Displaying publications 1 - 20 of 102 in total

Abstract:
Sort:
  1. Zaki A, Chai HK, Aggelis DG, Alver N
    Sensors (Basel), 2015;15(8):19069-101.
    PMID: 26251904 DOI: 10.3390/s150819069
    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.
    Matched MeSH terms: Corrosion
  2. Zaifol Samsu, Mohd Harun, Mahdi E. Mahmoud, Norasiah Ab Kasim, Katrul Hisham Alahudin, Zaiton Selamat
    MyJurnal
    An air fin cooler system consists of a tube bundle that is used to cool the various processing fluids in process industries that utilizes air as a cooling medium. The said tubes failed when exposed to corrosive environment(s). Tubes located at the bottom row of the air fin cooler were corroded as a result of exposure to rain water, brought in by induced air when the wind blows. The tube material is A179 Carbon steel. Two tubes, namely Tube A and Tube B along with an aluminum fin in each tube were investigated. A leak was observed on tube A, probably due to Corrosion Under Deposit mechanism. A general corrosion attack was observed at tube B, and macroscopic analysis showed that the corrosion occurred along the grain boundaries, which consist of ferrite and pearlite. Microanalysis showed that the corrosion product on the outer surface of the tube consists of Fe, O, S and Cl elements. It is concluded that the humid environment contains corrosive elements such as S and Cl. EDAX analysis on the fin showed that the material is pure aluminum. However, the aluminum was corroded by galvanized corrosion and produced brittle Al2O3 as a result.
    Matched MeSH terms: Corrosion
  3. Zaifol Samsu, Muhamad Daud, Siti Radiah Mohd Kamarudin, Nur Ubaidah Saidin, Abdul Aziz Mohamed, Mohd Sa’ari Ripin, et al.
    MyJurnal
    Boundary element method (BEM) is a numerical technique that used for modeling infinite domain as is the case for galvanic corrosion analysis. The use of boundary element analysis system (BEASY) has allowed cathodic protection (CP) interference to be assessed in terms of the normal current density, which is directly proportional to the corrosion rate. This paper was present the analysis of the galvanic corrosion between Aluminium and Carbon Steel in natural sea water. The result of experimental was validated with computer simulation like BEASY program. Finally, it can conclude that the BEASY software is a very helpful tool for
    future planning before installing any structure, where it gives the possible CP interference on any nearby unprotected metallic structure.
    Matched MeSH terms: Corrosion
  4. Yan L, Yu J, Zhong Y, Gu Y, Ma Y, Li W, et al.
    J Nanosci Nanotechnol, 2020 03 01;20(3):1605-1612.
    PMID: 31492322 DOI: 10.1166/jnn.2020.17340
    The present study focuses on the microstructural and bioactive properties evolution in selective laser melting (SLM) β titanium alloys. We have applied cross-scan strategy for improving mechanical properties and lower elastic modulus of SLMed Ti-20Mg-5Ta alloys which has been shown to be altering the microstructure and refining the grain size. The cross-scan strategy can refine the microstructure and induce various deformation textures in contrast to the conventional scan strategy. The microstructures of Ti-20Mg-5Ta alloys indicate that the cross-scan strategy will yield the best mechanical properties and lower elastic modulus. The corrosion behavior of the Ti-20Mg-5Ta alloys was studied during immersion in an acellular simulated body fluid (SBF) at 37±0.50 °C for 28 days. Both the mechanical and bioactive properties showed that the novel Ti-20Mg-5Ta alloys should be ideal for bone implants.
    Matched MeSH terms: Corrosion
  5. Yan L, Zhang M, Wang M, Guo Y, Zhang X, Xi J, et al.
    J Nanosci Nanotechnol, 2020 03 01;20(3):1504-1510.
    PMID: 31492313 DOI: 10.1166/jnn.2020.17350
    This research has been accomplished using the advanced selective laser melting (SLM) technique as well as HIP post-treatment in order to improve mechanical properties and biocompatibility of Mg- Ca-Sr alloy. Through this research it becomes clearly noticeable that the Mg-1.5Ca-xSr (x = 0.6, 2.1, 2.5) alloys with Sr exhibited better mechanical properties and corrosion potentials. This is more particular with the Mg-1.5Ca-2.5Sr alloy after HIP post-treatment allowing it to provide a desired combination of degradation and mechanical behavior for orthopedic fracture fixation during a desired treatment period. In vivo trials, there was a clear indication and exhibition that this Mg-1.5Ca-2.5Sr alloy screw can completely dissolve in miniature pig's body which leads to an acceleration in growth of bone tissues. Mg-Ca-Sr alloy proved potential candidate for use in orthopedic fixation devices through Our results concluded that Mg-Ca-Sr alloy are potential candidate for use in orthopedic fixation devices through mechanical strength and biocompatibility evaluations (in vitro or In vivo).
    Matched MeSH terms: Corrosion
  6. YAHYA S, OTHMAN N, DAUD A, JALAR A
    Sains Malaysiana, 2013;42:1793-1798.
    The effect of corrosion inhibition of low carbon steel in water based medium containing lignin was investigated via weight loss method. The evolution of surface morphology has been carried out for 7 to 42 days via optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron microscopy (XPS). Immersion of metal specimen without lignin shows that significant increase in the surface roughness. The longer the immersion time, the more the oxide crust formed. The surface degradation of metal specimen was well protected by immersion in lignin solution. A protective layer containing of lignin was formed on the surface of metal specimens after 7 and 21 days immersion. The corrosion inhibition gives about 13 and 53% inhibition for both 7 and 21 days immersion, respectively. The protective layers were spalling and separated from the metal surface after 42 days immersion in lignin solution possibly due to the increase in corrosion attack after long time immersion according to the increase in dissolved oxygen and may also due to the thermal mismatch between oxide and substrate. The adsorption of protective layer containing lignin was temporary adsorbed on the surface.
    Matched MeSH terms: Corrosion
  7. Wu H, Kong XY, Wen X, Chai SP, Lovell EC, Tang J, et al.
    Angew Chem Int Ed Engl, 2021 Apr 06;60(15):8455-8459.
    PMID: 33368920 DOI: 10.1002/anie.202015735
    Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu3 (BTC)2 (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu2 O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2 O to the LUMO level of non-excited Cu3 (BTC)2 has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.
    Matched MeSH terms: Corrosion
  8. Wan Bakar W, McIntyre J
    Aust Dent J, 2008 Sep;53(3):226-34.
    PMID: 18782366 DOI: 10.1111/j.1834-7819.2008.00053.x
    Erosive substances such as gastric acids, lemon juice and even the less erosive cola drinks have been extensively investigated for their destructive effects on enamel. However, their effects on the tooth-coloured restoratives has not been widely analysed. The objective of this study was to assess their effects on the more commonly used glass containing restorative materials in vitro.
    Matched MeSH terms: Corrosion
  9. Venugopal A, Mohammad R, Koslan MFS, Sayd Bakar SR, Ali A
    Materials (Basel), 2021 May 06;14(9).
    PMID: 34066461 DOI: 10.3390/ma14092414
    The environmental condition in which the Royal Malaysian Airforce is currently operating its aircraft is prone to corrosion. This is due to the high relative humidity and temperature. With most of its aircraft being in the legacy aircraft era, the aircraft's main construction consists of the aluminium 2024 material. However, this material is prone to corrosion, thus reducing fatigue life and leading to fatigue failure. Using the concept of either Safe Life or Damage Tolerance as its fatigue design philosophy, the RMAF adopts the Aircraft Structure Integrity Program (ASIP) to monitor its structural integrity. With the current problem of not having the structural limitation on corrosion-damaged structure, the RMAF has embarked on its fatigue testing method. Finite Element (FE) studies and flight tests were conducted, and the outcome is summarized. The conclusion is that the longeron tested on the aircraft can withstand the operational load, and its yield strength is below the ultimate yield strength of the material. These research outcomes will also enhance the ASIP for other aircraft platforms in the RMAF fleet for its structure life assessment or service life extension program.
    Matched MeSH terms: Corrosion
  10. Ulum MF, Arafat A, Noviana D, Yusop AH, Nasution AK, Abdul Kadir MR, et al.
    Mater Sci Eng C Mater Biol Appl, 2014 Mar 1;36:336-44.
    PMID: 24433920 DOI: 10.1016/j.msec.2013.12.022
    Biodegradable metals such as magnesium, iron and their alloys have been known as potential materials for temporary medical implants. However, most of the studies on biodegradable metals have been focusing on optimizing their mechanical properties and degradation behavior with no emphasis on improving their bioactivity behavior. We therefore investigated the possibility of improving iron biodegradation rate and bioactivity by incorporating various bioactive bioceramics. The iron-based bioceramic (hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate) composites were prepared by mechanical mixing and sintering process. Degradation studies indicated that the addition of bioceramics lowered the corrosion potential of the composites and slightly increased their corrosion rate compared to that of pure iron. In vitro cytotoxicity results showed an increase of cellular activity when rat smooth muscle cells interacted with the degrading composites compared to pure iron. X-ray radiogram analysis showed a consistent degradation progress with that found in vivo and positive tissue response up to 70 days implantation in sheep animal model. Therefore, the iron-based bioceramic composites have the potential to be used for biodegradable bone implant applications.
    Matched MeSH terms: Corrosion
  11. Tuminoh H, Hermawan H, Ramlee MH
    J Mech Behav Biomed Mater, 2022 Nov;135:105457.
    PMID: 36116340 DOI: 10.1016/j.jmbbm.2022.105457
    In the last decade, magnesium alloys have been considered as absorbable metals for biomedical applications, while some have reached their clinical use as temporary bone implants. However, their widespread use is still limited by its strength and degradability. One way of improvement can be done by reinforcing magnesium alloys with carbon nanofibres to form composites. This work aims at developing carbon nanofibre-reinforced magnesium-zinc (Mg-Zn/CNF) composites with optimum strength and degradability while ensuring their biocompatibility. A response surface method was used to determine their optimum process parameters (composition, compaction pressure, and sintering temperature), and analyse the resulting properties (elastic modulus, hardness, weight loss, and cytocompatibility). Results showed that the optimal parameters were reached at 1.8% of CNF, 425 MPa of compaction pressure, and 500 °C of sintering temperature, whereby it gave an elastic modulus of 5 GPa, hardness of 60 Hv, and a weight loss of 51% after three days immersion in PBS. The composites exhibited a hydrophobic surface that controlled the liberation of Mg2+ and Zn2+ ions, leading to more than 70% osteoblast cells viability up to seven days of incubation. This study can also serve as a starting point for future researchers interested in finding methods to fabricate Mg-Zn/CNF composites with high mechanical characteristics, corrosion resistance, and biocompatibility.
    Matched MeSH terms: Corrosion
  12. Thi S, Lee KM
    Bioresour Technol, 2019 Jun;282:525-529.
    PMID: 30898410 DOI: 10.1016/j.biortech.2019.03.065
    In this work, a novel solvent, deep eutectic solvent (DES) was applied to examine its effectiveness in pretreating OPEFB. Three types of DESs, i.e. choline chloride-lactic acid (ChCl-LA), choline chloride-urea (ChCl-U) and choline chloride-glycerol (ChCl-G) were investigated. The pretreatment performance was based on cellulose digestibility, structural and morphology changes. At molar ratio of 1:2, ChCl-LA attained the highest reducing sugars yield of 20.7%, followed by ChCl-G (20.0%) and ChCl-U (16.9%). FT-IR and SEM results further confirmed the outstanding ability of ChCl-LA due of its ability in cellulose, hemicellulose and lignin disruption, exposing its cellulose fraction to enzymatic hydrolysis. ChCl-LA is also more favorable compare to acid and alkaline solvents as it could prevent sugars loss, use of expensive corrosion resistant equipment and ease products separation.
    Matched MeSH terms: Corrosion
  13. Teddy, T., Irwan, J.M., Othman, N.
    MyJurnal
    Strength and durability are important characteristics of concrete and desired engineering properties. Exposure to aggressive environment threatens durability of concrete. Previous studies on bio-concrete using several types of bacteria, including sulphate reduction bacteria (SRB), had to increase durability of concrete have shown promising results. This study used mixtures designed according to concrete requirement for sea water condition with SRB composition of 3%, 5% and 7% respectively. The curing time were 28, 56 and 90 days respectively. The mechanical properties, namely compressive strength and water permeability, were tested using cube samples. The results showed compressive strength had higher increase than the control at 53.9 Mpa. The SRB with 3%composition had maximum water permeability. Thus, adding SRB in concrete specimens improves compressive strength and water permeability. This is particularly suitable for applications using chloride ion penetration (sea water condition) where corrosion tends to affect durability of concrete constructions.
    Matched MeSH terms: Corrosion
  14. Tang WL, Lee HS, Vimonsatit V, Htut T, Singh JK, Wan Hassan WNF, et al.
    Materials (Basel), 2019 Jan 03;12(1).
    PMID: 30609786 DOI: 10.3390/ma12010130
    The carbonation rate of reinforced concrete is influenced by three parameters, namely temperature, relative humidity, and concentration of carbon dioxide (CO₂) in the surroundings. As knowledge of the service lifespan of reinforced concrete is crucial in terms of corrosion, the carbonation process is important to study, and high-performance durable reinforced concretes can be produced to prolong the effects of corrosion. To examine carbonation resistance, accelerated carbonation testing was conducted in accordance with the standards of BS 1881-210:2013. In this study, 10⁻30% of micro palm oil fuel ash (mPOFA) and 0.5⁻1.5% of nano-POFA (nPOFA) were incorporated into concrete mixtures to determine the optimum amount for achieving the highest carbonation resistance after 28 days water curing and accelerated CO₂ conditions up to 70 days of exposure. The effect of carbonation on concrete specimens with the inclusion of mPOFA and nPOFA was investigated. The carbonation depth was identified by phenolphthalein solution. The highest carbonation resistance of concrete was found after the inclusion of 10% mPOFA and 0.5% nPOFA, while the lowest carbonation resistance was found after the inclusion of 30% mPOFA and 1.5% nPOFA.
    Matched MeSH terms: Corrosion
  15. Syaidah Athirah Dzolin, Yusairie Mohd, Hadariah Bahron, Nurul Huda Abdul Halim
    MyJurnal
    The syntheses of salicylideneaniline (L1a) and 4-hydroxybenzalaniline (L1b) was carried out via condensation reaction giving yields of 80.74% and 81.65% respectively. The compounds were characterised by physical and spectroscopic techniques, namely melting point, micro elemental analysis (C, H and N), 1H Nuclear Magnetic Resonance (NMR) and Infrared (IR) spectroscopy. The characteristic n(C=N) peaks were observed at 1615 cm-1 and 1575 cm-1 respectively. Chronoamperometry (CA) was employed to electrodeposit both compounds on mild steel at 0.1 M inhibitor concentration in 0.3 M NaOH at three different potentials, +0.8 V, +1.05 V and +1.7 V. Formation of yellow imine films was observed on the mild steel. The corrosion behaviour of coated and uncoated mild steel was studied using Linear Polarization Resistance (LPR) in 0.5 M NaCl. Coated mild steel showed better corrosion resistance and with the highest inhibition efficiency of 90.34%, L1a provides a better protection against corrosion for mild steel than L1b.
    Matched MeSH terms: Corrosion
  16. Syahrul Affandi Saidi, Beh, Jun Long, Mohd Sharizan Md Sarip, Wan Azani Mustafa
    MyJurnal
    This article presents a Wall Climbing Robot (WCR) that able to move on ferromagnetic vertical surface to carry out visual inspection process. Visual inspection process is important in the industry to check the condition of storage tank, surface of building, piping or equipment thus can prevents structures collapsing or explosion which would bring a huge loss to the company. Moreover, most of the structures nowadays is expose under the sun and rain, corrosion and cracks could easily occur on the surface after exposing under sunlight and rain a long period of time. Therefore the periodic visual inspection process need to be carry out to detect the damaged occur on the surface of the structure and take action at the fastest time to ensure the safety of the structures and extend the lifespan of the structures. With the well maintenance to the structures, the condition of the structures is monitored and the lifespan is longer. The risk of collapse of the building is decrease by a large margin. Normally, the periodic visual inspection process is performed by operator. Sometime the temporary scaffolding is needed to reach the higher place to carry out the inspection. However, this method create a hazardous environment to the operator and cause the safety of the operator threatened. Therefore, the proposed WCR could help operator to work at the hazardous environment. The permanent magnet is used to provide adhesion for WCR, thus WCR able to move on vertical ferromagnetic surface. The WCR is controlled by operator via wireless remote to reach the higher place or the hazardous environment. The operator then can stream the on the real time images via web browser which connected to the same network with the WCR. Hence, the condition of the surface can be observed.
    Matched MeSH terms: Corrosion
  17. Sulong MZ, Aziz RA
    J Prosthet Dent, 1990 Mar;63(3):342-9.
    PMID: 2407832
    This is a review of the literature concerning wear related to the following materials used in dentistry: dental amalgam, composite resins, and glass-ionomer cements, as well as natural tooth substance. Discussions are included on both in vivo and in vitro studies in which various methods were used to help determine wear resistance.
    Matched MeSH terms: Corrosion
  18. Sulaimon AA, Murungi PI, Tackie-Otoo BN, Nwankwo PC, Bustam MA
    Environ Sci Pollut Res Int, 2023 Dec;30(56):119309-119328.
    PMID: 37924403 DOI: 10.1007/s11356-023-30635-0
    Plant extracts have been shown to effectively inhibit metal corrosion. Using the Box-Behnken design, gravimetric, and electrochemical techniques, analyses were designed to investigate the anti-corrosion potential of okra in a 1M HCl medium. The inhibition performances derived from the various methods were in good agreement, demonstrating that physio-chemisorption was effective and adhered to the Langmuir isotherm model. The efficiency of okra mucilage extract was 96% at a much lower concentration compared to 91.2% and 88.4% for the unsieved extract and gelly-okra filtrate, respectively. FTIR results showed the presence of several functional groups in the okra mucilage extract that are associated with adsorption, and TGA analysis revealed that the extract has high thermal stability. FESEM analysis also supported evidence of adsorption. It was determined that corrosion inhibition by okra mucilage extract was primarily influenced by temperature, followed by extract concentration, with immersion time having the least effect. From the model optimization, it was observed that okra mucilage extract at 200 ppm, 60°C, and 24 h gave an inhibition efficiency of 89.98% and high desirability. These results demonstrate the high capacity of natural okra as an efficient biodegradable corrosion inhibitor.
    Matched MeSH terms: Corrosion
  19. Soundhar A, Zubar HA, Sultan MTBHH, Kandasamy J
    Data Brief, 2019 Apr;23:103671.
    PMID: 30788395 DOI: 10.1016/j.dib.2019.01.019
    Newly prepared titanium alloy (Ti-13Zr-13Nb (TZN)) using powder metallurgy is considered in this investigation. Titanium alloys (TZN) are used in hip and knee replacement for orthopedic implants. Conventional machining, TZN alloys produce higher tool wear rate and poor surface quality, but this can be reduced by Electrical Discharge Machining (EDM) method. Moreover, EDM produce good biological and corrosion resistant surface. In this research, experiments were conducted by considering the influential process factors such as pulse on time, pulse off time, voltage, and current. The experiments were designed based on Response Surface Methodology (RSM) of face centered central composite design. Analysis of Variance (ANOVA) was conducted to identify the significance process factors and their relation to output responses such as Electrode Wear Rate (EWR), Surface Roughness (SR) and Material Removal Rate (MRR). Further, an empirical model was developed by RSM in order to predict the output responses.
    Matched MeSH terms: Corrosion
  20. Solhan Yahya, Afidah Abdul Rahim, Affaizza Mohd Shah, Rohana Adnan
    Anticorrosion potential of mangrove tannins on aluminium alloys AA6061 in NaCl solution has been studied using potentiodynamic polarisation method and scanning electron microscopy (SEM). The study was carried out in different pH of corrosive medium in the absence and presence of various concentrations of tannin. The corrosion inhibition behaviour of the mangrove tannin on AA6061 aluminium alloy corrosion was found to be dependant on the pH of NaCl solution. Our results showed that the inhibition efficiency increased with increasing tannins concentration in chloride solution at pH 6. Treatment of aluminium alloy 6061 with all concentrations of mangrove tannins reduced the current density, thus decreased the corrosion rate. Tannins behaved as mixed inhibitors at pH 6 and reduction in current density predominantly affected in cathodic reaction. Meanwhile, at pH 12, addition of tannins shifted the corrosion potential to more cathodic potentials and a passivating effect was observed in anodic potentials. SEM studies have shown that the addition of tannins in chloride solution at pH 12 reduced the surface degradation and the formation of pits.
    Matched MeSH terms: Corrosion
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links