Displaying publications 1 - 20 of 69 in total

Abstract:
Sort:
  1. Phyu WK, Ong KC, Wong KT
    PLoS One, 2016;11(1):e0147463.
    PMID: 26815859 DOI: 10.1371/journal.pone.0147463
    Enterovirus A71 (EV-A71) causes self-limiting, hand-foot-and-mouth disease (HFMD) that may rarely be complicated by encephalomyelitis. Person-to-person transmission is usually by fecal-oral or oral-oral routes. To study viral replication sites in the oral cavity and other tissues, and to gain further insights into virus shedding and neuropathogenesis, we developed a consistent, orally-infected, 2-week-old hamster model of HFMD and EV-A71 encephalomyelitis. Tissues from orally-infected, 2-week-old hamsters were studied by light microscopy, immunohistochemistry and in situ hybridization to detect viral antigens and RNA, respectively, and by virus titration. Hamsters developed the disease and died after 4-8 days post infection; LD50 was 25 CCID50. Macroscopic cutaneous lesions around the oral cavity and paws were observed. Squamous epithelium in the lip, oral cavity, paw, skin, and esophagus, showed multiple small inflammatory foci around squamous cells that demonstrated viral antigens/RNA. Neurons (brainstem, spinal cord, sensory ganglia), acinar cells (salivary gland, lacrimal gland), lymphoid cells (lymph node, spleen), and muscle fibres (skeletal, cardiac and smooth muscles), liver and gastric epithelium also showed varying amounts of viral antigens/RNA. Intestinal epithelium, Peyer's patches, thymus, pancreas, lung and kidney were negative. Virus was isolated from oral washes, feces, brain, spinal cord, skeletal muscle, serum, and other tissues. Our animal model should be useful to study squamous epitheliotropism, neuropathogenesis, oral/fecal shedding in EV-A71 infection, person-to-person transmission, and to test anti-viral drugs and vaccines.
    Matched MeSH terms: Cricetinae
  2. Walpita P, Cong Y, Jahrling PB, Rojas O, Postnikova E, Yu S, et al.
    NPJ Vaccines, 2017;2:21.
    PMID: 29263876 DOI: 10.1038/s41541-017-0023-7
    Nipah virus is a highly lethal zoonotic paramyxovirus that was first recognized in Malaysia during an outbreak in 1998. During this outbreak, Nipah virus infection caused a severe febrile neurological disease in humans who worked in close contact with infected pigs. The case fatality rate in humans was approximately 40%. Since 2001, NiV has re-emerged in Bangladesh and India where fruit bats (Pteropus spp.) have been identified as the principal reservoir of the virus. Transmission to humans is considered to be bat-to-human via food contaminated with bat saliva, or consumption of contaminated raw date palm sap, although human-to-human transmission of Nipah virus has also been documented. To date, there are no approved prophylactic options or treatment for NiV infection. In this study, we produced mammalian cell-derived native Nipah virus-like particles composed of Nipah virus G, F and M proteins for use as a novel Nipah virus vaccine. Previous studies demonstrated that the virus-like particles were structurally similar to authentic virus, functionally assembled and immunoreactive. In the studies reported here, purified Nipah virus-like particles were utilized either alone or with adjuvant to vaccinate golden Syrian hamsters with either three-dose or one-dose vaccination regimens followed by virus challenge. These studies found that Nipah virus-like particle immunization of hamsters induced significant neutralizing antibody titers and provided complete protection to all vaccinated animals following either single or three-dose vaccine schedules. These studies prove the feasibility of a virus-like particle-based vaccine for protection against Nipah virus infection.
    Matched MeSH terms: Cricetinae
  3. Hu D, Zhu Z, Li S, Deng Y, Wu Y, Zhang N, et al.
    PLoS Pathog, 2019 06;15(6):e1007836.
    PMID: 31242272 DOI: 10.1371/journal.ppat.1007836
    Dengue is the most widespread vector-borne viral disease caused by dengue virus (DENV) for which there are no safe, effective drugs approved for clinical use. Here, by using sequential antigen panning of a yeast antibody library derived from healthy donors against the DENV envelop protein domain III (DIII) combined with depletion by an entry defective DIII mutant, we identified a cross-reactive human monoclonal antibody (mAb), m366.6, which bound with high affinity to DENV DIII from all four DENV serotypes. Immunogenetic analysis indicated that m366.6 is a germline-like mAb with very few somatic mutations from the closest VH and Vλ germline genes. Importantly, we demonstrated that it potently neutralized DENV both in vitro and in the mouse models of DENV infection without detectable antibody-dependent enhancement (ADE) effect. The epitope of m366.6 was mapped to the highly conserved regions on DIII, which may guide the design of effective dengue vaccine immunogens. Furthermore, as the first germline-like mAb derived from a naïve antibody library that could neutralize all four DENV serotypes, the m366.6 can be a tool for exploring mechanisms of DENV infection, and is a promising therapeutic candidate.
    Matched MeSH terms: Cricetinae
  4. Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M, Bernard A, et al.
    Am J Pathol, 2003 Nov;163(5):2127-37.
    PMID: 14578210 DOI: 10.1016/S0002-9440(10)63569-9
    A predominantly pig-to-human zoonotic infection caused by the novel Nipah virus emerged recently to cause severe morbidity and mortality in both animals and man. Human autopsy studies showed the pathogenesis to be related to systemic vasculitis that led to widespread thrombotic occlusion and microinfarction in most major organs especially in the central nervous system. There was also evidence of extravascular parenchymal infection, particularly near damaged vessels (Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, Goldsmith CS, Chua KB, Lam SK, Tan CT, Goh KJ, Chong HT, Jusoh R, Rollin PE, Ksiazek TG, Zaki SR, Nipah Virus Pathology Working Group: Nipah virus infection: Pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 2002, 161:2153-2167). We describe here a golden hamster (Mesocricetus auratus) model that appears to reproduce the pathology and pathogenesis of acute human Nipah infection. Hamsters infected by intranasal or intraperitoneal routes died within 9 to 29 days or 5 to 9 days, respectively. Pathological lesions were most severe and extensive in the hamster brain. Vasculitis, thrombosis, and more rarely, multinucleated endothelial syncytia, were found in blood vessels of multiple organs. Viral antigen and RNA were localized in both vascular and extravascular tissues including neurons, lung, kidney, and spleen, as demonstrated by immunohistochemistry and in situ hybridization, respectively. Paramyxoviral-type nucleocapsids were identified in neurons and in vessel walls. At the terminal stage of infection, virus and/or viral RNA could be recovered from most solid organs and urine, but not from serum. The golden hamster is proposed as a suitable model for further studies including pathogenesis studies, anti-viral drug testing, and vaccine development against acute Nipah infection.
    Matched MeSH terms: Cricetinae
  5. Hooi YT, Ong KC, Tan SH, Perera D, Wong KT
    Lab Invest, 2020 Sep;100(9):1262-1275.
    PMID: 32601355 DOI: 10.1038/s41374-020-0456-x
    Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.
    Matched MeSH terms: Cricetinae/virology*
  6. Crameri G, Wang LF, Morrissy C, White J, Eaton BT
    J Virol Methods, 2002 Jan;99(1-2):41-51.
    PMID: 11684302
    Rapid immune plaque assays have been developed to quantify biohazard level 4 agents Hendra and Nipah viruses and detect neutralising antibodies to both viruses. The methods rely on the fact that both viruses rapidly generate large syncytia in monolayers of Vero cells within 24 h and that monospecific antiserum to the Hendra virus phosphoprotein (P) detects that protein in both Hendra and Nipah virus-induced syncytia after methanol fixation of virus-infected cells. The P protein is a constituent of the ribonucleoprotein core of the viruses and a component of the viral RNA-dependent RNA polymerase and is made in significant amounts in infected cells. In the immune plaque assay, anti-P antibody is localised by an alkaline phosphatase-linked second antibody and the Western blot substrates 5-bromo-4-chloro-3-indolyl phosphate and p-nitro blue tetrazolium. A modification of the rapid immune plaque assay was also used to detect antibodies to Nipah virus in a panel of porcine field sera from Malaysia and the results showed good agreement between the immune plaque assay and a traditional serum neutralisation test. After methanol fixation, plates can be stored for up to 7 months and may be used in the immune plaque assay to complement the enzyme-linked immunosorbent assay screening of sera for antibodies to Nipah virus. At present, all enzyme-linked immunosorbent assay positive sera are subject to confirmatory serum neutralisation tests. Use of the immune plaque assay may reduce the number of sera requiring confirmatory neutralisation testing for Nipah virus antibodies under biohazard level 4 conditions by identifying those that generate false positive in the enzyme-linked immunosorbent assay.
    Matched MeSH terms: Cricetinae
  7. Cheow PS, Tan TK, Song AA, Yusoff K, Chia SL
    Biotechniques, 2020 02;68(2):96-100.
    PMID: 31937115 DOI: 10.2144/btn-2019-0110
    Reverse genetics has been used to generate recombinant Newcastle disease virus with enhanced immunogenic properties for vaccine development. The system, which involves co-transfecting the viral antigenomic plasmid with three helper plasmids into a T7 RNA polymerase-expressing cell to produce viral progenies, poses a great challenge. We have modified the standard transfection method to improve the transfection efficiency of the plasmids, resulting in a higher titer of virus progeny production. Two transfection reagents (i.e., lipofectamine and polyethylenimine) were used to compare the transfection efficiency of the four plasmids. The virus progenies produced were quantitated with flow cytometry analysis of the infectious virus unit. The modified transfection method increased the titer of virus progenies compared with that of the standard transfection method.
    Matched MeSH terms: Cricetinae
  8. Li S, Zhang L, Wang Y, Wang S, Sun H, Su W, et al.
    Virus Res, 2013 Jan;171(1):238-41.
    PMID: 23116594 DOI: 10.1016/j.virusres.2012.10.019
    Duck Tembusu virus (TMUV) is a recently identified pathogenic flavivirus that causes severe egg drop and encephalitis in Chinese ducks and geese. It has been found to be most closely related to the mosquito-origin Tembusu virus and chicken Sitiawan virus reported in Malaysia. However, the ecological characteristics and the pathogenesis of duck TMUV are largely unknown. We report the construction of full-length cDNA clone of duck TMUV strain JXSP. The virus genome was reverse transcribed, amplified as seven overlapping fragments and successively ligated into the low copy number vector pWSK29 under the control of a T7 promoter. Transfection of BHK-21 cells with the transcribed RNA from the full-length cDNA clone resulted in production of highly infectious progeny virus. In vitro growth characteristics in BHK-21 cells and virulence in ducklings and BALB/c mice were similar for the rescued and parental viruses. This stable infectious cDNA clone will be a valuable tool for studying the genetic determinants of duck TMUV.
    Matched MeSH terms: Cricetinae
  9. Chua CL, Sam IC, Merits A, Chan YF
    PLoS Negl Trop Dis, 2016 08;10(8):e0004960.
    PMID: 27571254 DOI: 10.1371/journal.pntd.0004960
    BACKGROUND: Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood.

    METHODOLOGY/PRINCIPAL FINDINGS: We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008-2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes.

    CONCLUSION/SIGNIFICANCE: Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued outbreaks of co-circulating CHIKV genotypes and effective design of vaccines and diagnostic serological assays.

    Matched MeSH terms: Cricetinae
  10. Lani R, Hassandarvish P, Shu MH, Phoon WH, Chu JJ, Higgs S, et al.
    Antiviral Res, 2016 Sep;133:50-61.
    PMID: 27460167 DOI: 10.1016/j.antiviral.2016.07.009
    This study focuses on the antiviral activity of selected flavonoids against the Chikungunya virus (CHIKV), a mosquito-transmitted virus that can cause incapacitating arthritis in infected individuals. Based on the results of screening on Vero cells, the tested compounds were evaluated further with various assays, including cytotoxicity assay, virus yield assay by quantitative reverse transcription polymerase chain reaction (qRT-PCR), virus RNA replication assay with a CHIKV replicon cell line, Western blotting, and quantitative immunofluorescence assay. Baicalein, fisetin, and quercetagetin displayed potent inhibition of CHIKV infection, with 50% inhibitory concentrations [IC50] of 1.891 μg/ml (6.997 μM), 8.444 μg/ml (29.5 μM), and 13.85 μg/ml (43.52 μM), respectively, and with minimal cytotoxicity. The time-of-addition studies and various antiviral assays demonstrated that baicalein and quercetagetin mainly inhibited CHIKV binding to the Vero cells and displayed potent activity against extracellular CHIKV particles. The qRT-PCR, immunofluorescence assay, and Western blot analyses indicated that each of these flavonoids affects CHIKV RNA production and viral protein expression. These data provide the first evidence of the intracellular anti-CHIKV activity of baicalein, fisetin, and quercetagetin.
    Matched MeSH terms: Cricetinae
  11. Chu GS, Palmieri JR, Sullivan JT
    Trop Geogr Med, 1977 Dec;29(4):422-7.
    PMID: 610028
    A reported practice of live beetle ingestion in Southeast Asia was investigated among urban Chinese in Kuala Lumpur, Malaysia. Results of four casefindings are: (1) this practice may not be confined to West Malaysia, (2) it occurs among Chinese and Malays, (3) the original use of the beetles as an aphrodisiac has been modified to include treatment of a wide variety of ailments and diseases and (4) the practice is relatively uncommon among urban Chinese. It was also found through experimental studies that ingestion of the live beetles (Palembus dermestoides) represented a potential public health hazard in that the beetles were able to serve as a host for the human-infecting tapeworm Hymenolepis diminuta (Sullivan et al., 1977).
    Matched MeSH terms: Cricetinae
  12. Sreekantan S, Hassan M, Sundera Murthe S, Seeni A
    Polymers (Basel), 2020 Dec 18;12(12).
    PMID: 33352856 DOI: 10.3390/polym12123034
    A sustainable super-hydrophobic coating composed of silica from palm oil fuel ash (POFA) and polydimethylsiloxane (PDMS) was synthesised using isopropanol as a solvent and coated on a glass substrate. FESEM and AFM analyses were conducted to study the surface morphology of the coating. The super-hydrophobicity of the material was validated through goniometry, which showed a water contact angle of 151°. Cytotoxicity studies were conducted by assessing the cell viability and cell morphology of mouse fibroblast cell line (L929) and hamster lung fibroblast cell line (V79) via tetrazolium salt 3-(4-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and microscopic methods, respectively. The clonogenic assay was performed on cell line V79 and the cell proliferation assay was performed on cell line L929. Both results validate that the toxicity of PDMS: SS coatings is dependent on the concentration of the super-hydrophobic coating. The results also indicate that concentrations above 12.5 mg/mL invariably leads to cell toxicity. These results conclusively support the possible utilisation of the synthesised super-hydrophobic coating for biomedical applications.
    Matched MeSH terms: Cricetinae
  13. Chong SL, Mou DG, Ali AM, Lim SH, Tey BT
    Hybridoma (Larchmt), 2008 Apr;27(2):107-11.
    PMID: 18642675
    The effect of mild hypothermic (32 degrees C) conditions on cell growth, cell-cycle progress, and antibody production of hybridoma C2E7 cells was investigated in the present study. The growth of hybridoma cells was slower during the mild hypothermic condition compared to that at 37 degrees C; this led to about 10% decrease in maximum viable cell density and volumetric antibody productivity. However, under mild hypothermic growth conditions, the culture viability was substantially improved and the specific antibody productivity was enhanced compared to that at 37 degrees C. The average specific productivity for the entire batch culture at 32 degrees C is about 5% higher than that at 37 degrees C. Cell-cycle analysis data showed that there was no growth arrestment during the mild hypothermic growth of hybridoma cells. The G1-phase cells were increased, while the S-phase cells were decreased gradually as the culture time progressed. Further analysis showed that the specific antibody productivity of hybridoma cells was correlated to the fraction of S-phase cells.
    Matched MeSH terms: Cricetinae
  14. Amir A, Sum JS, Lau YL, Vythilingam I, Fong MY
    Parasit Vectors, 2013;6:81.
    PMID: 23537404 DOI: 10.1186/1756-3305-6-81
    Anopheles cracens has been incriminated as a vector for the simian malaria parasite, Plasmodium knowlesi, that is the fifth Plasmodium species infecting humans. Little experimental data exists on this mosquito species due to the lack of its availability in laboratories.
    Matched MeSH terms: Cricetinae
  15. DeBuysscher BL, de Wit E, Munster VJ, Scott D, Feldmann H, Prescott J
    PLoS Negl Trop Dis, 2013;7(1):e2024.
    PMID: 23342177 DOI: 10.1371/journal.pntd.0002024
    Nipah virus is a zoonotic pathogen that causes severe disease in humans. The mechanisms of pathogenesis are not well described. The first Nipah virus outbreak occurred in Malaysia, where human disease had a strong neurological component. Subsequent outbreaks have occurred in Bangladesh and India and transmission and disease processes in these outbreaks appear to be different from those of the Malaysian outbreak. Until this point, virtually all Nipah virus studies in vitro and in vivo, including vaccine and pathogenesis studies, have utilized a virus isolate from the original Malaysian outbreak (NiV-M). To investigate potential differences between NiV-M and a Nipah virus isolate from Bangladesh (NiV-B), we compared NiV-M and NiV-B infection in vitro and in vivo. In hamster kidney cells, NiV-M-infection resulted in extensive syncytia formation and cytopathic effects, whereas NiV-B-infection resulted in little to no morphological changes. In vivo, NiV-M-infected Syrian hamsters had accelerated virus replication, pathology and death when compared to NiV-B-infected animals. NiV-M infection also resulted in the activation of host immune response genes at an earlier time point. Pathogenicity was not only a result of direct effects of virus replication, but likely also had an immunopathogenic component. The differences observed between NiV-M and NiV-B pathogeneis in hamsters may relate to differences observed in human cases. Characterization of the hamster model for NiV-B infection allows for further research of the strain of Nipah virus responsible for the more recent outbreaks in humans. This model can be used to study NiV-B pathogenesis, transmission, and countermeasures that could be used to control outbreaks.
    Matched MeSH terms: Cricetinae
  16. Myles KM, Pierro DJ, Olson KE
    J Med Entomol, 2004 Jan;41(1):95-106.
    PMID: 14989352
    Within mosquitoes, arboviruses encounter barriers to infection and dissemination that are critical determinants of vector competence. The molecular mechanisms responsible for these barriers have yet to be elucidated. The prototype Sindbis (SIN) strain, AR339, and viruses derived from this strain, such as TR339 virus, have limited infection and transmission potential in the medically important arthropod vector, Aedes aegypti (L.). However, the Malaysian SIN virus strain, MRE16, disseminates in nearly 100% of Ae. aegypti 14 d after oral infection. Here, we compare the spatial and temporal infection patterns of MRE16 and TR339 viruses in Ae. aegypti. The results indicate that a midgut escape barrier is primarily responsible for the significantly lower dissemination and transmission potentials observed after oral infection with TR339 virus. MRE16 and TR339 viruses now represent a well-characterized model system for the further study of virus determinants of vector infection, particularly determinants affecting the midgut escape barrier in Ae. aegypti.
    Matched MeSH terms: Cricetinae
  17. Pritchard LI, Gould AR, Wilson WC, Thompson L, Mertens PP, Wade-Evans AM
    Virus Res, 1995 Mar;35(3):247-61.
    PMID: 7785314
    The nucleotide sequence of the RNA segment 3 of bluetongue virus (BTV) serotype 2 (Ona-A) from North America was determined to be 2772 nucleotides containing a single large open reading frame of 2703 nucleotides (901 amino acid). The predicted VP3 protein exhibited general physiochemical properties (including hydropathy profiles) which were very similar to those previously deduced for other BTV VP3 proteins. Partial genome segment 3 sequences, obtained by polymerase chain reaction (PCR) sequencing, of BTV isolates from the Caribbean were compared to those from North America, South Africa, India, Indonesia, Malaysia and Australia, as well as other orbiviruses, to determine the phylogenetic relationships amongst them. Three major BTV topotypes (Gould, A.R. (1987) Virus Res. 7, 169-183) were observed which had nucleotide sequences that differed by approximately 20%. At the molecular level, geographic separation had resulted in significant divergence in the BTV genome segment 3 sequences, consistent with the evolution of distinct viral populations. The close phylogenetic relationship between the BTV serotype 2 (Ona-A strain) from Florida and the BTV serotypes 1, 6 and 12 from Jamaica and Honduras, indicated that the presence of BTV serotype 2 in North America was probably due to an exotic incursion from the Caribbean region as previously proposed by Sellers and Maaroof ((1989) Can. J. Vet. Res. 53, 100-102) based on trajectory analysis. Conversely, nucleotide sequence analysis of Caribbean BTV serotype 17 isolates suggested they arose from incursions which originated in the USA, possibly from a BTV population distinct from those circulating in Wyoming.
    Matched MeSH terms: Cricetinae
  18. Jiang H, Bai L, Ji L, Bai Z, Su J, Qin T, et al.
    J Virol, 2020 07 16;94(15).
    PMID: 32461319 DOI: 10.1128/JVI.00294-20
    Japanese encephalitis virus (JEV) infection alters microRNA (miRNA) expression in the central nervous system (CNS). However, the mechanism contributing to miRNA regulation in the CNS is not known. We discovered global degradation of mature miRNA in mouse brains and neuroblastoma (NA) cells after JEV infection. Integrative analysis of miRNAs and mRNAs suggested that several significantly downregulated miRNAs and their targeted mRNAs were clustered into an inflammation pathway. Transfection with miRNA 466d-3p (miR-466d-3p) decreased interleukin-1β (IL-1β) expression and inhibited JEV replication in NA cells. However, miR-466d-3p expression increased after JEV infection in the presence of cycloheximide, indicating that viral protein expression reduced miR-466d-3p expression. We generated all the JEV coding proteins and demonstrated NS3 helicase protein to be a potent miRNA suppressor. The NS3 proteins of Zika virus, West Nile virus, and dengue virus serotype 1 (DENV-1) and DENV-2 also decreased miR-466d-3p expression. Results from helicase-blocking assays and in vitro unwinding assays demonstrated that NS3 could unwind pre-miR-466d and induce miRNA dysfunction. Computational models and an RNA immunoprecipitation assay revealed arginine-rich domains of NS3 to be crucial for pre-miRNA binding and degradation of host miRNAs. Importantly, site-directed mutagenesis of conserved residues in NS3 revealed that R226G and R202W reduced the binding affinity and degradation of pre-miR-466d. These results expand the function of flavivirus helicases beyond unwinding duplex RNA to degrade pre-miRNAs. Hence, we revealed a new mechanism for NS3 in regulating miRNA pathways and promoting neuroinflammation.IMPORTANCE Host miRNAs have been reported to regulate JEV-induced inflammation in the CNS. We found that JEV infection could reduce expression of host miRNA. The helicase region of the NS3 protein bound specifically to miRNA precursors and could lead to incorrect unwinding of miRNA precursors, thereby reducing the expression of mature miRNAs. This observation led to two major findings. First, our results suggested that JEV NS3 protein induced miR-466d-3p degradation, which promoted IL-1β expression and JEV replication. Second, arginine molecules on NS3 were the main miRNA-binding sites, because we demonstrated that miRNA degradation was abolished if arginines at R226 and R202 were mutated. Our study provides new insights into the molecular mechanism of JEV and reveals several amino acid sites that could be mutated for a JEV vaccine.
    Matched MeSH terms: Cricetinae
  19. Retnasabapathy A, Lourdusamy D
    PMID: 4432113
    Matched MeSH terms: Cricetinae/parasitology*
  20. Moi ML, Lim CK, Chua KB, Takasaki T, Kurane I
    PLoS Negl Trop Dis, 2012;6(2):e1536.
    PMID: 22389741 DOI: 10.1371/journal.pntd.0001536
    Progress in dengue vaccine development has been hampered by limited understanding of protective immunity against dengue virus infection. Conventional neutralizing antibody titration assays that use FcγR-negative cells do not consider possible infection-enhancement activity. We reasoned that as FcγR-expressing cells are the major target cells of dengue virus, neutralizing antibody titration assays using FcγR-expressing cells that determine the sum of neutralizing and infection-enhancing activity, may better reflect the biological properties of antibodies in vivo.
    Matched MeSH terms: Cricetinae
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links