. Students interact with the material, each other and the teacher in an active way. The new emerging technologies that can overcome some of the potential difficulties in this area includes computer graphics, augmented reality, computational dynamics, and virtual worlds. Therefore, the manufacturing industry relies on new design concepts and methods undertake the challenges in integrating technologies to expedite the march towards industrial revolution 4.0.This paper reviews and investigates the current context of the use of interactive learning such as Virtual Reality(VR),Augmented Reality(AR),Computer aided design and manufacturing(CADCAM), computer graphics, computational dynamics and new emerging technologies that effect on students and lectures in learning and teaching environments for Manufacturing Engineering. Interactive learning is part of the factors that could influence the self-learning and regulations environments.
    Matched MeSH terms: Computer-Aided Design
  20. Abdullah SJ, Shaikh Mohammed J
    Assist Technol, 2018;30(4):165-175.
    PMID: 28346064 DOI: 10.1080/10400435.2017.1293193
    Independent mobility is vital to individuals of all ages, and wheelchairs have proven to be great personal mobility devices. The tasks of opening and navigating through a door are trivial for healthy people, while the same tasks could be difficult for some wheelchair users. A wide range of intelligent wheelchair controllers and systems, robotic arms, or manipulator attachments integrated with wheelchairs have been developed for various applications, including manipulating door knobs. Unfortunately, the intelligent wheelchairs and robotic attachments are not widely available as commercial products. Therefore, the current manuscript presents the modeling and simulation of a novel but simple technology in the form of a passive wheelchair accessory (straight, arm-like with a single wheel, and arc-shaped with multiple wheels) for pushing doors open from a wheelchair. From the simulations using different wheel shapes and sizes, it was found that the arc-shaped accessory could push open the doors faster and with almost half the required force as compared to the arm-like accessory. Also, smaller spherical wheels were found to be best in terms of reaction forces on the wheels. Prototypes based on the arc-shaped accessory design will be manufactured and evaluated for pushing doors open and dodging or gliding other obstacles.
    Matched MeSH terms: Computer-Aided Design*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links