Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Mohsin AH, Zaidan AA, Zaidan BB, Albahri OS, Albahri AS, Alsalem MA, et al.
    J Med Syst, 2019 May 22;43(7):192.
    PMID: 31115768 DOI: 10.1007/s10916-019-1264-y
    In medical systems for patient's authentication, keeping biometric data secure is a general problem. Many studies have presented various ways of protecting biometric data especially finger vein biometric data. Thus, It is needs to find better ways of securing this data by applying the three principles of information security aforementioned, and creating a robust verification system with high levels of reliability, privacy and security. Moreover, it is very difficult to replace biometric information and any leakage of biometrics information leads to earnest risks for example replay attacks using the robbed biometric data. In this paper presented criticism and analysis to all attempts as revealed in the literature review and discussion the proposes a novel verification secure framework based confidentiality, integrity and availability (CIA) standard in triplex blockchain-particle swarm optimization (PSO)-advanced encryption standard (AES) techniques for medical systems patient's authentication. Three stages are performed on discussion. Firstly, proposes a new hybrid model pattern in order to increase the randomization based on radio frequency identification (RFID) and finger vein biometrics. To achieve this, proposed a new merge algorithm to combine the RFID features and finger vein features in one hybrid and random pattern. Secondly, how the propose verification secure framework are followed the CIA standard for telemedicine authentication by combination of AES encryption technique, blockchain and PSO in steganography technique based on proposed pattern model. Finally, discussed the validation and evaluation of the proposed verification secure framework.
    Matched MeSH terms: Confidentiality
  2. Talal M, Zaidan AA, Zaidan BB, Albahri AS, Alamoodi AH, Albahri OS, et al.
    J Med Syst, 2019 Jan 15;43(3):42.
    PMID: 30648217 DOI: 10.1007/s10916-019-1158-z
    The Internet of Things (IoT) has been identified in various applications across different domains, such as in the healthcare sector. IoT has also been recognised for its revolution in reshaping modern healthcare with aspiring wide range prospects, including economical, technological and social. This study aims to establish IoT-based smart home security solutions for real-time health monitoring technologies in telemedicine architecture. A multilayer taxonomy is driven and conducted in this study. In the first layer, a comprehensive analysis on telemedicine, which focuses on the client and server sides, shows that other studies associated with IoT-based smart home applications have several limitations that remain unaddressed. Particularly, remote patient monitoring in healthcare applications presents various facilities and benefits by adopting IoT-based smart home technologies without compromising the security requirements and potentially large number of risks. An extensive search is conducted to identify articles that handle these issues, related applications are comprehensively reviewed and a coherent taxonomy for these articles is established. A total number of (n = 3064) are gathered between 2007 and 2017 for most reliable databases, such as ScienceDirect, Web of Science and Institute of Electrical and Electronic Engineer Xplore databases. Then, the articles based on IoT studies that are associated with telemedicine applications are filtered. Nine articles are selected and classified into two categories. The first category, which accounts for 22.22% (n = 2/9), includes surveys on telemedicine articles and their applications. The second category, which accounts for 77.78% (n = 7/9), includes articles on the client and server sides of telemedicine architecture. The collected studies reveal the essential requirement in constructing another taxonomy layer and review IoT-based smart home security studies. Therefore, IoT-based smart home security features are introduced and analysed in the second layer. The security of smart home design based on IoT applications is an aspect that represents a crucial matter for general occupants of smart homes, in which studies are required to provide a better solution with patient security, privacy protection and security of users' entities from being stolen or compromised. Innovative technologies have dispersed limitations related to this matter. The existing gaps and trends in this area should be investigated to provide valuable visions for technical environments and researchers. Thus, 67 articles are obtained in the second layer of our taxonomy and are classified into six categories. In the first category, 25.37% (n = 17/67) of the articles focus on architecture design. In the second category, 17.91% (n = 12/67) includes security analysis articles that investigate the research status in the security area of IoT-based smart home applications. In the third category, 10.44% (n = 7/67) includes articles about security schemes. In the fourth category, 17.91% (n = 12/67) comprises security examination. In the fifth category, 13.43% (n = 9/67) analyses security protocols. In the final category, 14.92% (n = 10/67) analyses the security framework. Then, the identified basic characteristics of this emerging field are presented and provided in the following aspects. Open challenges experienced on the development of IoT-based smart home security are addressed to be adopted fully in telemedicine applications. Then, the requirements are provided to increase researcher's interest in this study area. On this basis, a number of recommendations for different parties are described to provide insights on the next steps that should be considered to enhance the security of smart homes based on IoT. A map matching for both taxonomies is developed in this study to determine the novel risks and benefits of IoT-based smart home security for real-time remote health monitoring within client and server sides in telemedicine applications.
    Matched MeSH terms: Confidentiality
  3. Shuwandy ML, Zaidan BB, Zaidan AA, Albahri AS
    J Med Syst, 2019 Jan 06;43(2):33.
    PMID: 30612191 DOI: 10.1007/s10916-018-1149-5
    The new and groundbreaking real-time remote healthcare monitoring system on sensor-based mobile health (mHealth) authentication in telemedicine has considerably bounded and dispersed communication components. mHealth, an attractive part in telemedicine architecture, plays an imperative role in patient security and privacy and adapts different sensing technologies through many built-in sensors. This study aims to improve sensor-based defence and attack mechanisms to ensure patient privacy in client side when using mHealth. Thus, a multilayer taxonomy was conducted to attain the goal of this study. Within the first layer, real-time remote monitoring studies based on sensor technology for telemedicine application were reviewed and analysed to examine these technologies and provide researchers with a clear vision of security- and privacy-based sensors in the telemedicine area. An extensive search was conducted to find articles about security and privacy issues, review related applications comprehensively and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were investigated for articles on mHealth in telemedicine-based sensor. A total of 3064 papers were collected from 2007 to 2017. The retrieved articles were filtered according to the security and privacy of sensor-based telemedicine applications. A total of 19 articles were selected and classified into two categories. The first category, 57.89% (n = 11/19), included survey on telemedicine articles and their applications. The second category, 42.1% (n = 8/19), included articles contributed to the three-tiered architecture of telemedicine. The collected studies improved the essential need to add another taxonomy layer and review the sensor-based smartphone authentication studies. This map matching for both taxonomies was developed for this study to investigate sensor field comprehensively and gain access to novel risks and benefits of the mHealth security in telemedicine application. The literature on sensor-based smartphones in the second layer of our taxonomy was analysed and reviewed. A total of 599 papers were collected from 2007 to 2017. In this layer, we obtained a final set of 81 articles classified into three categories. The first category of the articles [86.41% (n = 70/81)], where sensor-based smartphones were examined by utilising orientation sensors for user authentication, was used. The second category [7.40% (n = 6/81)] included attack articles, which were not intensively included in our literature analysis. The third category [8.64% (n = 7/81)] included 'other' articles. Factors were considered to understand fully the various contextual aspects of the field in published studies. The characteristics included the motivation and challenges related to sensor-based authentication of smartphones encountered by researchers and the recommendations to strengthen this critical area of research. Finally, many studies on the sensor-based smartphone in the second layer have focused on enhancing accurate authentication because sensor-based smartphones require sensors that could authentically secure mHealth.
    Matched MeSH terms: Confidentiality
  4. Mohsin AH, Zaidan AA, Zaidan BB, Ariffin SAB, Albahri OS, Albahri AS, et al.
    J Med Syst, 2018 Oct 29;42(12):245.
    PMID: 30374820 DOI: 10.1007/s10916-018-1103-6
    In real-time medical systems, the role of biometric technology is significant in authentication systems because it is used in verifying the identity of people through their biometric features. The biometric technology provides crucial properties for biometric features that can support the process of personal identification. The storage of biometric template within a central database makes it vulnerable to attack which can also occur during data transmission. Therefore, an alternative mechanism of protection becomes important to develop. On this basis, this study focuses on providing a detailed analysis of the extant literature (2013-2018) to identify the taxonomy and research distribution. Furthermore, this study also seeks to ascertain the challenges and motivations associated with biometric steganography in real-time medical systems to provide recommendations that can enhance the efficient use of real-time medical systems in biometric steganography and its applications. A review of articles on human biometric steganography in real-time medical systems obtained from three main databases (IEEE Xplore, ScienceDirect and Web of Science) is conducted according to an appropriate review protocol. Then, 41 related articles are selected by using exclusion and inclusion criteria. Majority of the studies reviewed had been conducted in the field of data-hiding (particularly steganography) technologies. In this review, various steganographic methods that have been applied in different human biometrics are investigated. Thereafter, these methods are categorised according to taxonomy, and the results are presented on the basis of human steganography biometric real-time medical systems, testing and evaluation methods, significance of use and applications and techniques. Finally, recommendations on how the challenges associated with data hiding can be addressed are provided to enhance the efficiency of using biometric information processed in any authentication real-time medical system. These recommendations are expected to be immensely helpful to developers, company users and researchers.
    Matched MeSH terms: Confidentiality
  5. Mohsin AH, Zaidan AA, Zaidan BB, Albahri AS, Albahri OS, Alsalem MA, et al.
    J Med Syst, 2018 Oct 16;42(12):238.
    PMID: 30327939 DOI: 10.1007/s10916-018-1104-5
    The development of wireless body area sensor networks is imperative for modern telemedicine. However, attackers and cybercriminals are gradually becoming aware in attacking telemedicine systems, and the black market value of protected health information has the highest price nowadays. Security remains a formidable challenge to be resolved. Intelligent home environments make up one of the major application areas of pervasive computing. Security and privacy are the two most important issues in the remote monitoring and control of intelligent home environments for clients and servers in telemedicine architecture. The personal authentication approach that uses the finger vein pattern is a newly investigated biometric technique. This type of biometric has many advantages over other types (explained in detail later on) and is suitable for different human categories and ages. This study aims to establish a secure verification method for real-time monitoring systems to be used for the authentication of patients and other members who are working in telemedicine systems. The process begins with the sensor based on Tiers 1 and 2 (client side) in the telemedicine architecture and ends with patient verification in Tier 3 (server side) via finger vein biometric technology to ensure patient security on both sides. Multilayer taxonomy is conducted in this research to attain the study's goal. In the first layer, real-time remote monitoring studies based on the sensor technology used in telemedicine applications are reviewed and analysed to provide researchers a clear vision of security and privacy based on sensors in telemedicine. An extensive search is conducted to identify articles that deal with security and privacy issues, related applications are reviewed comprehensively and a coherent taxonomy of these articles is established. ScienceDirect, IEEE Xplore and Web of Science databases are checked for articles on mHealth in telemedicine based on sensors. A total of 3064 papers are collected from 2007 to 2017. The retrieved articles are filtered according to the security and privacy of telemedicine applications based on sensors. Nineteen articles are selected and classified into two categories. The first category, which accounts for 57.89% (n = 11/19), includes surveys on telemedicine articles and their applications. The second category, accounting for 42.1% (n = 8/19), includes articles on the three-tiered architecture of telemedicine. The collected studies reveal the essential need to construct another taxonomy layer and review studies on finger vein biometric verification systems. This map-matching for both taxonomies is developed for this study to go deeply into the sensor field and determine novel risks and benefits for patient security and privacy on client and server sides in telemedicine applications. In the second layer of our taxonomy, the literature on finger vein biometric verification systems is analysed and reviewed. In this layer, we obtain a final set of 65 articles classified into four categories. In the first category, 80% (n = 52/65) of the articles focus on development and design. In the second category, 12.30% (n = 8/65) includes evaluation and comparative articles. These articles are not intensively included in our literature analysis. In the third category, 4.61% (n = 3/65) includes articles about analytical studies. In the fourth category, 3.07% (n = 2/65) comprises reviews and surveys. This study aims to provide researchers with an up-to-date overview of studies that have been conducted on (user/patient) authentication to enhance the security level in telemedicine or any information system. In the current study, taxonomy is presented by explaining previous studies. Moreover, this review highlights the motivations, challenges and recommendations related to finger vein biometric verification systems and determines the gaps in this research direction (protection of finger vein templates in real time), which represent a new research direction in this area.
    Matched MeSH terms: Confidentiality
  6. Burch WJ, Hart GJ, Lim SH
    AIDS Educ Prev, 2018 04;30(2):85-95.
    PMID: 29688771 DOI: 10.1521/aeap.2018.30.2.85
    Young men who have sex with men (YMSM) are a group at high risk for HIV infection, yet no research has been conducted to understand this population in Malaysia. Semistructured interviews from a combination of YMSM aged 18-25 (n = 20) and local service providers of sexual health services (n = 4) were conducted from May to June 2015. Thematic analysis was used to identify common themes in participant responses from transcripts. Participants reported societal and internalized homophobia, an absence of sex education and difficulty accessing confidential HIV testing. This study provides insights into how homophobia in Malaysian society influences individual risk behavior for HIV in Malaysian YMSM, and makes practical suggestions for more effective HIV prevention in this population.
    Matched MeSH terms: Confidentiality
  7. Zakaria N, Ramli R
    Neuropsychiatr Dis Treat, 2018;14:117-128.
    PMID: 29343963 DOI: 10.2147/NDT.S115261
    Background: Psychiatric patients have privacy concerns when it comes to technology intervention in the hospital setting. In this paper, we present scenarios for psychiatric behavioral monitoring systems to be placed in psychiatric wards to understand patients' perception regarding privacy. Psychiatric behavioral monitoring refers to systems that are deemed useful in measuring clinical outcomes, but little research has been done on how these systems will impact patients' privacy.

    Methods: We conducted a case study in one teaching hospital in Malaysia. We investigated the physical factors that influence patients' perceived privacy with respect to a psychiatric monitoring system. The eight physical factors identified from the information system development privacy model, a comprehensive model for designing a privacy-sensitive information system, were adapted in this research. Scenario-based interviews were conducted with 25 patients in a psychiatric ward for 3 months.

    Results: Psychiatric patients were able to share how physical factors influence their perception of privacy. Results show how patients responded to each of these dimensions in the context of a psychiatric behavioral monitoring system.

    Conclusion: Some subfactors under physical privacy are modified to reflect the data obtained in the interviews. We were able to capture the different physical factors that influence patient privacy.

    Matched MeSH terms: Confidentiality
  8. Kamaludin H, Mahdin H, Abawajy JH
    PLoS ONE, 2018;13(3):e0193951.
    PMID: 29565982 DOI: 10.1371/journal.pone.0193951
    Although Radio Frequency Identification (RFID) is poised to displace barcodes, security vulnerabilities pose serious challenges for global adoption of the RFID technology. Specifically, RFID tags are prone to basic cloning and counterfeiting security attacks. A successful cloning of the RFID tags in many commercial applications can lead to many serious problems such as financial losses, brand damage, safety and health of the public. With many industries such as pharmaceutical and businesses deploying RFID technology with a variety of products, it is important to tackle RFID tag cloning problem and improve the resistance of the RFID systems. To this end, we propose an approach for detecting cloned RFID tags in RFID systems with high detection accuracy and minimal overhead thus overcoming practical challenges in existing approaches. The proposed approach is based on consistency of dual hash collisions and modified count-min sketch vector. We evaluated the proposed approach through extensive experiments and compared it with existing baseline approaches in terms of execution time and detection accuracy under varying RFID tag cloning ratio. The results of the experiments show that the proposed approach outperforms the baseline approaches in cloned RFID tag detection accuracy.
    Matched MeSH terms: Confidentiality
  9. Adenuga KI, Iahad NA, Miskon S
    Int J Med Inform, 2017 08;104:84-96.
    PMID: 28599820 DOI: 10.1016/j.ijmedinf.2017.05.008
    Telemedicine systems have been considered as a necessary measure to alleviate the shortfall in skilled medical specialists in developing countries. However, the obvious challenge is whether clinicians are willing to use this technological innovation, which has aided medical practice globally. One factor which has received little academic attention is the provision of suitable encouragement for clinicians to adopt telemedicine, in the form of rewards, motivation or incentives. A further consideration for telemedicine usage in developing countries, especially sub-Saharan Africa and Nigeria in particular, are to the severe shortage of available practising clinicians. The researchers therefore explore the need to positively reinforce the adoption of telemedicine amongst clinicians in Nigeria, and also offer a rationale for this using the UTAUT model. Data were collected using a structured paper-based questionnaire, with 252 physicians and nurses from six government hospitals in Ondo state, Nigeria. The study applied SmartPLS 2.0 for analysis to determine the relationship between six variables. Demographic moderating variables, age, gender and profession, were included. The results indicate that performance expectancy (p<0.05), effort expectancy (p<0.05), facilitating condition (p<0.01) and reinforcement factor (p<0.001) have significant effects on clinicians' behavioural intention to use telemedicine systems, as predicted using the extended UTAUT model. Our results showed that the use of telemedicine by clinicians in the Nigerian context is perceived as a dual responsibility which requires suitable reinforcement. In addition, performance expectancy, effort expectancy, facilitating condition and reinforcement determinants are influential factors in the use of telemedicine services for remote-patient clinical diagnosis and management by the Nigerian clinicians.
    Matched MeSH terms: Confidentiality
  10. Ranak MSAN, Azad S, Nor NNHBM, Zamli KZ
    PLoS ONE, 2017;12(10):e0186940.
    PMID: 29084262 DOI: 10.1371/journal.pone.0186940
    Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)-a.k.a., Force Touch in Apple's MacBook, Apple Watch, ZTE's Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on-is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme.
    Matched MeSH terms: Confidentiality
  11. Jayabalan M, O'Daniel T
    J Med Syst, 2016 Dec;40(12):261.
    PMID: 27722981
    This study presents a systematic literature review of access control for electronic health record systems to protect patient's privacy. Articles from 2006 to 2016 were extracted from the ACM Digital Library, IEEE Xplore Digital Library, Science Direct, MEDLINE, and MetaPress using broad eligibility criteria, and chosen for inclusion based on analysis of ISO22600. Cryptographic standards and methods were left outside the scope of this review. Three broad classes of models are being actively investigated and developed: access control for electronic health records, access control for interoperability, and access control for risk analysis. Traditional role-based access control models are extended with spatial, temporal, probabilistic, dynamic, and semantic aspects to capture contextual information and provide granular access control. Maintenance of audit trails and facilities for overriding normal roles to allow full access in emergency cases are common features. Access privilege frameworks utilizing ontology-based knowledge representation for defining the rules have attracted considerable interest, due to the higher level of abstraction that makes it possible to model domain knowledge and validate access requests efficiently.
    Matched MeSH terms: Confidentiality
  12. Shahri AB, Ismail Z, Mohanna S
    J Med Syst, 2016 Nov;40(11):241.
    PMID: 27681101
    The security effectiveness based on users' behaviors is becoming a top priority of Health Information System (HIS). In the first step of this study, through the review of previous studies 'Self-efficacy in Information Security' (SEIS) and 'Security Competency' (SCMP) were identified as the important factors to transforming HIS users to the first line of defense in the security. Subsequently, a conceptual model was proposed taking into mentioned factors for HIS security effectiveness. Then, this quantitative study used the structural equation modeling to examine the proposed model based on survey data collected from a sample of 263 HIS users from eight hospitals in Iran. The result shows that SEIS is one of the important factors to cultivate of good end users' behaviors toward HIS security effectiveness. However SCMP appears a feasible alternative to providing SEIS. This study also confirms the mediation effects of SEIS on the relationship between SCMP and HIS security effectiveness. The results of this research paper can be used by HIS and IT managers to implement their information security process more effectively.
    Matched MeSH terms: Confidentiality
  13. Sim JH, Vadivelu J, Lee SS
    Med Educ, 2016 Nov;50(11):1145.
    PMID: 27762037 DOI: 10.1111/medu.13188
    Matched MeSH terms: Confidentiality/legislation & jurisprudence
  14. Aldeen YA, Salleh M, Aljeroudi Y
    J Biomed Inform, 2016 08;62:107-16.
    PMID: 27369566 DOI: 10.1016/j.jbi.2016.06.011
    Cloud computing (CC) is a magnificent service-based delivery with gigantic computer processing power and data storage across connected communications channels. It imparted overwhelming technological impetus in the internet (web) mediated IT industry, where users can easily share private data for further analysis and mining. Furthermore, user affable CC services enable to deploy sundry applications economically. Meanwhile, simple data sharing impelled various phishing attacks and malware assisted security threats. Some privacy sensitive applications like health services on cloud that are built with several economic and operational benefits necessitate enhanced security. Thus, absolute cyberspace security and mitigation against phishing blitz became mandatory to protect overall data privacy. Typically, diverse applications datasets are anonymized with better privacy to owners without providing all secrecy requirements to the newly added records. Some proposed techniques emphasized this issue by re-anonymizing the datasets from the scratch. The utmost privacy protection over incremental datasets on CC is far from being achieved. Certainly, the distribution of huge datasets volume across multiple storage nodes limits the privacy preservation. In this view, we propose a new anonymization technique to attain better privacy protection with high data utility over distributed and incremental datasets on CC. The proficiency of data privacy preservation and improved confidentiality requirements is demonstrated through performance evaluation.
    Matched MeSH terms: Confidentiality
  15. Zaidan BB, Haiqi A, Zaidan AA, Abdulnabi M, Kiah ML, Muzamel H
    J Med Syst, 2015 May;39(5):51.
    PMID: 25732083 DOI: 10.1007/s10916-015-0235-1
    This study focuses on the situation of health information exchange (HIE) in the context of a nationwide network. It aims to create a security framework that can be implemented to ensure the safe transmission of health information across the boundaries of care providers in Malaysia and other countries. First, a critique of the major elements of nationwide health information networks is presented from the perspective of security, along with such topics as the importance of HIE, issues, and main approaches. Second, a systematic evaluation is conducted on the security solutions that can be utilized in the proposed nationwide network. Finally, a secure framework for health information transmission is proposed within a central cloud-based model, which is compatible with the Malaysian telehealth strategy. The outcome of this analysis indicates that a complete security framework for a global structure of HIE is yet to be defined and implemented. Our proposed framework represents such an endeavor and suggests specific techniques to achieve this goal.
    Matched MeSH terms: Confidentiality
  16. Zaidan AA, Zaidan BB, Kadhem Z, Larbani M, Lakulu MB, Hashim M
    J Med Syst, 2015 Feb;39(2):7.
    PMID: 25631841 DOI: 10.1007/s10916-015-0201-y
    This paper discusses the possibility of promoting public health and implementing educational health services using Facebook. We discuss the challenges and strengths of using such a platform as a tool for public health care systems from two different perspectives, namely, the view of IT developers and that of physicians. We present a new way of evaluating user interactivity in health care systems from tools provided by Facebook that measure statistical traffic in the Internet. Findings show that Facebook is a very promising tool in promoting e-health services in Web 2.0. Results from statistical traffic show that a Facebook page is more efficient than other pages in promoting public health.
    Matched MeSH terms: Confidentiality
  17. Alanazi HO, Zaidan AA, Zaidan BB, Kiah ML, Al-Bakri SH
    J Med Syst, 2015 Jan;39(1):165.
    PMID: 25481568 DOI: 10.1007/s10916-014-0165-3
    This study has two objectives. First, it aims to develop a system with a highly secured approach to transmitting electronic medical records (EMRs), and second, it aims to identify entities that transmit private patient information without permission. The NTRU and the Advanced Encryption Standard (AES) cryptosystems are secured encryption methods. The AES is a tested technology that has already been utilized in several systems to secure sensitive data. The United States government has been using AES since June 2003 to protect sensitive and essential information. Meanwhile, NTRU protects sensitive data against attacks through the use of quantum computers, which can break the RSA cryptosystem and elliptic curve cryptography algorithms. A hybrid of AES and NTRU is developed in this work to improve EMR security. The proposed hybrid cryptography technique is implemented to secure the data transmission process of EMRs. The proposed security solution can provide protection for over 40 years and is resistant to quantum computers. Moreover, the technique provides the necessary evidence required by law to identify disclosure or misuse of patient records. The proposed solution can effectively secure EMR transmission and protect patient rights. It also identifies the source responsible for disclosing confidential patient records. The proposed hybrid technique for securing data managed by institutional websites must be improved in the future.
    Matched MeSH terms: Confidentiality*
  18. Zailani S, Iranmanesh M, Nikbin D, Beng JK
    J Med Syst, 2015 Jan;39(1):172.
    PMID: 25503418 DOI: 10.1007/s10916-014-0172-4
    With today's highly competitive market in the healthcare industry, Radio Frequency Identification (RFID) is a technology that can be applied by hospitals to improve operational efficiency and to gain a competitive advantage over their competitors. The purpose of this study is to investigate the factors that may effect RFID adoption in Malaysia's healthcare industry. In addition, the moderating role of occupational level was tested. Data was collected from 223 managers as well as healthcare and supporting staffs. This data was analyzed using the partial least squares technique. The results show that perceived ease of use and usefulness, government policy, top management support, and security and privacy concerns have an effect on the intent to adopt RFID in hospitals. There is a wide gap between managers and healthcare staff in terms of the factors that influence RFID adoption. The results of this study will help decision makers as well as managers in the healthcare industry to better understand the determinants of RFID adoption. Additionally, it will assist in the process of RFID adoption, and therefore, spread the usage of RFID technology in more hospitals.
    Matched MeSH terms: Confidentiality
  19. Yusof Kadikon, Imran Mohd Shafek, M. Maarof Bahurdin
    MyJurnal
    In Malaysia, the number of Musculoskeletal Disorder (MSD) cases is increasing . Rapid Upper Limb Assessment
    (RULA) is carried out in a physical paper form which is cumbersome and based on the complex nature and it should
    consider human error. This project aims to create the RULA application for mobile devices featuring the android system
    for this move will cut down the process time by more than half, create a more structured system and eliminate human
    error wholly. The application will be designed on the App Inventor website which features a lot of handy tutorials
    and takes the initiative to create a RULA mobile app for Android phones. The RULA mobile app for Android phones
    is intended to make it easier and much more efficient to conduct a RULA analysis. Additionally, the analyses can be
    conducted by minimally trained users, eliminating the need for highly trained technicians. RULA test is performed to
    achieve accurate results and the mathematical processes will be programmed into the app so that the user will have a
    friendly interface and will only be asked to tick boxes.
    Matched MeSH terms: Confidentiality
  20. Mousavi SM, Naghsh A, Abu-Bakar SA
    J Digit Imaging, 2014 Dec;27(6):714-29.
    PMID: 24871349 DOI: 10.1007/s10278-014-9700-5
    The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. As a result of this, there is a need for medical image watermarking (MIW). However, MIW needs to be performed with special care for two reasons. Firstly, the watermarking procedure cannot compromise the quality of the image. Secondly, confidential patient information embedded within the image should be flawlessly retrievable without risk of error after image decompressing. Despite extensive research undertaken in this area, there is still no method available to fulfill all the requirements of MIW. This paper aims to provide a useful survey on watermarking and offer a clear perspective for interested researchers by analyzing the strengths and weaknesses of different existing methods.
    Matched MeSH terms: Confidentiality/standards*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links