Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Mousavi SM, Naghsh A, Abu-Bakar SA
    J Digit Imaging, 2014 Dec;27(6):714-29.
    PMID: 24871349 DOI: 10.1007/s10278-014-9700-5
    The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. As a result of this, there is a need for medical image watermarking (MIW). However, MIW needs to be performed with special care for two reasons. Firstly, the watermarking procedure cannot compromise the quality of the image. Secondly, confidential patient information embedded within the image should be flawlessly retrievable without risk of error after image decompressing. Despite extensive research undertaken in this area, there is still no method available to fulfill all the requirements of MIW. This paper aims to provide a useful survey on watermarking and offer a clear perspective for interested researchers by analyzing the strengths and weaknesses of different existing methods.
    Matched MeSH terms: Confidentiality/standards*
  2. Lee JY, Chan CKY, Chua SS, Paraidathathu T, Lee KK, Tan CSS, et al.
    BMJ Open, 2019 Oct 22;9(10):e026575.
    PMID: 31640990 DOI: 10.1136/bmjopen-2018-026575
    OBJECTIVE: Telemedicine has been promoted as an economical and effective way to enhance patient care, but its acceptance among patients in low-income and middle-income countries is poorly understood. This study is aimed to explore the experiences and perspectives of people with type 2 diabetes mellitus that used telemedicine to manage their condition.

    DESIGN: In-depth and focus group interviews were conducted with participants who have engaged in telemedicine. Questions included were participants' perception on the programme being used, satisfaction as well as engagement with the telemedicine programme. All interviews and focus groups were audio-recorded and transcribed verbatim. Data were analysed using a thematic approach.

    PARTICIPANTS AND SETTING: People with type 2 diabetes (n=48) who participated in a randomised controlled study which examined the use of telemedicine for diabetes management were recruited from 11 primary care clinics located within the Klang Valley.

    RESULTS: Twelve focus groups and two in-depth interviews were conducted. Four themes emerged from the analysis: (1) generational difference; (2) independence and convenience, (3) sharing of health data and privacy and (4) concerns and challenges. The main obstacles found in patients using the telemedicine systems were related to internet connectivity and difficulties experienced with system interface. Cost was also another significant concern raised by participants. Participants in this study were primarily positive about the benefits of telemedicine, including its ability to provide real-time data and disease monitoring and the reduction in clinic visits.

    CONCLUSION: Despite the potential benefits of telemedicine in the long-term care of diabetes, there are several perceived barriers that may limit the effectiveness of this technology. As such, collaboration between educators, healthcare providers, telecommunication service providers and patients are required to stimulate the adoption and the use of telemedicine.NCT0246680.

    Matched MeSH terms: Confidentiality
  3. LIM SOK FERN, SITI ZANARIAH AHMAD ISHAK
    MyJurnal
    The aim of this study is to examine the factors that drive students’ self-disclosure on Social Networking Sites (SNSs). A total of 215 undergraduates from two public universities in East Malaysia were recruited as respondents. This study adapts self-disclosure model by Elmi, A.Iahad and Ahmed (2012), where the model proposed trust as one of the factors that complementing other existing factors in online self-disclosure. This study proved that privacy concerns (r = -.212, p < .01), perceived trust (r = .22, p < .01), perceived ease of use (r = .213, p < .01), and perceived enjoyment (r = .28, p < .01) are significantly related to students’ online self-disclosure on SNSs. In addition, as trust plays a vital role in moderating the users’ online self-disclosure behavior, this study formulated students’ trusts on SNSs based on three dimensions which are individual, institutional and online trust. Findings of study suggested that there is a significant difference between online trust based on male and female respondents.
    Matched MeSH terms: Confidentiality
  4. Adenuga KI, Iahad NA, Miskon S
    Int J Med Inform, 2017 08;104:84-96.
    PMID: 28599820 DOI: 10.1016/j.ijmedinf.2017.05.008
    Telemedicine systems have been considered as a necessary measure to alleviate the shortfall in skilled medical specialists in developing countries. However, the obvious challenge is whether clinicians are willing to use this technological innovation, which has aided medical practice globally. One factor which has received little academic attention is the provision of suitable encouragement for clinicians to adopt telemedicine, in the form of rewards, motivation or incentives. A further consideration for telemedicine usage in developing countries, especially sub-Saharan Africa and Nigeria in particular, are to the severe shortage of available practising clinicians. The researchers therefore explore the need to positively reinforce the adoption of telemedicine amongst clinicians in Nigeria, and also offer a rationale for this using the UTAUT model. Data were collected using a structured paper-based questionnaire, with 252 physicians and nurses from six government hospitals in Ondo state, Nigeria. The study applied SmartPLS 2.0 for analysis to determine the relationship between six variables. Demographic moderating variables, age, gender and profession, were included. The results indicate that performance expectancy (p<0.05), effort expectancy (p<0.05), facilitating condition (p<0.01) and reinforcement factor (p<0.001) have significant effects on clinicians' behavioural intention to use telemedicine systems, as predicted using the extended UTAUT model. Our results showed that the use of telemedicine by clinicians in the Nigerian context is perceived as a dual responsibility which requires suitable reinforcement. In addition, performance expectancy, effort expectancy, facilitating condition and reinforcement determinants are influential factors in the use of telemedicine services for remote-patient clinical diagnosis and management by the Nigerian clinicians.
    Matched MeSH terms: Confidentiality
  5. Thuraisingham C, Nalliah S
    Aust Fam Physician, 2013 Apr;42(4):249-51.
    PMID: 23550254
    In many workplaces, employment is conditional on a successful pre-employment medical examination. This examination is usually conducted by a general practitioner on the employers' panel of approved clinics or by an in-house company doctor.
    Matched MeSH terms: Confidentiality/ethics
  6. Vijayananthan A, Nawawi O
    Biomed Imaging Interv J, 2008 Jan;4(1):e5.
    PMID: 21614316 MyJurnal DOI: 10.2349/biij.4.1.e5
    Good Clinical Practice (GCP) is an international ethical and scientific quality standard for the design, conduct, performance, monitoring, auditing, recording, analyses and reporting of clinical trials. It also serves to protect the rights, integrity and confidentiality of trial subjects. It is very important to understand the background of the formation of the ICH-GCP guidelines as this, in itself, explains the reasons and the need for doing so. In this paper, we address the historical background and the events that led up to the formation of these guidelines. Today, the ICH-GCP guidelines are used in clinical trials throughout the globe with the main aim of protecting and preserving human rights.
    Matched MeSH terms: Confidentiality
  7. Shahri AB, Ismail Z, Mohanna S
    J Med Syst, 2016 Nov;40(11):241.
    PMID: 27681101
    The security effectiveness based on users' behaviors is becoming a top priority of Health Information System (HIS). In the first step of this study, through the review of previous studies 'Self-efficacy in Information Security' (SEIS) and 'Security Competency' (SCMP) were identified as the important factors to transforming HIS users to the first line of defense in the security. Subsequently, a conceptual model was proposed taking into mentioned factors for HIS security effectiveness. Then, this quantitative study used the structural equation modeling to examine the proposed model based on survey data collected from a sample of 263 HIS users from eight hospitals in Iran. The result shows that SEIS is one of the important factors to cultivate of good end users' behaviors toward HIS security effectiveness. However SCMP appears a feasible alternative to providing SEIS. This study also confirms the mediation effects of SEIS on the relationship between SCMP and HIS security effectiveness. The results of this research paper can be used by HIS and IT managers to implement their information security process more effectively.
    Matched MeSH terms: Confidentiality
  8. Omar H, Khan SA, Toh CG
    J Dent Educ, 2013 May;77(5):640-7.
    PMID: 23658411
    Student-generated videos provide an authentic learning experience for students, enhance motivation and engagement, improve communication skills, and improve collaborative learning skills. This article describes the development and implementation of a student-generated video activity as part of a knowledge, observation, simulation, and experience (KOSE) program at the School of Dentistry, International Medical University, Kuala Lumpur, Malaysia. It also reports the students' perceptions of an activity that introduced first-year dental students (n=44) to clinical scenarios involving patients and dental team aiming to improve professional behavior and communication skills. The learning activity was divided into three phases: preparatory phase, video production phase, and video-watching. Students were organized into five groups and were instructed to generate videos addressing given clinical scenarios. Following the activity, students' perceptions were assessed with a questionnaire. The results showed that 86 percent and 88 percent, respectively, of the students agreed that preparation of the activity enhanced their understanding of the role of dentists in provision of health care and the role of enhanced teamwork. In addition, 86 percent and 75 percent, respectively, agreed that the activity improved their communication and project management skills. Overall, the dental students perceived that the student-generated video activity was a positive experience and enabled them to play the major role in driving their learning process.
    Matched MeSH terms: Confidentiality
  9. Da Silva RD, Leow JJ, Abidin ZA, Linden-Castro E, Castro EIB, Blanco LT, et al.
    Int Braz J Urol, 2019 10 19;45(5):882-888.
    PMID: 31626517 DOI: 10.1590/S1677-5538.IBJU.2019.05.04
    Matched MeSH terms: Confidentiality
  10. Talal M, Zaidan AA, Zaidan BB, Albahri AS, Alamoodi AH, Albahri OS, et al.
    J Med Syst, 2019 Jan 15;43(3):42.
    PMID: 30648217 DOI: 10.1007/s10916-019-1158-z
    The Internet of Things (IoT) has been identified in various applications across different domains, such as in the healthcare sector. IoT has also been recognised for its revolution in reshaping modern healthcare with aspiring wide range prospects, including economical, technological and social. This study aims to establish IoT-based smart home security solutions for real-time health monitoring technologies in telemedicine architecture. A multilayer taxonomy is driven and conducted in this study. In the first layer, a comprehensive analysis on telemedicine, which focuses on the client and server sides, shows that other studies associated with IoT-based smart home applications have several limitations that remain unaddressed. Particularly, remote patient monitoring in healthcare applications presents various facilities and benefits by adopting IoT-based smart home technologies without compromising the security requirements and potentially large number of risks. An extensive search is conducted to identify articles that handle these issues, related applications are comprehensively reviewed and a coherent taxonomy for these articles is established. A total number of (n = 3064) are gathered between 2007 and 2017 for most reliable databases, such as ScienceDirect, Web of Science and Institute of Electrical and Electronic Engineer Xplore databases. Then, the articles based on IoT studies that are associated with telemedicine applications are filtered. Nine articles are selected and classified into two categories. The first category, which accounts for 22.22% (n = 2/9), includes surveys on telemedicine articles and their applications. The second category, which accounts for 77.78% (n = 7/9), includes articles on the client and server sides of telemedicine architecture. The collected studies reveal the essential requirement in constructing another taxonomy layer and review IoT-based smart home security studies. Therefore, IoT-based smart home security features are introduced and analysed in the second layer. The security of smart home design based on IoT applications is an aspect that represents a crucial matter for general occupants of smart homes, in which studies are required to provide a better solution with patient security, privacy protection and security of users' entities from being stolen or compromised. Innovative technologies have dispersed limitations related to this matter. The existing gaps and trends in this area should be investigated to provide valuable visions for technical environments and researchers. Thus, 67 articles are obtained in the second layer of our taxonomy and are classified into six categories. In the first category, 25.37% (n = 17/67) of the articles focus on architecture design. In the second category, 17.91% (n = 12/67) includes security analysis articles that investigate the research status in the security area of IoT-based smart home applications. In the third category, 10.44% (n = 7/67) includes articles about security schemes. In the fourth category, 17.91% (n = 12/67) comprises security examination. In the fifth category, 13.43% (n = 9/67) analyses security protocols. In the final category, 14.92% (n = 10/67) analyses the security framework. Then, the identified basic characteristics of this emerging field are presented and provided in the following aspects. Open challenges experienced on the development of IoT-based smart home security are addressed to be adopted fully in telemedicine applications. Then, the requirements are provided to increase researcher's interest in this study area. On this basis, a number of recommendations for different parties are described to provide insights on the next steps that should be considered to enhance the security of smart homes based on IoT. A map matching for both taxonomies is developed in this study to determine the novel risks and benefits of IoT-based smart home security for real-time remote health monitoring within client and server sides in telemedicine applications.
    Matched MeSH terms: Confidentiality
  11. Nassiri Abrishamchi MA, Zainal A, Ghaleb FA, Qasem SN, Albarrak AM
    Sensors (Basel), 2022 Nov 07;22(21).
    PMID: 36366261 DOI: 10.3390/s22218564
    Smart home technologies have attracted more users in recent years due to significant advancements in their underlying enabler components, such as sensors, actuators, and processors, which are spreading in various domains and have become more affordable. However, these IoT-based solutions are prone to data leakage; this privacy issue has motivated researchers to seek a secure solution to overcome this challenge. In this regard, wireless signal eavesdropping is one of the most severe threats that enables attackers to obtain residents' sensitive information. Even if the system encrypts all communications, some cyber attacks can still steal information by interpreting the contextual data related to the transmitted signals. For example, a "fingerprint and timing-based snooping (FATS)" attack is a side-channel attack (SCA) developed to infer in-home activities passively from a remote location near the targeted house. An SCA is a sort of cyber attack that extracts valuable information from smart systems without accessing the content of data packets. This paper reviews the SCAs associated with cyber-physical systems, focusing on the proposed solutions to protect the privacy of smart homes against FATS attacks in detail. Moreover, this work clarifies shortcomings and future opportunities by analyzing the existing gaps in the reviewed methods.
    Matched MeSH terms: Confidentiality
  12. Schröder M, Muller SHA, Vradi E, Mielke J, Lim YMF, Couvelard F, et al.
    Big Data, 2023 Dec;11(6):399-407.
    PMID: 37889577 DOI: 10.1089/big.2022.0178
    Sharing individual patient data (IPD) is a simple concept but complex to achieve due to data privacy and data security concerns, underdeveloped guidelines, and legal barriers. Sharing IPD is additionally difficult in big data-driven collaborations such as Bigdata@Heart in the Innovative Medicines Initiative, due to competing interests between diverse consortium members. One project within BigData@Heart, case study 1, needed to pool data from seven heterogeneous data sets: five randomized controlled trials from three different industry partners, and two disease registries. Sharing IPD was not considered feasible due to legal requirements and the sensitive medical nature of these data. In addition, harmonizing the data sets for a federated data analysis was difficult due to capacity constraints and the heterogeneity of the data sets. An alternative option was to share summary statistics through contingency tables. Here it is demonstrated that this method along with anonymization methods to ensure patient anonymity had minimal loss of information. Although sharing IPD should continue to be encouraged and strived for, our approach achieved a good balance between data transparency while protecting patient privacy. It also allowed a successful collaboration between industry and academia.
    Matched MeSH terms: Confidentiality*
  13. Shuwandy ML, Zaidan BB, Zaidan AA, Albahri AS
    J Med Syst, 2019 Jan 06;43(2):33.
    PMID: 30612191 DOI: 10.1007/s10916-018-1149-5
    The new and groundbreaking real-time remote healthcare monitoring system on sensor-based mobile health (mHealth) authentication in telemedicine has considerably bounded and dispersed communication components. mHealth, an attractive part in telemedicine architecture, plays an imperative role in patient security and privacy and adapts different sensing technologies through many built-in sensors. This study aims to improve sensor-based defence and attack mechanisms to ensure patient privacy in client side when using mHealth. Thus, a multilayer taxonomy was conducted to attain the goal of this study. Within the first layer, real-time remote monitoring studies based on sensor technology for telemedicine application were reviewed and analysed to examine these technologies and provide researchers with a clear vision of security- and privacy-based sensors in the telemedicine area. An extensive search was conducted to find articles about security and privacy issues, review related applications comprehensively and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were investigated for articles on mHealth in telemedicine-based sensor. A total of 3064 papers were collected from 2007 to 2017. The retrieved articles were filtered according to the security and privacy of sensor-based telemedicine applications. A total of 19 articles were selected and classified into two categories. The first category, 57.89% (n = 11/19), included survey on telemedicine articles and their applications. The second category, 42.1% (n = 8/19), included articles contributed to the three-tiered architecture of telemedicine. The collected studies improved the essential need to add another taxonomy layer and review the sensor-based smartphone authentication studies. This map matching for both taxonomies was developed for this study to investigate sensor field comprehensively and gain access to novel risks and benefits of the mHealth security in telemedicine application. The literature on sensor-based smartphones in the second layer of our taxonomy was analysed and reviewed. A total of 599 papers were collected from 2007 to 2017. In this layer, we obtained a final set of 81 articles classified into three categories. The first category of the articles [86.41% (n = 70/81)], where sensor-based smartphones were examined by utilising orientation sensors for user authentication, was used. The second category [7.40% (n = 6/81)] included attack articles, which were not intensively included in our literature analysis. The third category [8.64% (n = 7/81)] included 'other' articles. Factors were considered to understand fully the various contextual aspects of the field in published studies. The characteristics included the motivation and challenges related to sensor-based authentication of smartphones encountered by researchers and the recommendations to strengthen this critical area of research. Finally, many studies on the sensor-based smartphone in the second layer have focused on enhancing accurate authentication because sensor-based smartphones require sensors that could authentically secure mHealth.
    Matched MeSH terms: Confidentiality
  14. Pius Owoh N, Mahinderjit Singh M
    Sensors (Basel), 2020 Jun 09;20(11).
    PMID: 32526843 DOI: 10.3390/s20113280
    The proliferation of mobile devices such as smartphones and tablets with embedded sensors and communication features has led to the introduction of a novel sensing paradigm called mobile crowd sensing. Despite its opportunities and advantages over traditional wireless sensor networks, mobile crowd sensing still faces security and privacy issues, among other challenges. Specifically, the security and privacy of sensitive location information of users remain lingering issues, considering the "on" and "off" state of global positioning system sensor in smartphones. To address this problem, this paper proposes "SenseCrypt", a framework that automatically annotates and signcrypts sensitive location information of mobile crowd sensing users. The framework relies on K-means algorithm and a certificateless aggregate signcryption scheme (CLASC). It incorporates spatial coding as the data compression technique and message query telemetry transport as the messaging protocol. Results presented in this paper show that the proposed framework incurs low computational cost and communication overhead. Also, the framework is robust against privileged insider attack, replay and forgery attacks. Confidentiality, integrity and non-repudiation are security services offered by the proposed framework.
    Matched MeSH terms: Confidentiality
  15. Yau WC, Phan RC
    J Med Syst, 2013 Dec;37(6):9993.
    PMID: 24194093 DOI: 10.1007/s10916-013-9993-9
    Many authentication schemes have been proposed for telecare medicine information systems (TMIS) to ensure the privacy, integrity, and availability of patient records. These schemes are crucial for TMIS systems because otherwise patients' medical records become susceptible to tampering thus hampering diagnosis or private medical conditions of patients could be disclosed to parties who do not have a right to access such information. Very recently, Hao et al. proposed a chaotic map-based authentication scheme for telecare medicine information systems in a recent issue of Journal of Medical Systems. They claimed that the authentication scheme can withstand various attacks and it is secure to be used in TMIS. In this paper, we show that this authentication scheme is vulnerable to key-compromise impersonation attacks, off-line password guessing attacks upon compromising of a smart card, and parallel session attacks. We also exploit weaknesses in the password change phase of the scheme to mount a denial-of-service attack. Our results show that this scheme cannot be used to provide security in a telecare medicine information system.
    Matched MeSH terms: Confidentiality/standards*
  16. Gupta R, Kanungo P, Dagdee N, Madhu G, Sahoo KS, Jhanjhi NZ, et al.
    Sensors (Basel), 2023 Feb 27;23(5).
    PMID: 36904822 DOI: 10.3390/s23052617
    With continuous advancements in Internet technology and the increased use of cryptographic techniques, the cloud has become the obvious choice for data sharing. Generally, the data are outsourced to cloud storage servers in encrypted form. Access control methods can be used on encrypted outsourced data to facilitate and regulate access. Multi-authority attribute-based encryption is a propitious technique to control who can access encrypted data in inter-domain applications such as sharing data between organizations, sharing data in healthcare, etc. The data owner may require the flexibility to share the data with known and unknown users. The known or closed-domain users may be internal employees of the organization, and unknown or open-domain users may be outside agencies, third-party users, etc. In the case of closed-domain users, the data owner becomes the key issuing authority, and in the case of open-domain users, various established attribute authorities perform the task of key issuance. Privacy preservation is also a crucial requirement in cloud-based data-sharing systems. This work proposes the SP-MAACS scheme, a secure and privacy-preserving multi-authority access control system for cloud-based healthcare data sharing. Both open and closed domain users are considered, and policy privacy is ensured by only disclosing the names of policy attributes. The values of the attributes are kept hidden. Characteristic comparison with similar existing schemes shows that our scheme simultaneously provides features such as multi-authority setting, expressive and flexible access policy structure, privacy preservation, and scalability. The performance analysis carried out by us shows that the decryption cost is reasonable enough. Furthermore, the scheme is demonstrated to be adaptively secure under the standard model.
    Matched MeSH terms: Confidentiality*
  17. Khalid H, Hashim SJ, Ahmad SMS, Hashim F, Chaudhary MA
    Sensors (Basel), 2021 Feb 18;21(4).
    PMID: 33670675 DOI: 10.3390/s21041428
    The development of the industrial Internet of Things (IIoT) promotes the integration of the cross-platform systems in fog computing, which enable users to obtain access to multiple application located in different geographical locations. Fog users at the network's edge communicate with many fog servers in different fogs and newly joined servers that they had never contacted before. This communication complexity brings enormous security challenges and potential vulnerability to malicious threats. The attacker may replace the edge device with a fake one and authenticate it as a legitimate device. Therefore, to prevent unauthorized users from accessing fog servers, we propose a new secure and lightweight multi-factor authentication scheme for cross-platform IoT systems (SELAMAT). The proposed scheme extends the Kerberos workflow and utilizes the AES-ECC algorithm for efficient encryption keys management and secure communication between the edge nodes and fog node servers to establish secure mutual authentication. The scheme was tested for its security analysis using the formal security verification under the widely accepted AVISPA tool. We proved our scheme using Burrows Abdi Needham's logic (BAN logic) to prove secure mutual authentication. The results show that the SELAMAT scheme provides better security, functionality, communication, and computation cost than the existing schemes.
    Matched MeSH terms: Confidentiality
  18. Mohsin AH, Zaidan AA, Zaidan BB, Albahri AS, Albahri OS, Alsalem MA, et al.
    J Med Syst, 2018 Oct 16;42(12):238.
    PMID: 30327939 DOI: 10.1007/s10916-018-1104-5
    The development of wireless body area sensor networks is imperative for modern telemedicine. However, attackers and cybercriminals are gradually becoming aware in attacking telemedicine systems, and the black market value of protected health information has the highest price nowadays. Security remains a formidable challenge to be resolved. Intelligent home environments make up one of the major application areas of pervasive computing. Security and privacy are the two most important issues in the remote monitoring and control of intelligent home environments for clients and servers in telemedicine architecture. The personal authentication approach that uses the finger vein pattern is a newly investigated biometric technique. This type of biometric has many advantages over other types (explained in detail later on) and is suitable for different human categories and ages. This study aims to establish a secure verification method for real-time monitoring systems to be used for the authentication of patients and other members who are working in telemedicine systems. The process begins with the sensor based on Tiers 1 and 2 (client side) in the telemedicine architecture and ends with patient verification in Tier 3 (server side) via finger vein biometric technology to ensure patient security on both sides. Multilayer taxonomy is conducted in this research to attain the study's goal. In the first layer, real-time remote monitoring studies based on the sensor technology used in telemedicine applications are reviewed and analysed to provide researchers a clear vision of security and privacy based on sensors in telemedicine. An extensive search is conducted to identify articles that deal with security and privacy issues, related applications are reviewed comprehensively and a coherent taxonomy of these articles is established. ScienceDirect, IEEE Xplore and Web of Science databases are checked for articles on mHealth in telemedicine based on sensors. A total of 3064 papers are collected from 2007 to 2017. The retrieved articles are filtered according to the security and privacy of telemedicine applications based on sensors. Nineteen articles are selected and classified into two categories. The first category, which accounts for 57.89% (n = 11/19), includes surveys on telemedicine articles and their applications. The second category, accounting for 42.1% (n = 8/19), includes articles on the three-tiered architecture of telemedicine. The collected studies reveal the essential need to construct another taxonomy layer and review studies on finger vein biometric verification systems. This map-matching for both taxonomies is developed for this study to go deeply into the sensor field and determine novel risks and benefits for patient security and privacy on client and server sides in telemedicine applications. In the second layer of our taxonomy, the literature on finger vein biometric verification systems is analysed and reviewed. In this layer, we obtain a final set of 65 articles classified into four categories. In the first category, 80% (n = 52/65) of the articles focus on development and design. In the second category, 12.30% (n = 8/65) includes evaluation and comparative articles. These articles are not intensively included in our literature analysis. In the third category, 4.61% (n = 3/65) includes articles about analytical studies. In the fourth category, 3.07% (n = 2/65) comprises reviews and surveys. This study aims to provide researchers with an up-to-date overview of studies that have been conducted on (user/patient) authentication to enhance the security level in telemedicine or any information system. In the current study, taxonomy is presented by explaining previous studies. Moreover, this review highlights the motivations, challenges and recommendations related to finger vein biometric verification systems and determines the gaps in this research direction (protection of finger vein templates in real time), which represent a new research direction in this area.
    Matched MeSH terms: Confidentiality
  19. Mohsin AH, Zaidan AA, Zaidan BB, Ariffin SAB, Albahri OS, Albahri AS, et al.
    J Med Syst, 2018 Oct 29;42(12):245.
    PMID: 30374820 DOI: 10.1007/s10916-018-1103-6
    In real-time medical systems, the role of biometric technology is significant in authentication systems because it is used in verifying the identity of people through their biometric features. The biometric technology provides crucial properties for biometric features that can support the process of personal identification. The storage of biometric template within a central database makes it vulnerable to attack which can also occur during data transmission. Therefore, an alternative mechanism of protection becomes important to develop. On this basis, this study focuses on providing a detailed analysis of the extant literature (2013-2018) to identify the taxonomy and research distribution. Furthermore, this study also seeks to ascertain the challenges and motivations associated with biometric steganography in real-time medical systems to provide recommendations that can enhance the efficient use of real-time medical systems in biometric steganography and its applications. A review of articles on human biometric steganography in real-time medical systems obtained from three main databases (IEEE Xplore, ScienceDirect and Web of Science) is conducted according to an appropriate review protocol. Then, 41 related articles are selected by using exclusion and inclusion criteria. Majority of the studies reviewed had been conducted in the field of data-hiding (particularly steganography) technologies. In this review, various steganographic methods that have been applied in different human biometrics are investigated. Thereafter, these methods are categorised according to taxonomy, and the results are presented on the basis of human steganography biometric real-time medical systems, testing and evaluation methods, significance of use and applications and techniques. Finally, recommendations on how the challenges associated with data hiding can be addressed are provided to enhance the efficiency of using biometric information processed in any authentication real-time medical system. These recommendations are expected to be immensely helpful to developers, company users and researchers.
    Matched MeSH terms: Confidentiality
  20. Yusof Kadikon, Imran Mohd Shafek, M. Maarof Bahurdin
    MyJurnal
    In Malaysia, the number of Musculoskeletal Disorder (MSD) cases is increasing . Rapid Upper Limb Assessment
    (RULA) is carried out in a physical paper form which is cumbersome and based on the complex nature and it should
    consider human error. This project aims to create the RULA application for mobile devices featuring the android system
    for this move will cut down the process time by more than half, create a more structured system and eliminate human
    error wholly. The application will be designed on the App Inventor website which features a lot of handy tutorials
    and takes the initiative to create a RULA mobile app for Android phones. The RULA mobile app for Android phones
    is intended to make it easier and much more efficient to conduct a RULA analysis. Additionally, the analyses can be
    conducted by minimally trained users, eliminating the need for highly trained technicians. RULA test is performed to
    achieve accurate results and the mathematical processes will be programmed into the app so that the user will have a
    friendly interface and will only be asked to tick boxes.
    Matched MeSH terms: Confidentiality
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links