Displaying publications 1 - 20 of 102 in total

Abstract:
Sort:
  1. Md Yusop AH, Wan Ali WFF, Jamaludin FH, Szali Januddi F, Sarian MN, Saad N, et al.
    Biotechnol J, 2024 Mar;19(3):e2300464.
    PMID: 38509814 DOI: 10.1002/biot.202300464
    The present study evaluates the corrosion behavior of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron (PXDD140/HA-Fe) and its cell-material interaction aimed for temporary bone scaffold applications. The physicochemical analyses show that the addition of 20 wt.% HA into the PXDD polymers leads to a higher crystallinity and lower surface roughness. The corrosion assessments of the PXDD140/HA-Fe evaluated by electrochemical methods and surface chemistry analysis indicate that HA decelerates Fe corrosion due to a lower hydrolysis rate following lower PXDD content and being more crystalline. The cell viability and cell death mode evaluations of the PXDD140/HA-Fe exhibit favorable biocompatibility as compared to bare Fe and PXDD-Fe scaffolds owing to HA's bioactive properties. Thus, the PXDD140/HA-Fe scaffolds possess the potential to be used as a biodegradable bone implant.
    Matched MeSH terms: Corrosion
  2. Sulaimon AA, Murungi PI, Tackie-Otoo BN, Nwankwo PC, Bustam MA
    Environ Sci Pollut Res Int, 2023 Dec;30(56):119309-119328.
    PMID: 37924403 DOI: 10.1007/s11356-023-30635-0
    Plant extracts have been shown to effectively inhibit metal corrosion. Using the Box-Behnken design, gravimetric, and electrochemical techniques, analyses were designed to investigate the anti-corrosion potential of okra in a 1M HCl medium. The inhibition performances derived from the various methods were in good agreement, demonstrating that physio-chemisorption was effective and adhered to the Langmuir isotherm model. The efficiency of okra mucilage extract was 96% at a much lower concentration compared to 91.2% and 88.4% for the unsieved extract and gelly-okra filtrate, respectively. FTIR results showed the presence of several functional groups in the okra mucilage extract that are associated with adsorption, and TGA analysis revealed that the extract has high thermal stability. FESEM analysis also supported evidence of adsorption. It was determined that corrosion inhibition by okra mucilage extract was primarily influenced by temperature, followed by extract concentration, with immersion time having the least effect. From the model optimization, it was observed that okra mucilage extract at 200 ppm, 60°C, and 24 h gave an inhibition efficiency of 89.98% and high desirability. These results demonstrate the high capacity of natural okra as an efficient biodegradable corrosion inhibitor.
    Matched MeSH terms: Corrosion
  3. Al-Amiery A, Isahak WNRW, Al-Azzawi WK
    Sci Rep, 2023 Jun 16;13(1):9770.
    PMID: 37328536 DOI: 10.1038/s41598-023-36252-8
    The corrosion inhibition properties of 2-(1,3,4-thiadiazole-2-yl)pyrrolidine (2-TP) on mild steel in a 1 M HCl solution were investigated using weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and open circuit potential (OCP) measurements. In addition, DFT calculations were performed on 2-TP. The polarization curves revealed that 2-TP is a mixed-type inhibitor. The results indicate that 2-TP is an effective inhibitor for mild steel corrosion in a 1.0 M HCl solution, with an inhibition efficiency of 94.6% at 0.5 mM 2-TP. The study also examined the impact of temperature, revealing that the inhibition efficiency increases with an increasing concentration of 2-TP and decreases with a rise in temperature. The adsorption of the inhibitor on the mild steel surface followed the Langmuir adsorption isotherm, and the free energy value indicated that the adsorption of 2-TP is a spontaneous process that involves both physical and chemical adsorption mechanisms. The DFT calculations showed that the adsorption of 2-TP on the mild steel surface is mainly through the interaction of the lone pair of electrons on the nitrogen atom of the thiadiazole ring with the metal surface. The results obtained from the weight loss, potentiodynamic polarization, EIS and OCP measurements were in good agreement with each other and confirmed the effectiveness of 2-TP as a corrosion inhibitor for mild steel in 1.0 M HCl solution. Overall, the study demonstrates the potential use of 2-TP as a corrosion inhibitor in acid environments.
    Matched MeSH terms: Corrosion
  4. Tuminoh H, Hermawan H, Ramlee MH
    J Mech Behav Biomed Mater, 2022 Nov;135:105457.
    PMID: 36116340 DOI: 10.1016/j.jmbbm.2022.105457
    In the last decade, magnesium alloys have been considered as absorbable metals for biomedical applications, while some have reached their clinical use as temporary bone implants. However, their widespread use is still limited by its strength and degradability. One way of improvement can be done by reinforcing magnesium alloys with carbon nanofibres to form composites. This work aims at developing carbon nanofibre-reinforced magnesium-zinc (Mg-Zn/CNF) composites with optimum strength and degradability while ensuring their biocompatibility. A response surface method was used to determine their optimum process parameters (composition, compaction pressure, and sintering temperature), and analyse the resulting properties (elastic modulus, hardness, weight loss, and cytocompatibility). Results showed that the optimal parameters were reached at 1.8% of CNF, 425 MPa of compaction pressure, and 500 °C of sintering temperature, whereby it gave an elastic modulus of 5 GPa, hardness of 60 Hv, and a weight loss of 51% after three days immersion in PBS. The composites exhibited a hydrophobic surface that controlled the liberation of Mg2+ and Zn2+ ions, leading to more than 70% osteoblast cells viability up to seven days of incubation. This study can also serve as a starting point for future researchers interested in finding methods to fabricate Mg-Zn/CNF composites with high mechanical characteristics, corrosion resistance, and biocompatibility.
    Matched MeSH terms: Corrosion
  5. Mahdi BS, Abbass MK, Mohsin MK, Al-Azzawi WK, Hanoon MM, Al-Kaabi MHH, et al.
    Molecules, 2022 Jul 29;27(15).
    PMID: 35956814 DOI: 10.3390/molecules27154857
    Using traditional weight-loss tests, as well as different electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy), we investigated the corrosion-inhibition performance of 2,2′-(1,4-phenylenebis(methanylylidene)) bis(N-(3-methoxyphenyl) hydrazinecarbothioamide) (PMBMH) as an inhibitor for mild steel in a 1 M hydrochloric acid solution. The maximum protection efficacy of 0.0005 M of PMBMH was 95%. Due to the creation of a protective adsorption layer instead of the adsorbed H2O molecules and acidic chloride ions, the existence of the investigated inhibitor reduced the corrosion rate and increased the inhibitory efficacy. The inhibition efficiency increased as the inhibitor concentration increased, but it decreased as the temperature increased. The PMBMH adsorption mode followed the Langmuir adsorption isotherm, with high adsorption-inhibition activity. Furthermore, the value of the ∆Gadso indicated that PMBMH contributed to the physical and chemical adsorption onto the mild-steel surface. Moreover, density functional theory (DFT) helped in the calculation of the quantum chemical parameters for finding the correlation between the inhibition activity and the molecular structure. The experimental and theoretical findings in this investigation are in good agreement.
    Matched MeSH terms: Corrosion
  6. Mohammed NJ, Othman NK, Taib MFM, Samat MH, Yahya S
    Molecules, 2021 Jun 09;26(12).
    PMID: 34207914 DOI: 10.3390/molecules26123535
    Extracts from plant materials have great potential as alternatives to inorganic corrosion inhibitors, which typically have harmful consequences. Experimental and theoretical methodologies studied the effectiveness of agricultural waste, namely, date palm seed extract as a green anti-corrosive agent in 0.5 M hydrochloric acid. Experimental results showed that immersion time and temperature are closely related to the effectivity of date palm seed as a corrosion inhibitor. The inhibition efficiency reduced from 95% to 91% at 1400 ppm when the immersion time was increased from 72 h to 168 h. The experimental results also indicated that the inhibition efficiency decreased as the temperature increased. The presence of a protective layer of organic matter was corroborated by scanning electron microscopy. The adsorption studies indicated that date palm seed obeyed Langmuir adsorption isotherm on the carbon steel surface, and Gibbs free energy values were in the range of -33.45 to -38.41 kJ·mol-1. These results suggested that the date palm seed molecules interacted with the carbon steel surface through mixture adsorption. Theoretical calculations using density functional theory showed that the capability to donate and accept electrons between the alloy surface and the date palm seed inhibitor molecules is critical for adsorption effectiveness. The HOMO and LUMO result indicated that the carboxyl (COOH) group and C=C bond were the most active sites for the electron donation-acceptance type of interaction and most auxiliary to the adsorption process over the Fe surface.
    Matched MeSH terms: Corrosion
  7. Kamaruzzaman WMIWM, Fekeri MFM, Nasir NAM, Hamidi NASM, Baharom MZ, Adnan A, et al.
    Molecules, 2021 Jun 03;26(11).
    PMID: 34205014 DOI: 10.3390/molecules26113379
    With the trend for green technology, the study focused on utilizing a forgotten herb to produce an eco-friendly coating. Andrographis paniculata or the kalmegh leaves extract (KLE) has been investigated for its abilities in retarding the corrosion process due to its excellent anti-oxidative and antimicrobial properties. Here, KLE was employed as a novel additive in coatings and formulations were made by varying its wt%: 0, 3, 6, 9, and 12. These were applied to stainless steel 316L immersed in seawater for up to 50 days. The samples were characterized and analyzed to measure effectiveness of inhibition of corrosion and microbial growth. The best concentration was revealed to be 6 wt% KLE; it exhibited the highest performance in improving the ionic resistance of the coating and reducing the growth of bacteria.
    Matched MeSH terms: Corrosion
  8. Venugopal A, Mohammad R, Koslan MFS, Sayd Bakar SR, Ali A
    Materials (Basel), 2021 May 06;14(9).
    PMID: 34066461 DOI: 10.3390/ma14092414
    The environmental condition in which the Royal Malaysian Airforce is currently operating its aircraft is prone to corrosion. This is due to the high relative humidity and temperature. With most of its aircraft being in the legacy aircraft era, the aircraft's main construction consists of the aluminium 2024 material. However, this material is prone to corrosion, thus reducing fatigue life and leading to fatigue failure. Using the concept of either Safe Life or Damage Tolerance as its fatigue design philosophy, the RMAF adopts the Aircraft Structure Integrity Program (ASIP) to monitor its structural integrity. With the current problem of not having the structural limitation on corrosion-damaged structure, the RMAF has embarked on its fatigue testing method. Finite Element (FE) studies and flight tests were conducted, and the outcome is summarized. The conclusion is that the longeron tested on the aircraft can withstand the operational load, and its yield strength is below the ultimate yield strength of the material. These research outcomes will also enhance the ASIP for other aircraft platforms in the RMAF fleet for its structure life assessment or service life extension program.
    Matched MeSH terms: Corrosion
  9. Alavi R, Akbarzadeh AH, Hermawan H
    J Mech Behav Biomed Mater, 2021 05;117:104413.
    PMID: 33640846 DOI: 10.1016/j.jmbbm.2021.104413
    In-depth analyses of post-corrosion mechanical properties and architecture of open cell iron foams with hollow struts as absorbable bone scaffolds were carried out. Variations in the architectural features of the foams after 14 days of immersion in a Hanks' solution were investigated using micro-computed tomography and scanning electron microscope images. Finite element Kelvin foam model was developed, and the numerical modeling and experimental results were compared against each other. It was observed that the iron foam samples were mostly corroded in the periphery regions. Except for quasi-elastic gradient, other mechanical properties (i.e. compressive strength, yield strength and energy absorbability) decreased monotonically with immersion time. Presence of adherent corrosion products enhanced the load-bearing capacity of the open cell iron foams at small strains. The finite element prediction for the quasi-elastic response of the 14-day corroded foam was in an agreement with the experimental results. This study highlights the importance of considering corrosion mechanism when designing absorbable scaffolds; this is indispensable to offer desirable mechanical properties in porous materials during degradation in a biological environment.
    Matched MeSH terms: Corrosion
  10. Fatmahardi I, Mustapha M, Ahmad A, Derman MN, Lenggo Ginta T, Taufiqurrahman I
    Materials (Basel), 2021 Apr 30;14(9).
    PMID: 33946335 DOI: 10.3390/ma14092336
    Resistance spot welding (RSW) is one of the most effective welding methods for titanium alloys, in particular Ti-6Al-4V. Ti-6Al-4V is one of the most used materials with its good ductility, high strength, weldability, corrosion resistance, and heat resistance. RSW and Ti-6Al-4V materials are often widely used in industrial manufacturing, particularly in automotive and aerospace industries. To understand the phenomenon of resistance spot weld quality, the physical and mechanical properties of Ti-6Al-4V spot weld are essential to be analyzed. In this study, an experiment was conducted using the Taguchi L9 method to find out the optimum level of the weld joint strength. The given optimum level sample was analyzed to study the most significant affecting RSW parameter, the failure mode, the weld nugget microstructure, and hardness values. The high heat input significantly affect the weld nugget temperature to reach and beyond the β-transus temperature. It led to an increase in the weld nugget diameter and the indentation depth. The expulsion appeared in the high heat input and decreased the weld nugget strength. It was caused by the molten material ejection in the fusion zone. The combination of high heat input and rapid air cooling at room temperature generated a martensite microstructure in the fusion zone. It increased the hardness, strength, and brittleness but decreased the ductility.
    Matched MeSH terms: Corrosion
  11. Bakhsheshi-Rad HR, Hamzah E, Ying WS, Razzaghi M, Sharif S, Ismail AF, et al.
    Materials (Basel), 2021 Apr 12;14(8).
    PMID: 33921460 DOI: 10.3390/ma14081930
    Magnesium has been recognized as a groundbreaking biodegradable biomaterial for implant applications, but its use is limited because it degrades too quickly in physiological solutions. This paper describes the research on the influence of polycaprolactone (PCL)/chitosan (CS)/zinc oxide (ZnO) composite coating (PCL/CS/ZnO) on the corrosion resistance and antibacterial activity of magnesium. The PCL/CS film presented a porous structure with thickness of about 40-50 μm, while after incorporation of ZnO into the PCL/CS, a homogenous film without pores and defects was attained. The ZnO embedded in PCL/CS enhanced corrosion resistance by preventing corrosive ions diffusion in the magnesium substrate. The corrosion, antibacterial, and cell interaction mechanism of the PCL/CS/ZnO composite coating is discussed in this study. In vitro cell culture revealed that the PCL/CS coating with low loaded ZnO significantly improved cytocompatibility, but coatings with high loaded ZnO were able to induce some cytotoxicity osteoblastic cells. It was also found that enhanced antibacterial activity of the PCL/CS/ZnO coating against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, while less significant antibacterial activity was detected for uncoated Mg and PCL/CS coating. Based on the results, the PCL/CS coatings loaded with low ZnO content may be recommended as a candidate material for biodegradable Mg-based orthopedic implant applications.
    Matched MeSH terms: Corrosion
  12. Wu H, Kong XY, Wen X, Chai SP, Lovell EC, Tang J, et al.
    Angew Chem Int Ed Engl, 2021 Apr 06;60(15):8455-8459.
    PMID: 33368920 DOI: 10.1002/anie.202015735
    Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu3 (BTC)2 (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu2 O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2 O to the LUMO level of non-excited Cu3 (BTC)2 has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.
    Matched MeSH terms: Corrosion
  13. Fayyaz O, Khan A, Shakoor RA, Hasan A, Yusuf MM, Montemor MF, et al.
    Sci Rep, 2021 Mar 05;11(1):5327.
    PMID: 33674680 DOI: 10.1038/s41598-021-84716-6
    In the present study, the effect of concentration of titanium carbide (TiC) particles on the structural, mechanical, and electrochemical properties of Ni-P composite coatings was investigated. Various amounts of TiC particles (0, 0.5, 1.0, 1.5, and 2.0 g L-1) were co-electrodeposited in the Ni-P matrix under optimized conditions and then characterized by employing various techniques. The structural analysis of prepared coatings indicates uniform, compact, and nodular structured coatings without any noticeable defects. Vickers microhardness and nanoindentation results demonstrate the increase in the hardness with an increasing amount of TiC particles attaining its terminal value (593HV100) at the concentration of 1.5 g L-1. Further increase in the concentration of TiC particles results in a decrease in hardness, which can be ascribed to their accumulation in the Ni-P matrix. The electrochemical results indicate the improvement in corrosion protection efficiency of coatings with an increasing amount of TiC particles reaching to ~ 92% at 2.0 g L-1, which can be ascribed to a reduction in the active area of the Ni-P matrix by the presence of inactive ceramic particles. The favorable structural, mechanical, and corrosion protection characteristics of Ni-P-TiC composite coatings suggest their potential applications in many industrial applications.
    Matched MeSH terms: Corrosion
  14. Burhannuddin NL, Nordin NA, Mazlan SA, Aziz SAA, Kuwano N, Jamari SKM, et al.
    Sci Rep, 2021 Jan 13;11(1):868.
    PMID: 33441824 DOI: 10.1038/s41598-020-80539-z
    Carbonyl iron particles (CIPs) is one of the key components in magnetic rubber, known as magnetorheological elastomer (MRE). Apart from the influence of their sizes and concentrations, the role of the particle' shape is pronounced worthy of the attention for the MRE performance. However, the usage of CIPs in MRE during long-term applications may lead to corrosion effects on the embedded CIPs, which significantly affects the performance of devices or systems utilizing MRE. Hence, the distinctions between the two types of MRE embedded in different shapes of spherical and plate-like CIPs, at both conditions of non-corroded and corroded CIPs were investigated in terms of the field-dependent rheological properties of MRE. The plate-like shape was produced from spherical CIPs through a milling process using a rotary ball mill. Then, both shapes of CIPs individually subjected to an accelerated corrosion test in diluted hydrochloric (HCl) at different concentrations, particularly at 0.5, 1.0, and 1.5 vol.% for 30 min of immersion time. Eight samples of CIPs, including non-corroded for both CIPs shapes, were characterized in terms of a morphological study by field emission scanning electron microscope (FESEM) and magnetic properties via vibrating sample magnetometer (VSM). The field-dependent rheological properties of MREs were analyzed the change in the dynamic modulus behavior of MREs via rheometer. From the application perspective, this finding may be useful for the system to be considered that provide an idea to prolong the performance MRE by utilizing the different shapes of CIPs even when the material is fading.
    Matched MeSH terms: Corrosion
  15. Nur Alia Atiqah Alias, Nabilah Syakirah Zolkifli, Mimi Wahidah Mohd Radzi, Nur Nadia Dzulkifli
    MyJurnal
    Mild steel plays an essential part in many construction industries due to its low cost and excellent mechanical properties. However, the use of strong acid in pickling, construction, and oil refining processes adds to a serious corrosion problem for mild steel. Two Cu(II) dithiocarbamate (DTC) complexes were successfully synthesised, namely Cu(II) ethyl-benzyl DTC (Cu[EtBenzdtc]2) and Cu(II) butyl-methyl DTC (Cu[BuMedtc]2) complexes, by a condensation reaction and subsequently used to scrutinise the corrosion resistance activity towards mild steel in acidic media. The proposed structures of complexes were characterised by using the Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopies. The melting point for Cu[EtBenzdtc]2 was found around 362–375°C, and 389–392°C for Cu[BuMedtc]2. The percentages of Cu(II) found in Cu[EtBenzdtc]2 and Cu[BuMedtc]2 were 7.6% and 7.5%, respectively. Both complexes were non-electrolyte based on the molar conductivity analysis. Their corrosion inhibition performances were tested by using a weight loss measurement. Cu[BuMedtc]2 showed a good result as a corrosion inhibitor compared to Cu[EtBenzdtc]2. The complexes showed good effectiveness in sulfuric acid (H2SO4) compared to hydrochloric acid (HCl) solution. Furthermore, Cu[BuMedtc]2 showed a good result as a corrosion inhibitor compared to Cu[EtBenzdtc]2 with the highest percentage of corrosion inhibition recorded at 91.8%. Meanwhile, the highest percentage of corrosion inhibition shown by Cu[EtBenzdtc]2 was only 86.9%. The lowest corrosion rate shown for Cu[BuMedtc]2 was 8.1944×10-4 cm-1 h-1. Meanwhile, the Cu[EtBenzdtc]2 showed the lowest corrosion rate only at 1.3194×10-3 cm-1 h-1. This implies that Cu[BuMedtc]2 showed lower corrosion rate but higher inhibition efficiency compared to Cu[EtBenzdtc]2.
    Matched MeSH terms: Corrosion
  16. May Z, Alam MK, Nayan NA, Rahman NAA, Mahmud MS
    PLoS One, 2021;16(12):e0261040.
    PMID: 34914761 DOI: 10.1371/journal.pone.0261040
    Corrosion in carbon-steel pipelines leads to failure, which is a major cause of breakdown maintenance in the oil and gas industries. The acoustic emission (AE) signal is a reliable method for corrosion detection and classification in the modern Structural Health Monitoring (SHM) system. The efficiency of this system in detection and classification mainly depends on the suitable AE features. Therefore, many feature extraction and classification methods have been developed for corrosion detection and severity assessment. However, the extraction of appropriate AE features and classification of various levels of corrosion utilizing these extracted features are still challenging issues. To overcome these issues, this article proposes a hybrid machine learning approach that combines Wavelet Packet Transform (WPT) integrated with Fast Fourier Transform (FFT) for multiresolution feature extraction and Linear Support Vector Classifier (L-SVC) for predicting corrosion severity levels. A Laboratory-based Linear Polarization Resistance (LPR) test was performed on carbon-steel samples for AE data acquisition over a different time span. AE signals were collected at a high sampling rate with a sound well AE sensor using AEWin software. Simulation results show a linear relationship between the proposed approach-based extracted AE features and the corrosion process. For multi-class problems, three corrosion severity stages have been made based on the corrosion rate over time and AE activity. The ANOVA test results indicate the significance within and between the feature-groups where F-values (F-value>1) rejects the null hypothesis and P-values (P-value<0.05) are less than the significance level. The utilized L-SVC classifier achieves higher prediction accuracy of 99.0% than the accuracy of other benchmarked classifiers. Findings of our proposed machine learning approach confirm that it can be effectively utilized for corrosion detection and severity assessment in SHM applications.
    Matched MeSH terms: Corrosion
  17. Mutafi A, Yidris N, Koloor SSR, Petrů M
    Materials (Basel), 2020 Nov 26;13(23).
    PMID: 33256257 DOI: 10.3390/ma13235378
    Stainless steels are increasingly used in construction today, especially in harsh environments, in which steel corrosion commonly occurs. Cold-formed stainless steel structures are currently increasing in popularity because of its efficiency in load-bearing capacity and its appealing architectural appearance. Cold-rolling and press-braking are the cold-working processes used in the forming of stainless steel sections. Press braking can produce large cross-sections from thin to thick-walled sections compared to cold-rolling. Cold-forming in press-braked sections significantly affect member behaviour and joints; therefore, they have attained great attention from many researchers to initiate investigations on those effects. This paper examines the behaviour of residual stress distribution of stainless steel press-braked sections by implementing three-dimensional finite element (3D-FE) technique. The study proposed a full finite element procedure to predict the residual stresses starting from coiling-uncoiling to press-braking. This work considered material anisotropy to examine its effect on the residual stress distribution. The technique adopted was compared with different finite element techniques in the literature. This study also provided a parametric study for three corner radius-to-thickness ratios looking at the through-thickness residual stress distribution of four stainless steels (i.e., ferritic, austenitic, duplex, lean duplex) in which have their own chemical composition. In conclusion, the comparison showed that the adopted technique provides a detailed prediction of residual stress distribution. The influence of geometrical aspects is more pronounced than the material properties. Neglecting the material anisotropy shows higher shifting in the neutral axis. The parametric study showed that all stainless steel types have the same stress through-thickness distribution. Moreover, R/t ratios' effect is insignificant in all transverse residual stress distributions, but a slight change to R/t ratios can affect the longitudinal residual stress distribution.
    Matched MeSH terms: Corrosion
  18. Khan R, H Ya H, Pao W, Majid MAA, Ahmed T, Ahmad A, et al.
    Materials (Basel), 2020 Oct 16;13(20).
    PMID: 33081078 DOI: 10.3390/ma13204601
    Erosion-corrosion of elbow configurations has recently been a momentous concern in hydrocarbon processing and transportation industries. The carbon steel 90° elbows are susceptible to the erosion-corrosion during the multiphase flow, peculiarly for erosive slug flows. This paper studies the erosion-corrosion performance of 90° elbows at slug flow conditions for impact with 2, 5, and 10 wt.% sand fines concentrations on AISI 1018 carbon steel exploiting quantitative and qualitative analyses. The worn surface analyses were effectuated by using laser confocal and scanning electron microscopy. The experiment was conducted under air and water slug flow containing sand fines of 50 µm average size circulated in the closed flow loop. The results manifest that with the increase of concentration level, the erosion-corrosion magnitude increases remarkably. Sand fines instigate the development of perforation sites in the form of circular, elongated, and coalescence pits at the elbow downstream and the corrosion attack is much more obvious with the increase of sand fines concentration. Another congruent finding is that cutting and pitting corrosion as the primitive causes of material degradation, the 10 wt.% sand fines concentration in carrier phase increases the erosion-corrosion rate of carbon steel up to 93% relative to the 2 wt.% sand fines concentration in slug flow.
    Matched MeSH terms: Corrosion
  19. Abazari S, Shamsipur A, Bakhsheshi-Rad HR, Ismail AF, Sharif S, Razzaghi M, et al.
    Materials (Basel), 2020 Oct 04;13(19).
    PMID: 33020427 DOI: 10.3390/ma13194421
    In recent years considerable attention has been attracted to magnesium because of its light weight, high specific strength, and ease of recycling. Because of the growing demand for lightweight materials in aerospace, medical and automotive industries, magnesium-based metal matrix nanocomposites (MMNCs) reinforced with ceramic nanometer-sized particles, graphene nanoplatelets (GNPs) or carbon nanotubes (CNTs) were developed. CNTs have excellent material characteristics like low density, high tensile strength, high ratio of surface-to-volume, and high thermal conductivity that makes them attractive to use as reinforcements to fabricate high-performance, and high-strength metal-matrix composites (MMCs). Reinforcing magnesium (Mg) using small amounts of CNTs can improve the mechanical and physical properties in the fabricated lightweight and high-performance nanocomposite. Nevertheless, the incorporation of CNTs into a Mg-based matrix faces some challenges, and a uniform distribution is dependent on the parameters of the fabricating process. The characteristics of a CNTs reinforced composite are related to the uniform distribution, weight percent, and length of the CNTs, as well as the interfacial bonding and alignment between CNTs reinforcement and the Mg-based matrix. In this review article, the recent findings in the fabricating methods, characterization of the composite's properties, and application of Mg-based composites reinforced with CNTs are studied. These include the strategies of fabricating CNT-reinforced Mg-based composites, mechanical responses, and corrosion behaviors. The present review aims to investigate and conclude the most relevant studies conducted in the field of Mg/CNTs composites. Strategies to conquer complicated challenges are suggested and potential fields of Mg/CNTs composites as upcoming structural material regarding functional requirements in aerospace, medical and automotive industries are particularly presented.
    Matched MeSH terms: Corrosion
  20. Mat-Baharin NH, Razali M, Mohd-Said S, Syarif J, Muchtar A
    J Prosthodont Res, 2020 Oct;64(4):490-497.
    PMID: 32063537 DOI: 10.1016/j.jpor.2020.01.004
    PURPOSE: Not all elements with β-stabilizing properties in titanium alloys are suitable for biomaterial applications, because corrosion and wear processes release the alloying elements to the surrounding tissue. Chromium and molybdenum were selected as the alloying element in this work as to find balance between the strength and modulus of elasticity of β-titanium alloys. This study aimed to investigate the effect of Titanium-10Molybdenum-10Chromium (Ti-10Mo-10Cr), Titanium-10Chromium (Ti-10Cr) and Titanium-10Molybdenum (Ti-10Mo) on the elemental leachability in tissue culture environment and their effect on the viability of human gingival fibroblasts (HGFs).

    METHODS: Each alloy was immersed in growth medium for 0-21 days, and the elution was analyzed to detect the released metals. The elution was further used as the treatment medium and exposed to seeded HGFs overnight. The HGFs were also cultured directly to the titanium alloy for 1, 3 and 7 days. Cell viability was then determined.

    RESULTS: Six metal elements were detected in the immersion of titanium alloys. Among these elements, molybdenum released from Ti-10Mo-10Cr had the highest concentration throughout the immersion period. Significant difference in the viability of fibroblast cells treated with growth medium containing metals and with direct exposure technique was not observed. The duration of immersion did not significantly affect cell viability. Nevertheless, cell viability was significantly affected after 1 and 7 days of exposure, when the cells were grown directly onto the alloy surfaces.

    CONCLUSIONS: Within the limitation of this study, the newly developed β-titanium alloys are non-cytotoxic to human gingival fibroblasts.

    Matched MeSH terms: Corrosion
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links