Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Foo JB, Low ML, Lim JH, Lor YZ, Zainol Abidin R, Eh Dam V, et al.
    Biometals, 2018 08;31(4):505-515.
    PMID: 29623473 DOI: 10.1007/s10534-018-0096-4
    Copper complexes have been widely studied for the anti-tumour application as cancer cells are reported to take up greater amounts of copper than normal cells. Preliminary study revealed that the newly synthesised copper complex [Cu(SBCM)2] displayed marked anti-proliferative towards triple-negative MDA-MB-231 breast cancer cells. Therefore, Cu(SBCM)2 has great potential to be developed as an agent for the management of breast cancer. The present study was carried out to investigate the mode of cell death induced by Cu(SBCM)2 towards MDA-MB-231 breast cancer cells. The inhibitory and morphological changes of MDA-MB-231 cells treated with Cu(SBCM)2 was determined by using MTT assay and inverted light microscope, respectively. The safety profile of Cu(SBCM)2 was also evaluated towards human dermal fibroblast (HDF) normal cells. Confirmation of apoptosis and cell cycle arrest were determined by flow cytometry analysis. The expression of p53, Bax, Bcl-2 and MMP2 protein were detected with western blot analysis. Cu(SBCM)2 significantly inhibited the growth of MDA-MB-231 cells in a dose-dependent manner with GI50 18.7 ± 3.06 µM. Indeed, Cu(SBCM)2 was less toxic towards HDF normal cells with GI50 31.8 ± 4.0 µM. Morphological study revealed that Cu(SBCM)2-treated MDA-MB-231 cells experienced cellular shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies, suggesting that Cu(SBCM)2 induced apoptosis in the cells, which was confirmed by Annexin-V/PI flow cytometry analysis. It was also found that Cu(SBCM)2 induced G2/M phase cell cycle arrest towards MDA-MB-231 cells. The induction of apoptosis and cell cycle arrest in the present study is possibly due to the down-regulation of the mutant p53 and MMP2 protein. In conclusion, Cu(SBCM)2 can be developed as a targeted therapy for the treatment of triple-negative breast cancer.
    Matched MeSH terms: Coordination Complexes/chemistry*
  2. Yusoh NA, Ahmad H, Gill MR
    ChemMedChem, 2020 Nov 18;15(22):2121-2135.
    PMID: 32812709 DOI: 10.1002/cmdc.202000391
    Platinum drugs are heavily used first-line chemotherapeutic agents for many solid tumours and have stimulated substantial interest in the biological activity of DNA-binding metal complexes. These complexes generate DNA lesions which trigger the activation of DNA damage response (DDR) pathways that are essential to maintain genomic integrity. Cancer cells exploit this intrinsic DNA repair network to counteract many types of chemotherapies. Now, advances in the molecular biology of cancer has paved the way for the combination of DDR inhibitors such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) and agents that induce high levels of DNA replication stress or single-strand break damage for synergistic cancer cell killing. In this review, we summarise early-stage, preclinical and clinical findings exploring platinum and emerging ruthenium anti-cancer complexes alongside PARPi in combination therapy for cancer and also describe emerging work on the ability of ruthenium and gold complexes to directly inhibit PARP activity.
    Matched MeSH terms: Coordination Complexes/chemistry
  3. Lintang HO, Kinbara K, Yamashita T, Aida T
    Chem Asian J, 2012 Sep;7(9):2068-72.
    PMID: 22431445 DOI: 10.1002/asia.201200041
    An organometallic/silica nanocomposite of a 1D cylindrical assembly of a trinuclear gold(I)-pyrazolate complex ([Au(3)Pz(3)]) that was confined inside the nanoscopic channels of hexagonal mesoporous silica ([Au(3)Pz(3)]/silica(hex)), emitted red light with a luminescence center at 693 nm upon photoexcitation at 276 nm owing to a Au(I)-Au(I) metallophilic interaction. When a film of [Au(3)Pz(3)]/silica(hex) was dipped into a solution of Ag(+) in tetrahydrofuran (THF), the resulting nanocomposite material (Ag@[Au(3)Pz(3)]/silica(hex)) emitted green light with a new luminescence center at 486 nm, which was characteristic of a Au(I)-Ag(I) heterometallic interaction. Changes in the emission/excitation and XPS spectra of Ag@[Au(3)Pz(3)]/silica(hex) revealed that Ag(+) ions permeated into the congested nanochannels of [Au(3)Pz(3)]/silica(hex), which were filled with the cylindrical assembly of [Au(3)Pz(3)].
    Matched MeSH terms: Coordination Complexes/chemistry*
  4. Ibrahim AA, Khaledi H, Hassandarvish P, Mohd Ali H, Karimian H
    Dalton Trans, 2014 Mar 14;43(10):3850-60.
    PMID: 24442181 DOI: 10.1039/c3dt53032a
    A new thiosemicarbazone (LH2) derived from indole-7-carbaldehyde was synthesized and reacted with Zn(II), Cd(II), Pd(II) and Pt(II) salts. The reactions with zinc and cadmium salts in 2 : 1 (ligand-metal) molar ratio afforded complexes of the type MX2(LH2)2, (X = Cl, Br or OAc), in which the thiosemicarbazone acts as a neutral S-monodentate ligand. In the presence of potassium hydroxide, the reaction of LH2 with ZnBr2 resulted in deprotonation of the thiosemicarbazone at the hydrazine and indole nitrogens to form Zn(L)(CH3OH). The reaction of LH2 with K2PdCl4 in the presence of triethylamine, afforded Pd(L)(LH2) which contains two thiosemicarbazone ligands: one being dianionic N,N,S-tridentate while the other one is neutral S-monodentate. When PdCl2(PPh3)2 was used as the Pd(II) ion source, Pd(L)(PPh3) was obtained. In a similar manner, the analogous platinum complex, Pt(L)(PPh3), was synthesized. The thiosemicarbazone in the latter two complexes behaves in a dianionic N,N,S-tridentate fashion. The platinum complex was found to have significant cytotoxicity toward four cancer cells lines, namely MDA-MB-231, MCF-7, HT-29, and HCT-116 but not toward the normal liver WRL-68 cell line. The apoptosis-inducing properties of the Pt complex was explored through fluorescence microscopy visualization, DNA fragmentation analysis and propidium iodide flow cytometry.
    Matched MeSH terms: Coordination Complexes/chemistry
  5. Ng CH, Wang WS, Chong KV, Win YF, Neo KE, Lee HB, et al.
    Dalton Trans, 2013 Jul 28;42(28):10233-43.
    PMID: 23728518 DOI: 10.1039/c3dt50884f
    Chiral enantiomers [Cu(phen)(L-threo)(H2O)]NO3 1 and [Cu(phen)(D-threo)(H2O)]NO3 2 (threo = threoninate) underwent aldol-type condensation with formaldehyde, with retention of chirality, to yield their respective enantiomeric ternary copper(II) complexes, viz. L- and D-[Cu(phen)(5MeOCA)(H2O)]NO3·xH2O (3 and 4; phen = 1,10-phenanthroline; 5MeOCA = 5-methyloxazolidine-4-carboxylate; x = 0-3) respectively. These chiral complexes were characterized by FTIR, elemental analysis, circular dichroism, UV-Visible spectroscopy, fluorescence spectroscopy (FL), molar conductivity measurement, ESI-MS and X-ray crystallography. Analysis of restriction enzyme inhibition by these four complexes revealed modulation of DNA binding selectivity by the type of ligand, ligand modification and chirality. Their interaction with bovine serum albumin was investigated by FL and electronic spectroscopy. With the aid of the crystal structure of BSA, spectroscopic evidence suggested their binding at the cavity containing Trp134 with numerous Tyr residues in subdomain IA. The products were more antiproliferative than cisplatin against cancer cell lines HK-1, MCF-7, HCT116, HSC-2 and C666-1 except HL-60, and were selective towards nasopharyngeal cancer HK-1 cells over normal NP69 cells of the same organ type.
    Matched MeSH terms: Coordination Complexes/chemistry*
  6. Imran M, Rehman ZU, Hogarth G, Tocher DA, Chaudhry GE, Butler IS, et al.
    Dalton Trans, 2020 Nov 10;49(43):15385-15396.
    PMID: 33140800 DOI: 10.1039/d0dt03018j
    The syntheses of two platinum(ii) dithiocarbamate complexes (1 and 2) that show quinoplatin- and phenanthriplatin-type axial protection of the Pt-plane are described. The Pt-plane of complex 2 is axially more protected than that of complex 1. Furthermore, both complexes adopt two different stereochemical conformations in the solid state (based on single-crystal X-ray structures) owing to the structurally flexible piperazine backbone; i.e., C-e,e-Anti (1) and C-e,a-Syn (2), where "C" stands for the chair configuration, "e" and "a" stand for the equatorial and axial positions and "Anti" (opposite side) and "Syn" (same side) represent the relative orientations in space of the terminal substituents on the piperazine ring. In complex 2, the C-e,a-Syn conformation may provide additional steric hindrance to the Pt-plane. Despite the lower lipophilicity of 2 as compared to that of 1, the in vitro anticancer action against selected cancer cell lines is better for the former revealing the superior role of the axial protection over lipophilicity in modulating anticancer activity. The activity against the cancer promoting protein NF-κB signifies that the mode of cancer cell death may be the result of hindering the activity of NF-κB in the initiation of apoptosis. The apoptotic mode of cell death has been established earlier in a study using Annexin V-FITC. Finally, DNA binding studies revealed that the complex-DNA adduct formation is spontaneous and the mode of interaction is non-intercalative (electrostatic/covalent).
    Matched MeSH terms: Coordination Complexes/chemistry*
  7. Lee KY, Ng YL, Wang WS, Ng PY, Chan CW, Lai JW, et al.
    Dalton Trans, 2019 Apr 09;48(15):4987-4999.
    PMID: 30916098 DOI: 10.1039/c9dt00506d
    Chiral enantiomers [Cu(phen)(l-ser)(H2O)]NO31 and [Cu(phen)(d-ser)(H2O)]NO32 (ser = serinato) underwent aldol-type condensation with formaldehyde, with retention of chirality, to yield their respective enantiomeric ternary copper(ii) complexes, viz. l- and d-[Cu(phen)(OCA)(H2O)]NO3·xH2O (3 and 4; phen = 1,10-phenanthroline; OCA = oxazolidine-4-carboxylate; x = 1/2, 0-2) respectively. These chiral complexes were characterized by FTIR, elemental analysis, circular dichroism, UV-visible spectroscopy, fluorescence spectroscopy (FL), molar conductivity measurement, ESI-MS and X-ray crystallography. The crystal structures of 1 and 3 showed both the cationic complexes to have a square pyramidal geometry. These complexes were about nine fold more potent than cisplatin against metastatic MDA-MB-231 breast cancer cells, inducing apoptotic cell death via ROS generation and a massive drop in mitochondrial membrane potential. The results of monitoring EZH1, EZH2 and H3K27me3 revealed that the mode of action of 1-4 also involved the downregulation of EZH2 and it seemed to be independent of the H3K27me3 status.
    Matched MeSH terms: Coordination Complexes/chemistry
  8. Arafath MA, Al-Suede FSR, Adam F, Al-Juaid S, Khadeer Ahamed MB, Majid AMSA
    Drug Dev Res, 2019 09;80(6):778-790.
    PMID: 31215682 DOI: 10.1002/ddr.21559
    The bidentate N-cyclohexyl-2-(3-hydroxy-4-methoxybenzylidene)hydrazine-1-carbothioamide Schiff base ligand (HL) was coordinated to divalent nickel, palladium and platinum ions to form square planar complexes. The nickel and palladium complexes, [NiL2 ], [PdL2 ] form square planar complexes with 2:1 ligand to metal ratio. The platinum complex, [PtL(dmso)Cl] formed a square planar complex with 1:1 ligand to metal ratio. Platinum undergoes in situ reaction with DMSO before complexing with the ligand in solution. The cytotoxicity of HL, [NiL2 ], [PdL2 ], and [PtL(dmso)Cl] were evaluated against human colon cancer cell line (HCT-116), human cervical cancer (Hela) cell line, melanoma (B16F10) cells, and human normal endothelial cell lines (Eahy926) by MTT assay. The [NiL2 ] complex displayed selective cytotoxic effect against the HCT 116 cancer cell line with IC50 of 7.9 ± 0.2 μM. However, HL, [PdL2 ], and [PtL(dmso)Cl] only exhibited moderate cytotoxic activity with IC50 = 75.9 ± 2.4, 100.0 ± 1.8, and 101.0 ± 3.6 μM, respectively. The potent cytotoxicity of [NiL2 ] was characterized using Hoechst and Rhodamine assays. The nickel complex, [NiL2 ], caused remarkable nuclear condensation and reduction in mitochondrial membrane potential. In addition, molecular docking studies confirms that [NiL2 ] possesses significant binding efficiency with Tyrosine kinase. Altogether, the results revealed that [NiL2 ] exhibits cytotoxicity against the cancer cells via Tyrosine kinase-induced proapoptosis pathway. This study demonstrates that the [NiL2 ] complex could be a promising therapeutic agent against colorectal carcinoma.
    Matched MeSH terms: Coordination Complexes/chemistry*
  9. Asif M, Iqbal MA, Hussein MA, Oon CE, Haque RA, Khadeer Ahamed MB, et al.
    Eur J Med Chem, 2016 Jan 27;108:177-187.
    PMID: 26649905 DOI: 10.1016/j.ejmech.2015.11.034
    The current mechanistic study was conducted to explore the effects of increased lipophilicity of binuclear silver(I)-NHC complexes on cytotoxicity. Two new silver(I)-N-Heterocyclic Carbene (NHC) complexes (3 and 4), having lypophilic terminal alkyl chains (Octyl and Decyl), were derived from meta-xylyl linked bis-benzimidazolium salts (1 and 2). Each of the synthesized compounds was characterized by microanalysis and spectroscopic techniques. The complexes were tested for their cytotoxicity against a panel of human cancer c as well normal cell lines using MTT assay. Based on MTT assay results, complex 4 was found to be selectively toxic towards human colorectal carcinoma cell line (HCT 116). Complex 4 was further studied in detail to explore the mechanism of cell death and findings of the study revealed that complex 4 has promising pro-apoptotic and anti-metastatic activities against HCT 116 cells. Furthermore, it showed pronounced cytostatic effects in HCT 116 multicellular spheroid model. Hence, binuclear silver(I)-NHC complexes with longer terminal aliphatic chains have worth to be further studied against human colon cancer for the purpose of drug development.
    Matched MeSH terms: Coordination Complexes/chemistry
  10. Netalkar PP, Netalkar SP, Budagumpi S, Revankar VK
    Eur J Med Chem, 2014 May 22;79:47-56.
    PMID: 24721314 DOI: 10.1016/j.ejmech.2014.03.083
    Air and moisture stable coordination compounds of late first row transition metals, viz. Co(II), Ni(II), Cu(II) and Zn(II), with a newly designed ligand, 2-(2-benzo[d]thiazol-2-yl)hydrazono)propan-1-ol (LH), were prepared and successfully characterized using various spectro-analytical techniques. The molecular structures of the ligand and nickel complex were unambiguously determined by single-crystal X-ray diffraction method. The [Ni(LH)2]Cl2.3H2O complex is stabilized by intermolecular CH⋯π stacking interactions between the methyl hydrogen and the C18 atom of the phenyl ring (C11-H11B⋯C18) forming 1D zig-zag chain structure. Both, the ligand and its copper complex, were electrochemically active in the working potential range, showing quasi-reversible redox system. The interactions of all the compounds with calf thymus DNA have been comprehensively investigated using electronic absorption spectroscopy, viscosity, electrochemistry and thermal denaturation studies. The cleavage reaction on pBR322 DNA has been monitored by agarose gel electrophoresis. The results showed that the ligand can bind to CT-DNA through partial intercalation, whereas the complexes bind electrostatically. Further, [Ni(LH)2]Cl2.3H2O and [CuLCl(H2O)2] complexes in the series have high binding and cleavage affinity towards pBR322 DNA. Additionally, all the compounds were screened for anti-tuberculosis activity. All the complexes revealed an MIC value of 0.8 μg/mL, which is almost 8 times active than standard used (Streptomycin, 6.25 μg/mL).
    Matched MeSH terms: Coordination Complexes/chemistry
  11. Low ML, Maigre L, Tahir MI, Tiekink ER, Dorlet P, Guillot R, et al.
    Eur J Med Chem, 2016 Sep 14;120:1-12.
    PMID: 27183379 DOI: 10.1016/j.ejmech.2016.04.027
    Copper (II) complexes synthesized from the products of condensation of S-methyl- and S-benzyldithiocarbazate with 2,5-hexanedione (SMHDH2 and SBHDH2 respectively) have been characterized using various physicochemical (elemental analysis, molar conductivity, magnetic susceptibility) and spectroscopic (infrared, electronic) methods. The structures of SMHDH2, its copper (II) complex, CuSMHD, and the related CuSBHD complex as well as a pyrrole byproduct, SBPY, have been determined by single crystal X-ray diffraction. In order to provide more insight into the behaviour of the complexes in solution, electron paramagnetic resonance (EPR) and electrochemical experiments were performed. Antibacterial activity and cytotoxicity were evaluated. The compounds, dissolved in 0.5% and 5% DMSO, showed a wide range of antibacterial activity against 10 strains of Gram-positive and Gram-negative bacteria. Investigations of the effects of efflux pumps and membrane penetration on antibacterial activity are reported herein. Antiproliferation activity was observed to be enhanced by complexation with copper. Preliminary screening showed Cu complexes are strongly active against human breast adenocarcinoma cancer cell lines MDA-MB-231 and MCF-7.
    Matched MeSH terms: Coordination Complexes/chemistry
  12. Sahu G, Banerjee A, Samanta R, Mohanty M, Lima S, Tiekink ERT, et al.
    Inorg Chem, 2021 Oct 18;60(20):15291-15309.
    PMID: 34597028 DOI: 10.1021/acs.inorgchem.1c01899
    Five new anionic aqueous dioxidovanadium(V) complexes, [{VO2L1,2}A(H2O)n]α (1-5), with the aroylhydrazone ligands pyridine-4-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L1) and furan-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L2) incorporating different alkali metals (A = Na+, K+, Cs+) as countercation were synthesized and characterized by various physicochemical techniques. The solution-phase stabilities of 1-5 were determined by time-dependent NMR and UV-vis, and also the octanol/water partition coefficients were obtained by spectroscopic techniques. X-ray crystallography of 2-4 confirmed the presence of vanadium(V) centers coordinated by two cis-oxido-O atoms and the O, N, and O atoms of a dianionic tridentate ligand. To evaluate the biological behavior, all complexes were screened for their DNA/protein binding propensity through spectroscopic experiments. Finally, a cytotoxicity study of 1-5 was performed against colon (HT-29), breast (MCF-7), and cervical (HeLa) cancer cell lines and a noncancerous NIH-3T3 cell line. The cytotoxicity was cell-selective, being more active against HT-29 than against other cells. In addition, the role of hydrophobicity in the cytotoxicity was explained in that an optimal hydrophobicity is essential for high cytotoxicity. Moreover, the results of wound-healing assays indicated antimigration in case of HT-29 cells. Remarkably, 1 with an IC50 value of 5.42 ± 0.15 μM showed greater activity in comparison to cisplatin against the HT-29 cell line.
    Matched MeSH terms: Coordination Complexes/chemistry
  13. Md Yusof EN, S A Ravoof TB, Tiekink ER, Veerakumarasivam A, Crouse KA, Mohamed Tahir MI, et al.
    Int J Mol Sci, 2015 May 15;16(5):11034-54.
    PMID: 25988384 DOI: 10.3390/ijms160511034
    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity.
    Matched MeSH terms: Coordination Complexes/chemistry
  14. Brza MA, Aziz SB, Anuar H, Al Hazza MHF
    Int J Mol Sci, 2019 Aug 11;20(16).
    PMID: 31405255 DOI: 10.3390/ijms20163910
    The present work proposed a novel approach for transferring high-risk heavy metals tometal complexes via green chemistry remediation. The method of remediation of heavy metals developed in the present work is a great challenge for global environmental sciences and engineering because it is a totally environmentally friendly procedure in which black tea extract solution is used. The FTIR study indicates that black tea contains enough functional groups (OH and NH), polyphenols and conjugated double bonds. The synthesis of copper complex was confirmed by the UV-vis, XRD and FTIR spectroscopic studies. The XRD and FTIR analysis reveals the formation of complexation between Cu metal complexes and Poly (Vinyl Alcohol) (PVA) host matrix. The study of optical parameters indicates that PVA-based hybrids exhibit a small optical band gap, which is close to inorganic-based materials. It was noted that the absorption edge shifted to lower photon energy. When Cu metal complexes were added to PVA polymer, the refractive index was significantly tuned. The band gap shifts from 6.2 eV to 1.4 eV for PVA incorporated with 45 mL of Cu metal complexes. The nature of the electronic transition in hybrid materials was examined based on the Taucs model, while a close inspection of the optical dielectric loss was also performed in order to estimate the optical band gap. The obtained band gaps of the present work reveal that polymer hybrids with sufficient film-forming capability could be useful to overcome the drawbacks associated with conjugated polymers. Based on the XRD results and band gap values, the structure-property relationships were discussed in detail.
    Matched MeSH terms: Coordination Complexes/chemistry*
  15. Jamil F, Teh AH, Schadich E, Saito JA, Najimudin N, Alam M
    J. Biochem., 2014 Aug;156(2):97-106.
    PMID: 24733432 DOI: 10.1093/jb/mvu023
    A truncated haemoglobin (tHb) has been identified in an acidophilic and thermophilic methanotroph Methylacidiphilium infernorum. Hell's Gate Globin IV (HGbIV) and its related tHbs differ from all other bacterial tHbs due to their distinctively large sequence and polar distal haem pocket residues. Here we report the crystal structure of HGbIV determined at 1.96 Å resolution. The HGbIV structure has the distinctive 2/2 α-helical structure with extensions at both termini. It has a large distal site cavity in the haem pocket surrounded by four polar residues: His70(B9), His71(B10), Ser97(E11) and Trp137(G8). This cavity can bind bulky ligands such as a phosphate ion. Conformational shifts of His71(B10), Leu90(E4) and Leu93(E7) can also provide more space to accommodate larger ligands than the phosphate ion. The entrance/exit of such bulky ligands might be facilitated by positional flexibility in the CD1 loop, E helix and haem-propionate A. Therefore, the large cavity in HGbIV with polar His70(B9) and His71(B10), in contrast to the distal sites of other bacterial tHbs surrounded by non-polar residues, suggests its distinct physiological functions.
    Matched MeSH terms: Coordination Complexes/chemistry
  16. Chin LF, Kong SM, Seng HL, Tiong YL, Neo KE, Maah MJ, et al.
    J Biol Inorg Chem, 2012 Oct;17(7):1093-105.
    PMID: 22825726 DOI: 10.1007/s00775-012-0923-y
    Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.
    Matched MeSH terms: Coordination Complexes/chemistry
  17. Hassan LR, Anouar EH, Bahron H, Abdullah F, Mohd Tajuddin A
    J Biol Inorg Chem, 2020 03;25(2):239-252.
    PMID: 31974764 DOI: 10.1007/s00775-020-01755-6
    Hydroxamic acids [R(CO)N(OH)R'] are flexible compounds for organic and inorganic analyses due to their frailer structures compared to the carboxylic acid. The syntheses and characterization of benzohydroxamic acid (BHA), its CH3-, OCH3-, Cl- para-substituted derivatives and their Cr(III) complexes are reported herein. The metal complexes were synthesized by reacting the hydroxamic acids with chromium(III) chloride hexahydrate in 2:1 molar ratio. The compounds were characterized via melting point, elemental analysis, FTIR, 1H and 13C NMR, TGA, mass spectrometry, molar conductance and UV-Visible. Data analysis suggests that each complex has the Cr(III) center coordinated to the carbonyl and hydroxy oxygen atoms of the hydroxamic acids in bidentate O,O manner and two water molecules to form octahedral geometry. Non-electrolytic behavior of the complexes was shown through their low molar conductivity. Cytotoxicity study against HCT116 and alpha-glucosidase inhibition test revealed that all complexes have higher activity than their parent ligands. Molecular docking study shows that the docking of active complexes is thermodynamically favorable and the inhibition efficiency may depend on the types and the numbers of molecular interactions established in the corresponding stable conformers.
    Matched MeSH terms: Coordination Complexes/chemistry
  18. Mohd Sukri SA, Heng LY, Abd Karim NH
    J Fluoresc, 2017 May;27(3):1009-1023.
    PMID: 28224358 DOI: 10.1007/s10895-017-2035-0
    The platinum(II) salphen complex N,N'-Bis-4-(hydroxysalicylidene)-phenylenediamine-platinum(II); (1) and its two derivatives containing hydroxyl functionalized side chains N,N'-bis-[4-[[1-(2-hydroxyethoxy)] salicylidene] phenylenediamine-platinum(II); (2) and N,N'-bis-[4-[[1-(3-hydroxypropoxy)] salicylidene] phenylenediamine-platinum(II); (3) were synthesized and characterized. The structures of the complexes were confirmed by 1H and 13C NMR spectroscopy, FTIR, ESI-MS and CHN elemental analyses. The effects of the hydroxyl substituent on the spectral properties and the DNA binding behaviors of the Pt(II) complexes were explored. The binding mode and interactions of these complexes with duplex DNA (calf thymus DNA and porcine DNA) and also single-stranded DNA were studied by UV-Vis and emission DNA titration. The complexes interact with DNA by intercalation binding mode with the binding constants in the order of magnitude (Kb = 104 M-1, CT-DNA) and (Kb = 105 M-1, porcine DNA). The intercalation of the complex in the DNA structure was proposed to happen by π-π stacking due to its square-planar geometry and aromatic rings structure. The phosphorescence emission spectral characteristics of Pt(II) complexes when interacted with DNA have been studied. Also, the application of the chosen hydroxypropoxy side chains complex (3) as an optical DNA biosensor, specifically for porcine DNA was investigated. These findings will be valuable for the potential use of the platinum(II) salphen complex as an optical DNA biosensor for the detection of porcine DNA in food products.
    Matched MeSH terms: Coordination Complexes/chemistry*
  19. Ng CH, Chan CW, Lai JW, Ooi IH, Chong KV, Maah MJ, et al.
    J Inorg Biochem, 2016 07;160:1-11.
    PMID: 27105312 DOI: 10.1016/j.jinorgbio.2016.04.003
    Like chiral organic drugs, the chemical and biological properties of metal complexes can be dependent on chirality. Two pairs of [Cu(phen)(ala)(H2O)]X·xH2O (phen=1.10-phenanthroline: X=NO3(-); ala: l-alanine (l-ala), 1 and d-alanine (d-ala) 2; and (X=Cl(-); ala: l-ala, 3 and d-ala, 4) complex salts (x=number of lattice water molecules) have been synthesized and characterized. The crystal structure of 3 has been determined. The same pair of enantiomeric species, viz. [Cu(phen)(l-ala)(H2O)](+) and [Cu(phen)(d-ala)(H2O)](+), have been identified to be present in the aqueous solutions of both 1 and 3, and in those of both 2 and 4 respectively. Both 3 and 4 bind more strongly to ds(AT)6 than ds(CG)6. There is no or insignificant effect of the chirality of 3 and 4 on the production of hydroxyl radicals, binding to deoxyribonucleic acid from calf thymus (CT-DNA), ds(CG)6, G-quadruplex and 17-base pair duplex, and inhibition of both topoisomerase I and proteasome. Among the three proteasome proteolytic sites, the trypsin-like site is inhibited most strongly by these complexes. However, the chirality of 3 and 4 does affect the number of restriction enzymes inhibited, and their binding constants towards ds(AT)6 and serum albumin.
    Matched MeSH terms: Coordination Complexes/chemistry*
  20. Zafar MN, Butt AM, Chaudhry GE, Perveen F, Nazar MF, Masood S, et al.
    J Inorg Biochem, 2021 11;224:111590.
    PMID: 34507110 DOI: 10.1016/j.jinorgbio.2021.111590
    The bidentate N-(1-Alkylpyridin-4(1H)-ylidene)amide (PYA) pro-ligands [H2LBn][Cl]2 (2), and [H2LMe][TfO]2 (3) were prepared by simple alkylation reactions of the known compound, N,N-di(pyridin-4-yl)oxalamide (H2L, 1). The Pd(II) complexes, [Pd(LBn)2][Cl]2 (4), [Pd(LMe)2][Cl][TfO] (5), Pd(LBn)Cl2 (6) and Pd(LMe)Cl2 (7) were synthesized through reactions between these pro-ligands and suitable Pd(II) substrates in the presence of base. The molecular structures of 3 and 6 were obtained by single crystal X-ray structure determinations. Studies of the experimental and computational DNA binding interactions of the compounds 1-7 revealed that overall 4 and 6 have the largest values for the binding parameters Kb and ΔGbo. The results showed a good correlation with the steric and electronic parameters obtained by quantitative structure activity relationship (QSAR) studies. In-vitro cytotoxicity studies against four different cell lines showed that the human breast cancer cell lines MCF-7, T47D and cervical cancer cell line HeLa had either higher or similar sensitivities towards 4, 6 and 2, respectively, compared to cisplatin. In general, the cytotoxicity of the compounds, represented by IC50 values, decreased in the order 4 > 6 > 2 > 5 > 3 > 1 > 7 in cancer cell lines. Apoptosis contributed significantly to the cytotoxic effects of these anticancer agents as evaluated by apoptosis studies.
    Matched MeSH terms: Coordination Complexes/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links