Displaying publications 1 - 20 of 149 in total

Abstract:
Sort:
  1. Zuraidah Salleh, Nik Rozlin Nik Masdek, Koay Mei Hyie, Syarifah Yunus
    MyJurnal
    Kenaf fibre is one of the natural fibers that has received much attention of many researchers because of its good properties and flexible use. Kenaf fibre composites have been proposed as interior building materials. In this study, the recycling effect on the kenaf PVC wall panel is focused. The main objective of this study is to determine the mechanical properties of different types of kenaf PVC wall panels. The samples were formulated based on the first and third recycling process. The specimens were subjected to several types of tests, namely, tensile, izod impact, flexural and hardness based on ASTM D3039, ASTM D256, ASTM D7264 and ASTM D785, respectively. The results indicate that the mechanical properties of the third recycled kenaf PVC wall panel product is better than the virgin and first recycled specimen. This shows that the recycling process enhances the mechanical properties of the product. On the other hand, the hardness of the specimen decreases after first recycling due to the reheating effect.
    Matched MeSH terms: Construction Materials
  2. Zhongwei Liu, Jinsheng Jia, Wei Feng, Fengling Ma, Cuiying Zheng
    Sains Malaysiana, 2017;46:2101-2108.
    Shear strength is currently a significant parameter in the design of cemented sand gravel and rock (CSGR) dams. Shear strength tests were carried out to compare material without layers noumenon and layer condition. The experimental results showed good linearity in the curves of shear strength and pure grinding tests with correlation coefficients of nearly 97%. The friction coefficient was similar to that of C10 roller-compacted concrete (RCC), but the cohesion value was weaker than that of RCC. The shear strength of the CSGR layers decreased by 40% when retarding mixtures were not added and the layer was paved immediately after 4 h of waiting interval.
    Matched MeSH terms: Construction Materials
  3. Zhao X, Lim SK, Tan CS, Li B, Ling TC, Huang R, et al.
    Materials (Basel), 2015 Jan 30;8(2):462-473.
    PMID: 28787950 DOI: 10.3390/ma8020462
    Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.
    Matched MeSH terms: Construction Materials
  4. Zhao QQ, Chen MY, He RL, Zhang ZF, Ashraf MA
    Saudi J Biol Sci, 2016 Jan;23(1):S137-41.
    PMID: 26858558 DOI: 10.1016/j.sjbs.2015.08.010
    This review summarizes the research on timber construction materials used in bridge construction. It focuses on the application of antiseptic treatments and the use of timber engineering materials in decks and bridges. This review also provides an overview on the future research and prospects of engineered timber materials.
    Matched MeSH terms: Construction Materials
  5. Zalina Laili, Muhamad Samudi Yasir, Mohd Abdul Wahab Yusof
    Sains Malaysiana, 2017;46:1617-1623.
    The influence of water-to-cement ratio (w/c) on the compressive strength of cement-biochar-spent resins matrix was
    investigated. Spent resins waste from nuclear reactor operation was solidified using cement with w/c ranging from 0.35
    to 0.90 by weight. In this study, biochar was used as a cement admixture. Some properties of spent resins and biochar
    were determined prior to the formulation study. Compressive strength of harden cement-biochar-spent resins matrix
    was determined at 28 days. The compressive strength of cement-biochar-spent resins matrix was found to depend on the
    w/c and the amount of spent resins added to the formulation. The immersion test of cement-biochar-spent resins matrix
    showed no significant effects of cracking and swelling. The compressive strength of the cement-biochar-spent resins
    matrix increased after two weeks in water immersion test.
    Matched MeSH terms: Construction Materials
  6. Zakaria NM, Yusoff NI, Hardwiyono S, Nayan KA, El-Shafie A
    ScientificWorldJournal, 2014;2014:594797.
    PMID: 25276854 DOI: 10.1155/2014/594797
    Enhanced resonance search (ERS) is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner). This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard.
    Matched MeSH terms: Construction Materials/analysis*
  7. Zainazlan Md Zain1, Mohd Nasir Taib, Shahrizam M. S. Baki, Azni Zain Ahmed
    MyJurnal
    This paper examines the temperature profile of a building material and also a
    built space. The study directly examines the influence of solar radiation on
    building material and the heat it generated and diffuses into the built space.
    Two experiments are presented. The first look at a simple technique for
    evaluating heat performance of a building material, and the second evaluates
    the performance of a cross-ventilated built space with respect to solar radiation.
    Matched MeSH terms: Construction Materials
  8. Yuan H, Shen L
    Waste Manag, 2011 Apr;31(4):670-9.
    PMID: 21169008 DOI: 10.1016/j.wasman.2010.10.030
    Research interests in addressing construction and demolition (C&D) waste management issues have resulted in a large amount of publications during the last decade. This study demonstrates that there is no systematic examination on the research development in literature in the discipline of C&D waste management. This study presents the latest research trend in the discipline through analyzing the publications from 2000 to 2009 in eight major international journals. The analysis is conducted on the number of papers published annually, main authors' contributions, research methods and data analysis methods adopted, and research topics covered. The results exhibit an increasing research interest in C&D waste management in recent years. Researchers from developed economies have contributed significantly to the development of the research in the discipline. Some developing countries such as Malaysia and China have also been making good efforts in promoting C&D waste management research. The findings from this study also indicate that survey and case study are major methods for data collection, and the data are mostly processed through descriptive analysis. It is anticipated that more future studies on C&D waste management will be led by researchers from developing economies, where construction works will remain their major economic activities. On the other hand, more sophisticated modeling and simulating techniques have been used effectively in a number of studies on C&D waste management research, and this is considered a major methodology for future research in the discipline. C&D waste management will continue to be a hot research topic in the future, in particularly, the importance of human factors in C&D waste management has emerged as a new challenging topic.
    Matched MeSH terms: Construction Materials*
  9. Yin CY, Wan Ali WS, Lim YP
    J Hazard Mater, 2008 Jan 31;150(2):413-8.
    PMID: 17543446
    In this study, solidification/stabilization (S/S) of nickel hydroxide sludge using ordinary Portland cement (OPC) and oil palm ash (OPA) was carried out. The effects of increased substitution of OPA wt% in the S/S mix designs on the treated samples' physical and chemical characteristics were investigated. The physical characteristics studied were unconfined compressive strength (UCS) and changes in crystalline phases while chemical characteristics studied were leachability of nickel and leachate pH. Results indicated the optimum mix design for S/S of nickel hydroxide sludge using both OPC and OPA at B/S(d)=1 in terms of cost-effectiveness and treatment efficiency was 15 wt% OPA, 35 wt% OPC and 50 wt% sludge. The sufficient UCS and low leached nickel concentrations shown for this mix design indicate the viability of using OPA as substitute of OPC as it can significantly reduce cost normally incurred by usage of high amounts of OPC.
    Matched MeSH terms: Construction Materials*
  10. Yew MK, Bin Mahmud H, Ang BC, Yew MC
    ScientificWorldJournal, 2014;2014:387647.
    PMID: 24982946 DOI: 10.1155/2014/387647
    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3-5, 6-9, and 10-15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10-15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.
    Matched MeSH terms: Construction Materials*
  11. Yeo JS, Koting S, Onn CC, Mo KH
    Environ Sci Pollut Res Int, 2021 Jun;28(23):29009-29036.
    PMID: 33881693 DOI: 10.1007/s11356-021-13836-3
    Paving block is a widely used pavement material due to its long service life, fast and easy production and easily replaced for maintenance purpose. The huge production volume of paving blocks consumes large amount of natural aggregates such as sand and granite. Therefore, there is a necessity to review the utilization of alternative materials as the aggregate replacement to cut down both the consumption of natural resources and disposal of various waste. This paper thus analyses published works and provides a summary of knowledge on the effect of utilizing selected waste materials such as soda-lime glass, cathode ray tube (CRT) glass, recycled concrete waste, marble waste, crumb rubber (CR) waste and waste foundry sand (WFS) as aggregate replacement in concrete paving blocks fabrication. The influence of each waste material on the properties of paving block is discussed and highlighted in this paper. The adherence of the waste material paving block to the standard requirements is also presented to provide a clear direction on the utilization of these materials for practical application. Soda-lime glass, CRT glass, pre-treated RCA and calcined WFS have the potential to be utilized in high quantities (30-100%), normal RCA and marble waste can be incorporated in moderate amount (30%) while CR waste and WFS is limited to low amount (6-10%). In overall, the usage of waste materials as aggregate replacement has good potential for producing eco-friendly concrete paving block towards the sustainable development of construction material.
    Matched MeSH terms: Construction Materials
  12. Yeap KS, Mohd Yaacob N, Rao SP, Hashim NR
    Waste Manag Res, 2012 Dec;30(12):1251-60.
    PMID: 23103414 DOI: 10.1177/0734242X12465459
    This article presents lessons learned from a design project that explored the possibility of incorporating waste into the design of a school prototype. The authors worked with professional architects, a waste artist, environmental scientists and local waste operators to uncover new uses and applications for discarded items. As a result, bottles, aluminium cans, reclaimed doors, crushed concrete and second-hand bricks, etc. were identified, explored and integrated into the architectural design. This article serves as a catalyst that advocates the use of reclaimed materials in the field of design and planning. In particular, it highlights the challenges and issues that need to be addressed in carrying out design work with waste. Designers and practitioners interested in minimizing waste generation by proposing the use of reclaimed materials will find this article useful.
    Matched MeSH terms: Construction Materials/utilization
  13. Wong LP, Alias H, Aghamohammadi N, Nik Sulaiman NM
    Biomed Environ Sci, 2018 09;31(9):705-711.
    PMID: 30369349 DOI: 10.3967/bes2018.095
    Matched MeSH terms: Construction Materials/statistics & numerical data
  14. Wirawan R, Zainudin E, Sapuan S
    Poly (vinyl chloride), which is commonly abbreviated as PVC, is widely used due to it being inexpensive, durable, and flexible. As a hard thermoplastic, PVC is used in the applications such as in building materials pipe and plumbing. The factors that should be considered in using PVC is safety and environmental issues. Mixing PVC with natural fibres is an interesting alternative. The main challenge in the research on natural fibre/polymer composites is the poor compatibility between the fibres and the matrix because this will affect their bonding strength. During the mixing with PVC, some natural fibres may acts as reinforcing materials while other natural fibres only act as filler, which contribute less to mechanical strength improvement. However, generally natural fibres also give positive outcome to the stiffness of the composites while decreasing the density.
    Matched MeSH terms: Construction Materials
  15. Wei Chong B, Othman R, Jaya RP, Shu Ing D, Li X, Wan Ibrahim MH, et al.
    Materials (Basel), 2021 Mar 28;14(7).
    PMID: 33800634 DOI: 10.3390/ma14071658
    Image analysis techniques are gaining popularity in the studies of civil engineering materials. However, the current established image analysis methods often require advanced machinery and strict image acquisition procedures which may be challenging in actual construction practices. In this study, we develop a simplified image analysis technique that uses images with only a digital camera and does not have a strict image acquisition regime. Mortar with 10%, 20%, 30%, and 40% pozzolanic material as cement replacement are prepared for the study. The properties of mortar are evaluated with flow table test, compressive strength test, water absorption test, and surface porosity based on the proposed image analysis technique. The experimental results show that mortar specimens with 20% processed spent bleaching earth (PSBE) achieve the highest 28-day compressive strength and lowest water absorption. The quantified image analysis results show accurate representation of mortar quality with 20% PSBE mortar having the lowest porosity. The regression analysis found strong correlations between all experimental data and the compressive strength. Hence, the developed technique is verified to be feasible as supplementary mortar properties for the study of mortar with pozzolanic material.
    Matched MeSH terms: Construction Materials
  16. Vakili AH, Selamat MR, Moayedi H
    ScientificWorldJournal, 2013;2013:547615.
    PMID: 23864828 DOI: 10.1155/2013/547615
    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone.
    Matched MeSH terms: Construction Materials*
  17. Umar UA, Shafiq N, Isa MH
    Waste Manag Res, 2018 Dec;36(12):1157-1165.
    PMID: 30114979 DOI: 10.1177/0734242X18790359
    The construction sector is among the fastest growing sectors in Malaysia; it consumes a vast amount of natural resources and produces a massive volume of construction and demolition waste. The waste is collected in a decentralised manner by sub-contracted companies. It is challenging to obtain reliable information on the amount of construction waste generated, because it is hard to determine its exact quantity and composition. Therefore, this study proposes a quantitative construction waste estimation model for residential buildings according to available data collected from the Construction Industry Development Board, Malaysia. In the development of this model, a theoretical investigation of the construction procedure and the construction waste generation process was conducted. The waste generated rate was determined as 25.79 kg m-2 for new residential constructions, which translates into about 553,406 t of anticipated waste annually.
    Matched MeSH terms: Construction Materials
  18. Umar Kassim, Omar Mohd Rohim
    MyJurnal
    In accordance upon conservation efforts, this research emphasizes on prevention of
    environmental pollution and considers the elements of sustainable of infrastructure
    construction materials, which is interlocking pavement block. The development of this
    innovative product apply the concept of 3Rs and waste to wealth by using the
    agricultural waste product, coconut shell, where widely available with very minimum
    cost worldwide especially in tropical country such as India, Indonesia, Philippines,
    Thailand and Malaysia. The main objective of this research is to produce an
    environmental friendly product with a good quality, low cost and lightweight known as
    Green Interlocking Pavement (GIP Block). The chemical composition of coconut shell
    ash and ordinary Portland cement being identified and compared to know whether it
    is able to react as a good binder in the mixture or not. The quality of GIP Block
    considered is compressive strength, water absorption and bulk density. All the blocks
    were curing in seven and 28 days before implementing the entire test. The existing
    interlocking pavement used as bench mark and GIP Block 0% of proportion of coconut
    shell ash used as control variables. The specimen of the interlocking pavement
    prepared in this research is 10%, 20% and 30% proportion of coconut shell ash to
    partially replace the quantity of cement. The ratio of the interlocking pavement apply
    in this research is 1:2 which stand for one part cement and two part of sand. The
    findings withdrawn from this research are: first, the chemical characteristic of the
    coconut shell ash and cement. Second, the value of bulk density slightly reduces as the
    percentage of coconut shell ash increases. Third, the additional of coconut shell ash to
    partially replace the quantity of cement in the product reduce the compressive
    strength and increase the percentage of water absorption.
    Matched MeSH terms: Construction Materials
  19. Tanveer Ahmed Khan, Mohd Raihan Taha, Ali Asghar Firoozi, Ali Akbar Firoozi
    Sains Malaysiana, 2017;46:1269-1267.
    Environmental concerns have significantly influenced the construction industry regarding the identification and use of environmentally sustainable construction materials. In this context, enzymes (organic materials) have been introduced recently for ground improvement projects such as pavements and embankments. The present experimental study was carried out in order to evaluate the compressive strength of a sedimentary residual soil treated with three different types of enzymes, as assessed through a California bearing ratio (CBR) test. Controlled untreated and treated soil samples containing four dosages (the recommended dose and two, five and 10 times the recommended dose) were prepared, sealed and cured for four months. Following the curing period, samples were soaked in water for four days before the CBR tests were administered. These tests showed no improvement in the soil is compressive strength; in other words, samples prepared even at higher dosages did not exhibit any improvement. Nuclear magnetic resonance (NMR) spectroscopy tests were carried out on three enzymes in order to study the functional groups present in them. Furthermore, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) tests were executed for untreated and treated soil samples to determine if any chemical reaction took place between the soil and the enzymes. Neither of the tests (XRD nor FESEM) revealed any change. In fact, the XRD patterns and FESEM images for untreated and treated soil samples were indistinguishable.
    Matched MeSH terms: Construction Materials
  20. Talebi E, Tahir MM, Zahmatkesh F, Yasreen A, Mirza J
    ScientificWorldJournal, 2014;2014:672629.
    PMID: 24526915 DOI: 10.1155/2014/672629
    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.
    Matched MeSH terms: Construction Materials/standards*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links