Displaying publications 1 - 20 of 82 in total

Abstract:
Sort:
  1. Purmal K, Alam MK, Pohchi A, Abdul Razak NH
    PLoS One, 2013;8(12):e84202.
    PMID: 24367643 DOI: 10.1371/journal.pone.0084202
    Intermaxillary (IMF) screws feature several advantages over other devices used for intermaxillary fixation, but using cone beam computed tomography (CBCT) scans to determine the safe and danger zones to place these devices for all patients can be expensive. This study aimed to determine the optimal interradicular and buccopalatal/buccolingual spaces for IMF screw placement in the maxilla and mandible. The CBCT volumetric data of 193 patients was used to generate transaxial slices between the second molar on the right to the second molar on the left in both arches. The mean interradicular and buccopalatal/buccolingual distances and standard deviation values were obtained at heights of 2, 5, 8 and 11 mm from the alveolar bone crest. An IMF screw with a diameter of 1.0 mm and length of 7 mm can be placed distal to the canines (2 - 11 mm from the alveolar crest) and less than 8 mm between the molars in the maxilla. In the mandible, the safest position is distal to the first premolar (more than 5 mm) and distal to the second premolar (more than 2 mm). There was a significant difference (p<0.05) between the right and left quadrants. The colour coding 3D template showed the safe and danger zones based on the mesiodistal, buccopalatal and buccolingual distances in the maxilla and mandible.The safest sites for IMF screw insertion in the maxilla were between the canines and first premolars and between the first and second molars. In the mandible, the safest sites were between the first and second premolars and between the second premolar and first molar. However, the IMF screw should not exceed 1.0 mm in diameter and 7 mm in length.
    Matched MeSH terms: Cone-Beam Computed Tomography*
  2. Al-Siweedi SYA, Ngeow WC, Nambiar P, Abu-Hassan MI, Ahmad R, Asif MK, et al.
    Folia Morphol (Warsz), 2023;82(2):315-324.
    PMID: 35285511 DOI: 10.5603/FM.a2022.0024
    BACKGROUND: The purpose of this study was to identify and classify the anatomic variation of mandibular canal among Malaysians of three ethnicities.

    MATERIALS AND METHODS: The courses of the mandibular canal in 202 cone-beam computed tomography scanned images of healthy Malaysians were evaluated, and trifid mandibular canal (TMC) when present, were recorded and studied in detail by categorizing them to a new classification (comprising of 12 types). The diameter and length of canals were also measured, and their shape determined.

    RESULTS: Trifid mandibular canals were observed in 12 (5.9%) subjects or 16 (4.0%) hemi-mandibles. There were 10 obvious categories out the 12 types of TMCs listed. All TMCs (except one) were observed in patients older than 30 years. The prevalence according to ethnicity was 6 in Malays, 5 in Chinese and 1 in Indian. Four (33.3%) patients had bilateral TMCs, which was not seen in the Indian subject. More than half (56.3%) of the accessory canals were located above the main mandibular canal. Their mean diameter was 1.32 mm and 1.26 mm for the first and second accessory canal, and the corresponding lengths were 20.42 mm and 21.60 mm, respectively. Most (62.5%) canals had irregularly shaped lumen; there were more irregularly shaped canals in the second accessory canal than the first branch. None of the second accessory canal was oval (in shape).

    CONCLUSIONS: This new classification can be applied for the variations in the branching pattern, length and shape of TMCs for better clinical description.

    Matched MeSH terms: Cone-Beam Computed Tomography/methods
  3. Ahmed HMA, Versiani MA, De-Deus G, Dummer PMH
    Int Endod J, 2017 Aug;50(8):761-770.
    PMID: 27578418 DOI: 10.1111/iej.12685
    Knowledge of root and root canal morphology is a prerequisite for effective nonsurgical and surgical endodontic treatments. The external and internal morphological features of roots are variable and complex, and several classifications have been proposed to define the various types of canal configurations that occur commonly. More recently, improvements in nondestructive digital image systems, such as cone-beam and micro-computed tomography, as well as the use of magnification in clinical practice, have increased the number of reports on complex root canal anatomy. Importantly, using these newer techniques, it has become apparent that it is not possible to classify many root canal configurations using the existing systems. The purpose of this article is to introduce a new classification system that can be adapted to categorize root and root canal configurations in an accurate, simple and reliable manner that can be used in research, clinical practice and training.
    Matched MeSH terms: Cone-Beam Computed Tomography
  4. Koh KK, Tan JS, Nambiar P, Ibrahim N, Mutalik S, Khan Asif M
    J Forensic Leg Med, 2017 May;48:15-21.
    PMID: 28407514 DOI: 10.1016/j.jflm.2017.03.004
    Forensic odontology plays a vital role in the identification and age estimation of unknown deceased individuals. The purpose of this study is to estimate the chronological age from Cone-Beam Computed Tomography (CBCT) images by measuring the buccal alveolar bone level (ABL) to the cemento-enamel junction and to investigate the possibility of employing the age-related structural changes of teeth as studied by Gustafson. In addition, this study will determine the forensic reliability of employing CBCT images as a technique for dental age estimation. A total of 284 CBCT images of Malays and Chinese patients (150 females and 134 males), aged from 20 years and above were selected, measured and stages of age-related changes were recorded using the i-CAT Vision software. Lower first premolars of both left and right side of the jaw were chosen and the characteristics described by Gustafson, namely attrition, secondary dentine formation and periodontal recession were evaluated. Linear regression analysis was performed for the buccal bone level and the R values obtained were 0.85 and 0.82 for left and right side respectively. Gustafson's characteristics were analysed using multiple regression analysis with chronological age as the dependent variable. The results of the analysis showed R values ranged from 0.44 to 0.62. Therefore it can be safely concluded that the buccal bone level highly correlated with the chronological age and is consequently the most suitable age-related characteristic for forensic age estimation.
    Matched MeSH terms: Cone-Beam Computed Tomography
  5. Martin CJ, Kron T, Vassileva J, Wood TJ, Joyce C, Ung NM, et al.
    Phys Med, 2021 Oct;90:53-65.
    PMID: 34562809 DOI: 10.1016/j.ejmp.2021.09.004
    Improvements in delivery of radiation dose to target tissues in radiotherapy have increased the need for better image quality and led to a higher frequency of imaging patients. Imaging for treatment planning extends to function and motion assessment and devices are incorporated into medical linear accelerators (linacs) so that regions of tissue can be imaged at time of treatment delivery to ensure dose distributions are delivered as accurately as possible. A survey of imaging in 97 radiotherapy centres in nine countries on six continents has been undertaken with an on-line questionnaire administered through the International Commission on Radiological Protection mentorship programme to provide a snapshot of imaging practices. Responses show that all centres use CT for planning treatments and many utilise additional information from magnetic resonance imaging and positron emission tomography scans. Most centres have kV cone beam CT attached to at least some linacs and use this for the majority of treatment fractions. The imaging options available declined with the human development index (HDI) of the country, and the frequency of imaging during treatment depended more on country than treatment site with countries having lower HDIs imaging less frequently. The country with the lowest HDI had few kV imaging facilities and relied on MV planar imaging intermittently during treatment. Imaging protocols supplied by vendors are used in most centres and under half adapt exposure conditions to individual patients. Recording of patient doses, a knowledge of which is important in optimisation of imaging protocols, was limited primarily to European countries.
    Matched MeSH terms: Cone-Beam Computed Tomography
  6. Ananda GK, Nambiar P, Mutalik S, Shanmuhasuntharam P
    Surg Radiol Anat, 2015 Nov;37(9):1099-108.
    PMID: 25850735 DOI: 10.1007/s00276-015-1473-0
    With the advent of cone-beam computed tomography (CBCT) for maxillofacial imaging, there has been a paradigm shift from two dimensional panoramic radiography to three dimensional imaging. This study investigated the microanatomy of the maxillary permanent first molar socket and its relationship to the floor of the maxillary sinus, especially for immediate or early implant placement.
    Matched MeSH terms: Cone-Beam Computed Tomography
  7. Ahmed HMA, Ibrahim N, Mohamad NS, Nambiar P, Muhammad RF, Yusoff M, et al.
    Int Endod J, 2021 Jul;54(7):1056-1082.
    PMID: 33527452 DOI: 10.1111/iej.13486
    Adequate knowledge and accurate characterization of root and canal anatomy is an essential prerequisite for successful root canal treatment and endodontic surgery. Over the years, an ever-increasing body of knowledge related to root and canal anatomy of the human dentition has accumulated. To correct deficiencies in existing systems, a new coding system for classifying root and canal morphology, accessory canals and anomalies has been introduced. In recent years, micro-computed tomography (micro-CT) and cone beam computed tomography (CBCT) have been used extensively to study the details of root and canal anatomy in extracted teeth and within clinical settings. This review aims to discuss the application of the new coding system in studies using micro-CT and CBCT, provide a detailed guide for appropriate characterization of root and canal anatomy and to discuss several controversial issues that may appear as potential limitations for proper characterization of roots and canals.
    Matched MeSH terms: Cone-Beam Computed Tomography; Spiral Cone-Beam Computed Tomography
  8. Reduwan NH, Abdul Aziz AA, Mohd Razi R, Abdullah ERMF, Mazloom Nezhad SM, Gohain M, et al.
    BMC Oral Health, 2024 Feb 19;24(1):252.
    PMID: 38373931 DOI: 10.1186/s12903-024-03910-w
    BACKGROUND: Artificial intelligence has been proven to improve the identification of various maxillofacial lesions. The aim of the current study is two-fold: to assess the performance of four deep learning models (DLM) in external root resorption (ERR) identification and to assess the effect of combining feature selection technique (FST) with DLM on their ability in ERR identification.

    METHODS: External root resorption was simulated on 88 extracted premolar teeth using tungsten bur in different depths (0.5 mm, 1 mm, and 2 mm). All teeth were scanned using a Cone beam CT (Carestream Dental, Atlanta, GA). Afterward, a training (70%), validation (10%), and test (20%) dataset were established. The performance of four DLMs including Random Forest (RF) + Visual Geometry Group 16 (VGG), RF + EfficienNetB4 (EFNET), Support Vector Machine (SVM) + VGG, and SVM + EFNET) and four hybrid models (DLM + FST: (i) FS + RF + VGG, (ii) FS + RF + EFNET, (iii) FS + SVM + VGG and (iv) FS + SVM + EFNET) was compared. Five performance parameters were assessed: classification accuracy, F1-score, precision, specificity, and error rate. FST algorithms (Boruta and Recursive Feature Selection) were combined with the DLMs to assess their performance.

    RESULTS: RF + VGG exhibited the highest performance in identifying ERR, followed by the other tested models. Similarly, FST combined with RF + VGG outperformed other models with classification accuracy, F1-score, precision, and specificity of 81.9%, weighted accuracy of 83%, and area under the curve (AUC) of 96%. Kruskal Wallis test revealed a significant difference (p = 0.008) in the prediction accuracy among the eight DLMs.

    CONCLUSION: In general, all DLMs have similar performance on ERR identification. However, the performance can be improved by combining FST with DLMs.

    Matched MeSH terms: Cone-Beam Computed Tomography; Spiral Cone-Beam Computed Tomography*
  9. Marroquin Penaloza TY, Karkhanis S, Kvaal SI, Nurul F, Kanagasingam S, Franklin D, et al.
    J Forensic Leg Med, 2016 Nov;44:178-182.
    PMID: 27821308 DOI: 10.1016/j.jflm.2016.10.013
    Different non-invasive methods have been proposed for dental age estimation in adults, with the Kvaal et al. method as one of the more frequently tested in different populations. The purpose of this study was to apply the Kvaal et al. method for dental age estimation on modern volumetric data from 3D digital systems. To this end, 101 CBCT images from a Malaysian population were used. Fifty-five per cent were female (n = 55), and forty-five percent were male (n = 46), with a median age of 31 years for both sexes. As tomographs allow the observer to obtain a sagittal and coronal view of the teeth, the Kvaal pulp/root width measurements and ratios were calculated in the bucco-lingual and mesio-distal aspects of the tooth. From these data different linear regression models and formulae were built. The most accurate models for estimating age were obtained from a diverse combination of measurements (SEE ±10.58 years), and for the mesio-distal measurements of the central incisor at level A (SEE ±12.84 years). This accuracy, however is outside an acceptable range in for forensic application (SEE ±10.00 years), and is also more time consuming than the original approach based on dental radiographs.
    Matched MeSH terms: Cone-Beam Computed Tomography*
  10. Anderson PJ, Yong R, Surman TL, Rajion ZA, Ranjitkar S
    Aust Dent J, 2014 Jun;59 Suppl 1:174-85.
    PMID: 24611727 DOI: 10.1111/adj.12154
    Following the invention of the first computed tomography (CT) scanner in the early 1970s, many innovations in three-dimensional (3D) diagnostic imaging technology have occurred, leading to a wide range of applications in craniofacial clinical practice and research. Three-dimensional image analysis provides superior and more detailed information compared with conventional plain two-dimensional (2D) radiography, with the added benefit of 3D printing for preoperative treatment planning and regenerative therapy. Current state-of-the-art multidetector CT (MDCT), also known as medical CT, has an important role in the diagnosis and management of craniofacial injuries and pathology. Three-dimensional cone beam CT (CBCT), pioneered in the 1990s, is gaining increasing popularity in dental and craniofacial clinical practice because of its faster image acquisition at a lower radiation dose, but sound guidelines are needed to ensure its optimal clinical use. Recent innovations in micro-computed tomography (micro-CT) have revolutionized craniofacial biology research by enabling higher resolution scanning of teeth beyond the capabilities of MDCT and CBCT, presenting new prospects for translational clinical research. Even after four decades of refinement, CT technology continues to advance and broaden the horizons of craniofacial clinical practice and phenomics research.
    Matched MeSH terms: Cone-Beam Computed Tomography
  11. Karobari MI, Ahmed HMA, Khamis MFB, Ibrahim N, Noorani TY
    J Dent Educ, 2023 Aug;87(8):1089-1098.
    PMID: 37164913 DOI: 10.1002/jdd.13236
    PURPOSE: To assess the application and accuracy of two systems (Vertucci et al. 1974 and Ahmed et al. 2017) in classifying the root and canal morphology of human dentition among final-year undergraduates, interns, and postgraduate dental students in India.

    METHODS: The survey was conducted using physical and online presentation modes in two phases. Phase 1; PowerPoint presentation (PPT), describing the most used classification system (Vertucci et al. 1974) and its supplementary types and Ahmed et al. (2017) classification. A single presenter delivered the PPT to participants, using either a projector in an auditorium/seminar hall (face-to-face) or an online platform (zoom meeting software). Phase 2 involved determining the students' responses. A questionnaire was distributed amongst the participants after the lecture and collected for analysis. Fisher's exact test was used to analyze the data statistically, and the significance level was set at 0.05 (p 

    Matched MeSH terms: Cone-Beam Computed Tomography
  12. Wan Hassan WN, Othman SA, Chan CS, Ahmad R, Ali SN, Abd Rohim A
    Am J Orthod Dentofacial Orthop, 2016 Nov;150(5):886-895.
    PMID: 27871715 DOI: 10.1016/j.ajodo.2016.04.021
    INTRODUCTION: In this study we aimed to compare measurements on plaster models using a digital caliper, and on 3-dimensional (3D) digital models, produced using a structured-light scanner, using 3D software.

    METHODS: Fifty digital models were scanned from the same plaster models. Arch and tooth size measurements were made by 2 operators, twice. Calibration was done on 10 sets of models and checked using the Pearson correlation coefficient. Data were analyzed by error variances, repeatability coefficient, repeated-measures analysis of variance, and Bland-Altman plots.

    RESULTS: Error variances ranged between 0.001 and 0.044 mm for the digital caliper method, and between 0.002 and 0.054 mm for the 3D software method. Repeated-measures analysis of variance showed small but statistically significant differences (P <0.05) between the repeated measurements in the arch and buccolingual planes (0.011 and 0.008 mm, respectively). There were no statistically significant differences between methods and between operators. Bland-Altman plots showed that the mean biases were close to zero, and the 95% limits of agreement were within ±0.50 mm. Repeatability coefficients for all measurements were similar.

    CONCLUSIONS: Measurements made on models scanned by the 3D structured-light scanner were in good agreement with those made on conventional plaster models and were, therefore, clinically acceptable.

    Matched MeSH terms: Cone-Beam Computed Tomography
  13. Gupta K, Singh S, Singh S
    J Contemp Dent Pract, 2019 Aug 01;20(8):907-914.
    PMID: 31797846
    AIM: Assessing the accuracy of surgical guides generated with the help of a simple chair side ridge mapping technique by comparing the planned implant position with the achieved implant position on post-op computerized tomography scans.

    MATERIALS AND METHODS: In this study, 20 implant sites in patients were selected. Ridge mapping was done through a vacuum press template at three buccal (B1, B2, B3), three lingual (L1, L2, L3), and one crestal (C) points for each implant site. Readings were transferred onto the cast, and surgical guides were fabricated for implant placement. Postoperative cone beam computerized tomography (CBCT) was done to assess planned and achieved implant position. Comparison was done between soft tissue depths and implant distance from the crest of alveolar bone determined by the ridge mapping technique with measurements done on CBCT. The points used for ridge mapping were used as the reference for measurements. The data were analyzed using paired t test. p < 0.05 was considered to be statistically significant.

    RESULTS: On comparing the mean values of soft tissue depths from the ridge mapping and CBCT data, insignificant differences were found at B1, B2, L1, L2, L3, and C, but significant differences were found at B3. On comparing the implant distances from alveolar bone from both the data, insignificant differences were found at B, B2, B3, L1, L2, and L3 and significant difference was found at the crest in the mean values.

    CONCLUSION: Under the limitations of the above study, it can be concluded that a simple chairside procedure like ridge mapping can be used as an effective way for guided implant placement in sufficient available alveolar bone.

    Matched MeSH terms: Cone-Beam Computed Tomography*
  14. Srivastava KC, Shrivastava D, Nagarajappa AK, Khan ZA, Alzoubi IA, Mousa MA, et al.
    PMID: 33322604 DOI: 10.3390/ijerph17249293
    The detection of pulp stone in a patient suffering from undiagnosed systemic diseases can be an early diagnostic indicator. Thus, the aim of the study was to assess the prevalence of pulp stones in the Saudi Arabian population with cardiovascular diseases and diabetes mellitus. In a retrospective study, we included cone-beam computed tomography (CBCT) scans of 73 patients with cardiovascular disease and 76 patients with diabetes mellitus as group I and II, respectively. Group III comprised of CBCT scan of 80 healthy controls. From a total of 229 scans, 4807 teeth were screened for pulp stones throughout the arches. A chi-square test was used for comparing the prevalence of pulp stones among the groups. Univariable and multivariable analysis was done to evaluate the independent risk indicators for pulp stones. The tooth-wise prevalence of pulp stones in group I, II, and III was found to be 16.65%, 9.01%, and 3.86%, respectively. Patient-wise (p < 0.01) and tooth-wise (p < 0.01) prevalence was recorded significantly highest in the cardiovascular group followed by the diabetic group. The control group had the least prevalence. Significantly (p < 0.01) higher number of pulp stones were found in cardiovascular patients with age > 50 years compared to other groups. Similarly, a significantly increased number of pulp stones were seen in the 1st molar (p < 0.05) and the maxillary jaw (p < 0.05) of patients with cardiovascular diseases. Subjects with cardiovascular disease and diabetes were found to have 2.94 times (p < 0.001; CI 1.54-3.10) and 1.81 times (p < 0.01; CI 0.48-2.06) higher risk of having pulp stones in comparison to healthy subjects. The first molar has 2.20 times (p < 0.001; CI 0.84-2.45) increased the risk of having pulp stones compared to other tooth types. Systemic disease such as cardiovascular disease and diabetes mellitus poses a higher risk for the development of pulp stones. Among the systemic disease group, patients in the cardiovascular group showed a higher risk for pulp stones and also reported the maximum number of pulp stones compared to the diabetic and healthy subjects.
    Matched MeSH terms: Spiral Cone-Beam Computed Tomography*
  15. Al-koshab M, Nambiar P, John J
    PLoS One, 2015;10(3):e0121682.
    PMID: 25803868 DOI: 10.1371/journal.pone.0121682
    INTRODUCTION: Proper imaging allows practitioners to evaluate an asymptomatic tempormandibular joint (TMJ) for potential degenerative changes prior to surgical and orthodontic treatment. The recently developed cone-beam computed tomography (CBCT) allows measurement of TMJ bony structures with high accuracy. A study was undertaken to determine the morphology, and its variations, of the mandibular condyle and glenoid fossa among Malay and Chinese Malaysians.

    METHODS: CBCT was used to assess 200 joints in 100 subjects (mean age, 30.5 years). i-CAT CBCT software and The Mimics 16.0 software were employed to measure the volume, metrical size, position of each condyle sample and the thickness of the roof of the glenoid fossa (RGF).

    RESULTS: No significant gender differences were noted in thickness of the RGF and condylar length; however condylar volume, width, height and the joint spaces were significantly greater among males. With regards to comparison of both TMJs, the means of condylar volume, width and length of the right TMJ were significantly higher, while the means of the left condylar height and thickness of RGF were higher. When comparing the condylar measurements and the thickness of RGF between the two ethnic groups, we found no significant difference for all measurements with exception of condylar height, which is higher among Chinese.

    CONCLUSION: The similarity in measurements for Malays and Chinese may be due to their common origin. This information can be clinically useful in establishing the diagnostic criteria for condylar volume, metrical size, and position in the Malaysian East Asians population.

    Matched MeSH terms: Cone-Beam Computed Tomography/methods*
  16. Al-Jaf, Nagham, Rohaya Megat Abdul Wahab, Mohamed Ibrahim Abu Hassan
    Compendium of Oral Science, 2015;2(1):14-20.
    MyJurnal
    Objectives: To assess interradicular spaces of maxilla and mandible in subjects with class I sagittal skeletal relationship as an aid for miniscrew placement. Materials and Methods: The study was carried out using cone-beam computed tomography (CBCT) images of 47 adult subjects with class I skeletal relationship. Interradicular spaces were obtained at the alveolar processes from first premolar to second molar at 2 different vertical levels (6 and 8mm) from the cementoenamel junction (C.E.J). Results: In the maxilla, the highest inter-radicular space existed between second premolar and first molar. In the mandible, the highest interradicular space existed between first and second molar. All mandibular measurements were higher than their respective maxillary measurement. Generally, availability of interradicular space increases apically in both arches, but the difference is not significant. In the maxilla, male subjects’ measurement were significantly higher at 8 mm level between second premolar and first molar and between first and second molar Conclusions: Interradicular spac-es in the maxillary and mandibular alveolar spaces are available for miniscrew placement. In both arches, a more apical location provides more interradicular space. However, careful planning is needed to avoid sinus perforation.
    Matched MeSH terms: Cone-Beam Computed Tomography; Spiral Cone-Beam Computed Tomography
  17. Haszelini Hassan, Hikmah Mohd Nor, Nur Athiah Shaberi, Nur Aqila Syaqina Zuber, Nur Hasnaa Hishamudin
    MyJurnal
    Adequate space is required in the interforaminal region for anterior mandibular
    surgery, where the anterior loop is located within this region. The aim of this study is to evaluate
    the prevalence of the anterior loop (AL) of the inferior alveolar nerve, and to measure its length
    and position in patients attending Kulliyyah of Dentistry using cone beam computed tomography
    (CBCT). (Copied from article).
    Matched MeSH terms: Cone-Beam Computed Tomography
  18. Hatipoğlu FP, Mağat G, Hatipoğlu Ö, Al-Khatib H, Elatrash AS, Abidin IZ, et al.
    J Endod, 2023 Oct;49(10):1308-1318.
    PMID: 37393948 DOI: 10.1016/j.joen.2023.06.011
    AIM: The aim of this study was two-folded: i) to assess the prevalence of Distolingual Canal (DLC) and Radix Entomolaris (RE) in Mandibular First Molars (M1Ms), using Cone Beam Computed Tomography (CBCT) images and ii) to assess the impact of sociodemographic factors on the prevalence of these conditions worldwide.

    METHODS: CBCT images were scanned retrospectively and the ones including bilateral M1Ms were included in the study. The evaluation was performed by 1 researcher in each country, trained with CBCT technology. A written and video instruction program explaining the protocol to be followed step-by-step was provided to all observers to calibrate them. The CBCT imaging screening procedure consisted of evaluating axial sections from coronal to apical. The presence of DLC and RE in M1Ms (yes/no) was identified and recorded.

    RESULTS: Six thousand three hundred four CBCTs, representing 12,608 M1Ms, were evaluated. A significant difference was found between countries regarding the prevalence of both RE and DLC (P  .05).

    CONCLUSION: The overall prevalence of RE and DLC in M1Ms was 3% and 22%. Additionally, both RE and DLC showed substantial bilaterally. These variations should be considered by endodontic clinicians during endodontic procedures in order to avoid potential complications.

    Matched MeSH terms: Cone-Beam Computed Tomography/methods
  19. Harun HH, Abdul Karim MK, Abbas Z, Abdul Rahman MA, Sabarudin A, Ng KH
    Diagnostics (Basel), 2020 Sep 09;10(9).
    PMID: 32917029 DOI: 10.3390/diagnostics10090681
    In this study, we aimed to estimate the probability of cancer risk induced by CT pulmonary angiography (CTPA) examinations concerning effective body diameter. One hundred patients who underwent CTPA examinations were recruited as subjects from a single institution in Kuala Lumpur. Subjects were categorized based on their effective diameter size, where 19-25, 25-28, and >28 cm categorized as Groups 1, 2, and 3, respectively. The mean value of the body diameter of the subjects was 26.82 ± 3.12 cm, with no significant differences found between male and female subjects. The risk of cancer in breast, lung, and liver organs was 0.009%, 0.007%, and 0.005% respectively. The volume-weighted CT dose index (CTDIvol) was underestimated, whereas the size-specific dose estimates (SSDEs) provided a more accurate description of the radiation dose and the risk of cancer. CTPA examinations are considered safe but it is essential to implement a protocol optimized following the As Low as Reasonably Achievable (ALARA) principle.
    Matched MeSH terms: Cone-Beam Computed Tomography
  20. Rabba JA, Suhaimi FM, Mat Jafri MZ, Jaafar HA, Osman ND
    Radiography (Lond), 2023 May;29(3):533-538.
    PMID: 36913788 DOI: 10.1016/j.radi.2023.02.028
    INTRODUCTION: The daily image quality assessment involves large datasets that consume a lot of time and effort. This study aims to evaluate a proposed automated calculator for image distortion analysis in 2-dimensional (2D) panoramic imaging mode for a dental cone beam computed tomography (CBCT) system in comparison with present manual calculations.

    METHODS: A ball phantom was scanned using panoramic mode of the Planmeca ProMax 3D Mid CBCT unit (Planmeca, Helsinki, Finland) with standard exposure settings used in clinical practice (60 kV, 2 mA, and maximum FOV). An automated calculator algorithm was developed in MATLAB platform. Two parameters associated with panoramic image distortion such as balls diameter and distance between middle and tenth balls were measured. These automated measurements were compared with manual measurement using the Planmeca Romexis and ImageJ software.

    RESULTS: The findings showed smaller deviation in distance difference measurements by proposed automated calculator (ranged 3.83 mm) as compared to manual measurements (ranged 5.00 for Romexis and 5.12 mm for ImageJ software). There was a significant difference (p 

    Matched MeSH terms: Cone-Beam Computed Tomography/methods; Spiral Cone-Beam Computed Tomography*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links