Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Hollister SJ, Lin CY, Lin CY, Schek RD, Taboas JM, Flanagan CL, et al.
    Med J Malaysia, 2004 May;59 Suppl B:131-2.
    PMID: 15468853
    Matched MeSH terms: Computer-Aided Design*
  2. Al-Mansoori MH, Mahdi MA
    Opt Express, 2008 May 26;16(11):7649-54.
    PMID: 18545472
    We demonstrate an enhanced multiwavelength L-band Brillouin-erbium fiber laser (BEFL), in which the Brillouin pump is pre-amplified before entering the single-mode fiber. The Brillouin pump pre-amplification provided by the Erbium-doped fiber has created higher intensity of Brillouin Stokes line generated in the single-mode fiber that leads to the homogenous gain saturation. Thus the built-up of self-lasing cavity modes is suppressed in a wider wavelength range. In contrary to the conventional linear-cavity BEFL, the number of output channels is enhanced within the same tuning range.
    Matched MeSH terms: Computer-Aided Design*
  3. Lambak Z, Abdul Rahman F, Mokhtar MR, Tengku IA
    Opt Express, 2009 Feb 16;17(4):2926-37.
    PMID: 19219196
    The method of lines (MoL) has been developed to study coupling efficiency on hemispherical lens. In this paper, the physical shape of the lens is approximated by cascading a number of straight waveguide segments. The perfectly matched layer (PML) is applied as an absorber for the MoL to reduce numerical reflection in the simulation region. Analysis is done by calculating coupling efficiency at the plane of integration where the coupling efficiency is an overlap integral between laser diode field and fiber field. The result of coupling efficiency in this analysis is compared to the experiment and ABCD matrix. It is found that MoL gives good result accuracy.
    Matched MeSH terms: Computer-Aided Design*
  4. Mahdi MA, Sheih SJ, Adikan FR
    Opt Express, 2009 Jun 08;17(12):10069-75.
    PMID: 19506658
    We demonstrate a simplified algorithm to manifest the contribution of amplified spontaneous emission in variable gain-flattened Erbium-doped fiber amplifier (EDFA). The detected signal power at the input and output ports of EDFA comprises of both signal and noise. The generated amplified spontaneous emission from EDFA cannot be differentiated by photodetector which leads to underestimation of the targeted gain value. This gain penalty must be taken into consideration in order to obtain the accurate gain level. By taking the average gain penalty within the dynamic gain range, the targeted output power is set higher than the desired level. Thus, the errors are significantly reduced to less than 0.15 dB from 15 dB to 30 dB desired gain values.
    Matched MeSH terms: Computer-Aided Design
  5. Baig MR, Rajan G, Rajan M
    J Oral Implantol, 2009;35(6):295-9.
    PMID: 20017646 DOI: 10.1563/AAID-JOI-D-09-00012R1.1
    This article describes the rehabilitation of a completely edentulous patient using a milled titanium implant framework and cemented crowns. This combined approach significantly offsets unsuitable implant position, alignment, or angulation, while ensuring the easy retrievability, repair, and maintenance of the prosthesis. Hence, the dual advantage of cemented-retained crowns reproducing appropriate esthetics and function, irrespective of where the screw access openings are located in the substructure, can be obtained, along with the splinting effect and management of soft and hard tissue deficits achievable with a screw-retained framework.
    Matched MeSH terms: Computer-Aided Design*
  6. Senthilpari C, Diwakar K, Singh AK
    Recent Pat Nanotechnol, 2009;3(1):61-72.
    PMID: 19149756
    The paper discuss the design of 1-bit full adder circuit using Shannon theorem. This proposed full adder circuit is used as one of the circuit component for implementation of Non- Restoring and Restoring divider circuits. The proposed adder and divider schematics are designed by using DSCH2 CAD tool and their layouts are generated by Microwind 3 VLSI CAD tool. The divider circuits are designed by using standard CMOS 0.35 microm feature size and corresponding power supply 3.5 V. The parameters analyses are carried out by BSIM 4 analysis. We have compared the simulated results of the Shannon based divider circuit with CPL and CMOS adder cell based divider circuits. We have further compared the results with published results and observed that the proposed adder cell based divider circuit dissipates lower power, gives faster response, lower latency, low EPI and high throughput.
    Matched MeSH terms: Computer-Aided Design*
  7. Baig MR, Tan KB, Nicholls JI
    J Prosthet Dent, 2010 Oct;104(4):216-27.
    PMID: 20875526 DOI: 10.1016/S0022-3913(10)60128-X
    The marginal fit of crowns is a concern for clinicians, and there is no conclusive evidence of any one margin configuration yielding better results than others in terms of marginal fit.
    Matched MeSH terms: Computer-Aided Design*
  8. Omar H, Atta O, El-Mowafy O, Khan SA
    J Dent, 2010;38 Suppl 2:e95-9.
    PMID: 20493232 DOI: 10.1016/j.jdent.2010.05.006
    To determine the effect of thickness of porcelain veneers constructed from CAD-CAM on their final color when two resin cements were used.
    Matched MeSH terms: Computer-Aided Design*
  9. Al-Asadi HA, Al-Mansoori MH, Hitam S, Saripan MI, Mahdi MA
    Opt Express, 2011 Jan 31;19(3):1842-53.
    PMID: 21368999 DOI: 10.1364/OE.19.001842
    We implement a particle swarm optimization (PSO) algorithm to characterize stimulated Brillouin scattering phenomena in optical fibers. The explicit and strong dependence of the threshold exponential gain on the numerical aperture, the pump laser wavelength and the optical loss coefficient are presented. The proposed PSO model is also evaluated with the localized, nonfluctuating source model and the distributed (non-localized) fluctuating source model. Using our model, for fiber lengths from 1 km to 29 km, the calculated threshold exponential gain of stimulated Brillouin scattering is gradually decreased from 17.4 to 14.6 respectively. The theoretical results of Brillouin threshold power predicted by the proposed PSO model show a good agreement with the experimental results for different fiber lengths from 1 km to 12 km.
    Matched MeSH terms: Computer-Aided Design
  10. Al-Asadi HA, Abu Bakar MH, Al-Mansoori MH, Adikan FR, Mahdi MA
    Opt Express, 2011 Dec 5;19(25):25741-8.
    PMID: 22273966 DOI: 10.1364/OE.19.025741
    This paper details a theoretical modeling of Brillouin ring fiber laser which incorporates the interaction between multiple Brillouin Stokes signals. The ring cavity was pumped at several Brillouin pump (BP) powers and the output was measured through an optical coupler with various coupling ratios. The first-order Brillouin Stokes signal was saturated with the presence of the second-order Stokes signal in the cavity as a result of energy transfer between them. The outcome of the study found that the optimum point for the first-order Stokes wave performance is at laser power reduction of 10%. Resultantly, at the optimum output coupling ratio of 90%, the BFL was able to produce 19.2 mW output power at BP power and Brillouin threshold power of 60 and 21.3 mW respectively. The findings also exhibited the feasibility of the theoretical models application to ring-type Brillouin fiber laser of various design parameters.
    Matched MeSH terms: Computer-Aided Design*
  11. Ahmad MR, Nakajima M, Kojima M, Kojima S, Homma M, Fukuda T
    IEEE Trans Nanobioscience, 2012 Mar;11(1):70-8.
    PMID: 22275723 DOI: 10.1109/TNB.2011.2179809
    In this paper, single cells adhesion force was measured using a nanofork. The nanofork was used to pick up a single cell on a line array substrate inside an environmental scanning electron microscope (ESEM). The line array substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line array substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line array substrate were used, i.e., 1 μm and 2 μm. Results showed that cells attached on the 1 μm gap line array substrate required more force to be released as compared to the cells attached on the 1 μm gap line array substrate.
    Matched MeSH terms: Computer-Aided Design
  12. Saidin S, Abdul Kadir MR, Sulaiman E, Abu Kasim NH
    J Dent, 2012 Jun;40(6):467-74.
    PMID: 22366313 DOI: 10.1016/j.jdent.2012.02.009
    The aim of this study was to analyse micromotion and stress distribution at the connections of implants and four types of abutments: internal hexagonal, internal octagonal, internal conical and trilobe.
    Matched MeSH terms: Computer-Aided Design
  13. Ishak MI, Abdul Kadir MR, Sulaiman E, Abu Kasim NH
    Int J Oral Maxillofac Surg, 2012 Sep;41(9):1077-89.
    PMID: 22575179 DOI: 10.1016/j.ijom.2012.04.010
    The aim of this study was to compare two different types of surgical approaches, intrasinus and extramaxillary, for the placement of zygomatic implants to treat atrophic maxillae. A computational finite element simulation was used to analyze the strength of implant anchorage for both approaches in various occlusal loading locations. Three-dimensional models of the craniofacial structures surrounding a region of interest, soft tissue and framework were developed using computed tomography image datasets. The implants were modelled using computer-aided design software. The bone was assumed to be linear isotropic with a stiffness of 13.4 GPa, and the implants were assumed to be made of titanium with a stiffness of 110 GPa. Masseter forces of 300 N were applied at the zygomatic arch, and occlusal loads of 150 N were applied vertically onto the framework surface at different locations. The intrasinus approach demonstrated more satisfactory results and could be a viable treatment option. The extramaxillary approach could also be recommended as a reasonable treatment option, provided some improvements are made to address the cantilever effects seen with that approach.
    Matched MeSH terms: Computer-Aided Design*
  14. Chan YJ, Chong MF, Law CL
    Bioresour Technol, 2012 Dec;125:145-57.
    PMID: 23026327 DOI: 10.1016/j.biortech.2012.08.118
    Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system.
    Matched MeSH terms: Computer-Aided Design
  15. Oshkour AA, Abu Osman NA, Yau YH, Tarlochan F, Abas WA
    Proc Inst Mech Eng H, 2013 Jan;227(1):3-17.
    PMID: 23516951
    This study aimed to develop a three-dimensional finite element model of a functionally graded femoral prosthesis. The model consisted of a femoral prosthesis created from functionally graded materials (FGMs), cement, and femur. The hip prosthesis was composed of FGMs made of titanium alloy, chrome-cobalt, and hydroxyapatite at volume fraction gradient exponents of 0, 1, and 5, respectively. The stress was measured on the femoral prosthesis, cement, and femur. Stress on the neck of the femoral prosthesis was not sensitive to the properties of the constituent material. However, stress on the stem and cement decreased proportionally as the volume fraction gradient exponent of the FGM increased. Meanwhile, stress became uniform on the cement mantle layer. In addition, stress on the femur in the proximal part increased and a high surface area of the femoral part was involved in absorbing the stress. As such, the stress-shielding area decreased. The results obtained in this study are significant in the design and longevity of new prosthetic devices because FGMs offer the potential to achieve stress distribution that more closely resembles that of the natural bone in the femur.
    Matched MeSH terms: Computer-Aided Design
  16. Hashim Y, Sidek O
    J Nanosci Nanotechnol, 2013 Jan;13(1):242-9.
    PMID: 23646723
    This study is the first to demonstrate dimensional optimization of nanowire-complementary metal-oxide-semiconductor inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. Results indicate that optimization depends on both dimensions ratio and digital voltage level (Vdd). Diameter optimization reveals that when Vdd increases, the optimized value of (Dp/Dn) decreases. Channel length optimization results show that when Vdd increases, the optimized value of Ln decreases and that of (Lp/Ln) increases. Dimension ratio optimization reveals that when Vdd increases, the optimized value of Kp/Kn decreases, and silicon nanowire transistor with suitable dimensions (higher Dp and Ln with lower Lp and Dn) can be fabricated.
    Matched MeSH terms: Computer-Aided Design
  17. Lim KS, Yang HZ, Chong WY, Cheong YK, Lim CH, Ali NM, et al.
    Opt Express, 2013 Feb 11;21(3):2551-62.
    PMID: 23481713 DOI: 10.1364/OE.21.002551
    When an optical fiber is dipped in an etching solution, the internal stress profile in the fiber varies with the fiber diameter. We observed a physical contraction as much as 0.2% in the fiber axial dimension when the fiber was reduced from its original diameter to ~6 µm through analysis using high resolution microscope images of the grating period of an etched FBG at different fiber diameters. This axial contraction is related to the varying axial stress profile in the fiber when the fiber diameter is reduced. On top of that, the refractive index of fiber core increases with reducing fiber diameter due to stress-optic effect. The calculated index increment is as much as 1.8 × 10(-3) at the center of fiber core after the diameter is reduced down to ~6 µm. In comparison with the conventional model that assumes constant grating period and neglects the variation in stress-induced index change in fiber core, our proposed model indicates a discrepancy as much as 3nm in Bragg wavelength at a fiber diameter of ~6 µm.
    Matched MeSH terms: Computer-Aided Design
  18. Yang HZ, Lim KS, Qiao XG, Chong WY, Cheong YK, Lim WH, et al.
    Opt Express, 2013 Jun 17;21(12):14808-15.
    PMID: 23787668 DOI: 10.1364/OE.21.014808
    We present a new theoretical model for the broadband reflection spectra of etched FBGs which includes the effects of axial contraction and stress-induced index change. The reflection spectra of the etched FBGs with several different taper profiles are simulated based on the proposed model. In our observation, decaying exponential profile produces a broadband reflection spectrum with good uniformity over the range of 1540-1560 nm. An etched FBG with similar taper profile is fabricated and the experimental result shows good agreement with the theoretical model.
    Matched MeSH terms: Computer-Aided Design*
  19. Islam MM, Islam MT, Faruque MR
    ScientificWorldJournal, 2013;2013:378420.
    PMID: 24385878 DOI: 10.1155/2013/378420
    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz-14.86 GHz) on the lower band and 0.94 GHz (20.67-19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results.
    Matched MeSH terms: Computer-Aided Design*
  20. Rosli AN, Bakar MA, Manan NS, Woi PM, Lee VS, Zain SM, et al.
    Sensors (Basel), 2013;13(10):13835-60.
    PMID: 24129020 DOI: 10.3390/s131013835
    Combined computational and experimental strategies for the systematic design of chemical sensor arrays using carbonitrile neutral receptors are presented. Binding energies of acetonitrile, n-pentylcarbonitrile and malononitrile with Ca(II), Mg(II), Be(II) and H⁺ have been investigated with the B3LYP, G3, CBS-QB3, G4 and MQZVP methods, showing a general trend H⁺ > Be(II) > Mg(II) > Ca(II). Hydrogen bonding, donor-acceptor and cation-lone pair electron simple models were employed in evaluating the performance of computational methods. Mg(II) is bound to acetonitrile in water by 12.5 kcal/mol, and in the gas phase the receptor is more strongly bound by 33.3 kcal/mol to Mg(II) compared to Ca(II). Interaction of bound cations with carbonitrile reduces the energies of the MOs involved in the proposed σ-p conjugated network. The planar malononitrile-Be(II) complex possibly involves a π-network with a cationic methylene carbon. Fabricated potentiometric chemical sensors show distinct signal patterns that can be exploited in sensor array applications.
    Matched MeSH terms: Computer-Aided Design
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links