Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Tan NH
    PMID: 19770070 DOI: 10.1016/j.cbpc.2009.09.002
    A thrombin-like enzyme, purpurase, was purified from the Cryptelytrops purpureomaculatus (mangrove pit viper) venom using high performance ion-exchange and gel filtration chromatography. The purified sample (termed purpurase) yielded a homogeneous band in SDS-polyacrylamide gel electrophoresis with a molecular weight of 35,000. The N-terminal sequence of purpurase was determined to be VVGGDECNINDHRSLVRIF and is homologous to many other venom thrombin-like enzymes. Purpurase exhibits both arginine ester hydrolase and amidase activities. Kinetic studies using tripeptide chromogenic anilide substrates showed that purpurase is not fastidious towards its substrate. The clotting times of fibrinogen by purpurase were concentration dependent, with optimum clotting activity at 3mg fibronogen/mL. The clotting activity by purpurase was in the following decreasing order: cat fibrinogen>human fibrinogen>dog fibrinogen>goat fibrinogen>rabbit fibrinogen. Reversed-phase HPLC analysis of the products of action of purpurase on bovine fibrinogen showed that only fibrinopeptide A was released. Indirect ELISA studies showed that anti-purpurase cross-reacted strongly with venoms of most crotalid venoms, indicating the snake venom thrombin-like enzymes generally possess similar epitopes. In the more specific double-sandwich ELISA, however, anti-purpurase cross-reacted only with venoms of certain species of the Trimeresurus complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Cross Reactions
  2. Lew MH, Lim RL
    Appl Microbiol Biotechnol, 2016 Jan;100(2):661-71.
    PMID: 26411458 DOI: 10.1007/s00253-015-6953-y
    Current diagnostic tools for peanut allergy using crude peanut extract showed low predictive value and reduced specificity for detection of peanut allergen-specific immunoglobulin E (IgE). The Ara h 2.02, an isoform of the major peanut allergen Ara h 2, contains three IgE epitope recognition sequence of 'DPYSPS' and may be a better reagent for component resolve diagnosis. This research aimed to generate a codon-optimised Ara h 2.02 gene for heterologous expression in Escherichia coli and allergenicity study of this recombinant protein. The codon-optimised gene was generated by PCR using overlapping primers and cloned into the pET-28a (+) expression vector. Moderate expression of a 22.5 kDa 6xhistidine-tagged recombinant Ara h 2.02 protein (6xHis-rAra h 2.02) in BL21 (DE3) host cells was observed upon induction with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). The insoluble recombinant protein was purified under denaturing condition using nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography and refolded by dialysis in decreasing urea concentration, amounting to a yield of 74 mg/l of expression culture. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) and immunoblot analysis confirmed the production of the recombinant 6xHis-rAra h 2.02. The refolded recombinant 6xHis-rAra h 2.02, with or without adjuvant, was able to elicit comparable level of allergen-specific IgE and IgG1 in sensitised Balb/c mice. In addition, the specific IgE antibodies raised against the recombinant protein were able to recognise the native Ara h 2 protein, demonstrating its allergenicity and potential as a reagent for diagnosis and therapeutic study.
    Matched MeSH terms: Cross Reactions
  3. Müller-Sienerth N, Shilts J, Kadir KA, Yman V, Homann MV, Asghar M, et al.
    Malar J, 2020 Jan 17;19(1):31.
    PMID: 31952523 DOI: 10.1186/s12936-020-3111-5
    BACKGROUND: Malaria remains a global health problem and accurate surveillance of Plasmodium parasites that are responsible for this disease is required to guide the most effective distribution of control measures. Serological surveillance will be particularly important in areas of low or periodic transmission because patient antibody responses can provide a measure of historical exposure. While methods for detecting host antibody responses to Plasmodium falciparum and Plasmodium vivax are well established, development of serological assays for Plasmodium knowlesi, Plasmodium ovale and Plasmodium malariae have been inhibited by a lack of immunodiagnostic candidates due to the limited availability of genomic information.

    METHODS: Using the recently completed genome sequences from P. malariae, P. ovale and P. knowlesi, a set of 33 candidate cell surface and secreted blood-stage antigens was selected and expressed in a recombinant form using a mammalian expression system. These proteins were added to an existing panel of antigens from P. falciparum and P. vivax and the immunoreactivity of IgG, IgM and IgA immunoglobulins from individuals diagnosed with infections to each of the five different Plasmodium species was evaluated by ELISA. Logistic regression modelling was used to quantify the ability of the responses to determine prior exposure to the different Plasmodium species.

    RESULTS: Using sera from European travellers with diagnosed Plasmodium infections, antigens showing species-specific immunoreactivity were identified to select a panel of 22 proteins from five Plasmodium species for serological profiling. The immunoreactivity to the antigens in the panel of sera taken from travellers and individuals living in malaria-endemic regions with diagnosed infections showed moderate power to predict infections by each species, including P. ovale, P. malariae and P. knowlesi. Using a larger set of patient samples and logistic regression modelling it was shown that exposure to P. knowlesi could be accurately detected (AUC = 91%) using an antigen panel consisting of the P. knowlesi orthologues of MSP10, P12 and P38.

    CONCLUSIONS: Using the recent availability of genome sequences to all human-infective Plasmodium spp. parasites and a method of expressing Plasmodium proteins in a secreted functional form, an antigen panel has been compiled that will be useful to determine exposure to these parasites.

    Matched MeSH terms: Cross Reactions
  4. Mahlangu JN, Weldingh KN, Lentz SR, Kaicker S, Karim FA, Matsushita T, et al.
    J Thromb Haemost, 2015 Nov;13(11):1989-98.
    PMID: 26362483 DOI: 10.1111/jth.13141
    BACKGROUND: Vatreptacog alfa, a recombinant human factor VIIa (rFVIIa) analog developed to improve the treatment of bleeds in hemophilia patients with inhibitors, differs from native FVIIa by three amino acid substitutions. In a randomized, double-blind, crossover, confirmatory phase III trial (adept(™) 2), 8/72 (11%) hemophilia A or B patients with inhibitors treated for acute bleeds developed anti-drug antibodies (ADAs) to vatreptacog alfa.

    OBJECTIVES: To characterize the formation of anti-vatreptacog alfa ADAs in hemophilia patients with inhibitors.

    METHODS/PATIENTS: This was a post hoc analysis of adept(™) 2. Immunoglobulin isotype determination, specificity analysis of rFVIIa cross-reactive antibodies, epitope mapping of rFVIIa single mutant analogs and pharmacokinetic (PK) profiling were performed to characterize the ADAs.

    RESULTS: Immunoglobulin isotyping indicated that the ADAs were of the immunoglobulin G subtype. In epitope mapping, none of the rFVIIa single mutant analogs (V158D, E296V or M298Q) contained the complete antibody epitope, confirming that the antibodies were specific for vatreptacog alfa. In two patients, for whom PK profiling was performed both before and after the development of ADAs, vatreptacog alfa showed a prolonged elimination phase following ADA development. During the follow-up evaluation, the rFVIIa cross-reactivity disappeared after the last vatreptacog alfa exposure, despite continued exposure to rFVIIa as part of standard care.

    CONCLUSIONS: Results from the vatreptacog alfa phase III trial demonstrate that the specific changes made, albeit relatively small, to the FVIIa molecule alter its clinical immunogenicity.

    Matched MeSH terms: Cross Reactions
  5. Moritz KB, Kopp T, Stingl G, Bublin M, Breiteneder H, Wöhrl S
    Allergol Immunopathol (Madr), 2011 Jul-Aug;39(4):244-5.
    PMID: 21741147 DOI: 10.1016/j.aller.2010.06.010
    Matched MeSH terms: Cross Reactions
  6. Appanna R, Huat TL, See LL, Tan PL, Vadivelu J, Devi S
    Clin. Vaccine Immunol., 2007 Aug;14(8):969-77.
    PMID: 17567768
    Dengue virus infections are a major cause of morbidity and mortality in tropical and subtropical areas in the world. Attempts to develop effective vaccines have been hampered by the lack of understanding of the pathogenesis of the disease and the absence of suitable experimental models for dengue viral infection. The magnitude of T-cell responses has been reported to correlate with dengue disease severity. Sixty Malaysian adults with dengue viral infections were investigated for their dengue virus-specific T-cell responses to 32 peptides antigens from the structural and nonstructural regions from a dengue virus isolate. Seventeen different peptides from the C, E, NS2B, NS3, NS4A, NS4B, and NS5 regions were found to evoke significant responses in a gamma interferon enzyme-linked immunospot (ELISPOT) assay of samples from 13 selected patients with dengue fever (DF) and dengue hemorrhagic fever (DHF). NS3 and predominantly NS3(422-431) were found to be important T-cell targets. The highest peaks of T-cell responses observed were in responses to NS3(422-431) and NS5(563-571) in DHF patients. We also found almost a sevenfold increase in T-cell response in three DHF patients compared to three DF patient responses to peptide NS3(422-431). A large number of patients' T cells also responded to the NS2B(97-106) region. The ELISPOT analyses also revealed high frequencies of T cells that recognize both serotype-specific and cross-reactive dengue virus antigens in patients with DHF.
    Matched MeSH terms: Cross Reactions
  7. Wong SS, Abd-Jamil J, Abubakar S
    Viral Immunol, 2007 Sep;20(3):359-68.
    PMID: 17931106
    Outbreaks involving dengue viruses (DENV) of the same genotype occur in a cyclical pattern in Malaysia. Two cycles of outbreaks involving dengue virus type 2 (DENV-2) of the same genotype occurred in the 1990s in the Klang Valley, Malaysia. Sera of patients from the first outbreak and sera of mice inoculated with virus from the same outbreak had poorer neutralization activity against virus of the second outbreak. Conversely, patient sera from the second outbreak showed higher neutralization titer against virus of the early outbreak. At subneutralizing concentrations, sera of mice immunized with second outbreak virus did not significantly enhance infection with viruses from the earlier outbreak. Amino acid substitution from valine to isoleucine at position 129 of the envelope protein (E), as well as threonine to alanine at position 117 and lysine to arginine at position 272 of the NS1 protein, differentiated viruses of the two outbreaks. These findings highlight the potential influence of specific intragenotypic variations in eliciting varied host immune responses against the different DENV subgenotypes. This could be an important contributing factor in the recurring homogenotypic dengue virus outbreaks seen in dengue-endemic regions.
    Matched MeSH terms: Cross Reactions
  8. Daum LT, Canas LC, Klimov AI, Shaw MW, Gibbons RV, Shrestha SK, et al.
    Arch Virol, 2006 Sep;151(9):1863-74.
    PMID: 16736092
    Currently circulating influenza B viruses can be divided into two antigenically and genetically distinct lineages referred to by their respective prototype strains, B/Yamagata/16/88 and B/Victoria/2/87, based on amino acid differences in the hemagglutinin surface glycoprotein. During May and July 2005, clinical specimens from two early season influenza B outbreaks in Arizona and southeastern Nepal were subjected to antigenic (hemagglutinin inhibition) and nucleotide sequence analysis of hemagglutinin (HA1), neuraminidase (NA), and NB genes. All isolates exhibited little reactivity with the B/Shanghai/361/2002 (B/Yamagata-like) vaccine strain and significantly reduced reactivity with the previous 2003/04 B/Hong Kong/330/2001 (B/Victoria-like) vaccine strain. The majority of isolates were antigenically similar to B/Hawaii/33/2004, a B/Victoria-like reference strain. Sequence analysis indicated that 33 of 34 isolates contained B/Victoria-like HA and B/Yamagata-like NA and NB proteins. Thus, these outbreak isolates are both antigenically and genetically distinct from the current Northern Hemisphere vaccine virus strain as well as the previous 2003-04 B/Hong Kong/330/2001 (B/Victoria lineage) vaccine virus strain but are genetically similar to B/Malaysia/2506/2004, the vaccine strain proposed for the coming seasons in the Northern and Southern Hemispheres. Since these influenza B outbreaks occurred in two very distant geographical locations, these viruses may continue to circulate during the 2006 season, underscoring the importance of rapid molecular monitoring of HA, NA and NB for drift and reassortment.
    Matched MeSH terms: Cross Reactions
  9. Tay ST, Rohani MY, Ho TM, Devi S
    Diagn Microbiol Infect Dis, 2002 Oct;44(2):137-42.
    PMID: 12458119
    In this study, recombinant proteins that encompassed the AD I-AD III regions of 56 kDa immunodominant gene of 2 Orientia tsutsugamushi (OT) serotypes; Gilliam and TA763 were expressed in Escherichia coli. Both recombinant proteins exhibited serologic cross-reactivity with the rabbit antisera against various OT serotypes, as evaluated by enzyme-linked immunosorbent assay (ELISA), but not against other rickettsial species, including Rickettsia typhi, R. prowazekii and TT118 SFG rickettsiae. The feasibility of using the recombinant proteins as a diagnostic reagent was further evaluated by ELISA using sera from blood donors and scrub typhus patients. The results suggested a higher affinity of the antihuman IgM than IgG with both recombinant proteins. The IgM ELISA findings were agreeable with the results of indirect immunoperoxidase (IIP) assay especially with sera of high antibody (1:1600). However, more than one antigen are probably needed for development of an effective assay for serodiagnosis of scrub typhus in endemic areas.
    Matched MeSH terms: Cross Reactions
  10. Verdugo-Rodriguez A, Gam LH, Devi S, Koh CL, Puthucheary SD, Calva E, et al.
    Asian Pac J Allergy Immunol, 1993 Jun;11(1):45-52.
    PMID: 8216558
    An indirect ELISA was used to detect antibodies against outer membrane protein preparations (OMPs) from Salmonella typhi. Sera from patients with a definitive diagnosis of typhoid fever (TF) gave a mean absorbance reading, at 414 nm, of 1.52 +/- 0.23 as compared to 0.30 +/- 0.11 for sera from healthy individuals. This gave a positive to negative ratio of absorbance readings of approximately 5.1. Suspected TF patients (no isolation of S. typhi), with positive and negative Widal titers had mean absorbance readings of 1.282 +/00.46 and 0.25 +/- 0.19, respectively. Sera from patients with leptospirosis, rickettsial typhus, dengue fever, and other infections gave mean absorbances of 0.20 +/- 0.08, 0.24 +/- 0.08, 0.27 +/- 0.08, and 0.31 +/- 0.16, respectively. The sensitivity, specificity, positive and negative predictive values were 100%, 94%, 80% and 100%, respectively. The antibody response detected in the definitive TF cases was predominantly IgG in nature and no cross-reactivity was seen with OMP preparations extracted from E. coli. Variable reactivity was noted with OMP preparations obtained from other Salmonella spp. Three major OMPs are presented in the antigen preparation and strong binding of positive sera was detected to all three bands.
    Matched MeSH terms: Cross Reactions
  11. Mathew A, Cheng HM, Sam CK, Prasad U
    Clin. Immunol. Immunopathol., 1994 May;71(2):164-8.
    PMID: 7514112
    Inhibition studies were carried out to study possible cross-reactivity between a peptide fragment of the Epstein-Barr virus nuclear antigen, EBNA-1, and keratin/collagen. The 20-amino acid peptide (pAG), derived from a glycine-alanine repeat region of EBNA-1, uniquely makes up about one-third of the viral protein and is a dominant IgA antigenic epitope in patients with nasopharyngeal carcinoma (NPC). A small percentage of normal human sera (NHS) also binds pAG and this reactivity is examined in this study. Ten percent (2/20) and 13.4% (2/15) of IgA-pAG-positive NPC sera and NHS, respectively, were significantly inhibited by keratin in a competitive ELISA system. Conversely, 31.6% (6/19) and 30.8% (4/13) of IgA-keratin-positive NPC sera and NHS, respectively, were significantly inhibited by pAG. This indicated minimum cross-reactivity between IgA serum antibodies to EBNA-1 and keratin. Using collagen as inhibitor, none of 18 and only 2/13 IgA-pAG-positive NPC sera and NHS, respectively, were inhibited. In the collagen ELISA system, only 2/19 (10.5%) and 4/25 (16%) of IgA-collagen-positive NPC sera and NHS, respectively, were inhibited with pAG. Therefore, cross-reactivity with collagen was also low. IgA-pAG-positive NHS may therefore not be a false positive phenomenon, but whether it may represent an early serological profile related to NPC carcinogenesis remains to be determined.
    Matched MeSH terms: Cross Reactions
  12. Reed WM, Schrader DL
    Poult Sci, 1989 May;68(5):631-8.
    PMID: 2547209
    An avian pox virus was isolated from cutaneous proliferative lesions removed from greater hill mynahs (Gracula religiosa) imported from Malaysia. Cutaneous inoculation of specific pathogen-free chickens and bobwhite quail with the mynah pox virus resulted in severe proliferative cutaneous lesions similar to those seen in the naturally infected mynah birds. Microscopically, the reaction in the chickens and quail at sites of virus inoculation was characterized by marked epithelial hyperplasia with ballooning degeneration and formation of cytoplasmic inclusion bodies. Inoculation of conjunctival and oral mucosae of chickens by applying pox virus with a cotton swab did not result in gross or microscopic lesions. In cross-protection studies, chickens and bobwhite quail immunized with either quail, fowl, pigeon, turkey, or psittacine pox vaccines were not protected from challenge with mynah pox virus. Following vaccination of quail and chickens with mynah pox virus vaccine, there was no resistance to challenge by quail, fowl, pigeon, turkey, or psittacine pox viruses. Significant protection against development of lesions following inoculation with mynah pox virus was attained only when the homologous virus was used as a vaccine.
    Matched MeSH terms: Cross Reactions
  13. Cecilia D, Gould EA
    Virology, 1991 Mar;181(1):70-7.
    PMID: 1704661
    The Sarawak strain of Japanese encephalitis virus (JE-Sar) is virulent in 3-week-old mice when inoculated intraperitoneally. The nucleotide sequence for the envelope glycoprotein (E) of this virus was determined and compared with the published sequences of four other strains. There were several silent nucleotide differences and five codon changes. Monoclonal antibodies (MAbs) against the E protein of JE-Sar virus were prepared and characterized. MAb-resistant mutants of JE-Sar were selected to determine if mutations in the E protein gene could affect its virulence for mice. Eight mutants were isolated using five different MAbs that identified virus-specific or group-reactive epitopes on the E protein. The mutants lost either complete or partial reactivity with selecting MAb. Several showed decreased virulence in 3-week-old mice after intraperitoneal inoculation. Two (r27 and r30) also showed reduced virulence in 2-week-old mice. JE-Sar and the derived mutants were comparable in their virulence for mice, when inoculated intracranially. Mutant r30 but not r27 induced protective immunity in adult mice against intracranial challenge with parent virus. However, r27-2 did induce protective immunity against itself. Nucleotide sequencing of the E coding region for the mutants revealed single base changes in both r30 and r27 resulting in a predicted change from isoleucine to serine at position 270 in r30 and from glycine to aspartic acid at position 333 in r27. The altered capacity of the mutants to induce protective immunity is consistent with the immunogenicity changes predicted by computer analysis using the Protean II program.
    Matched MeSH terms: Cross Reactions
  14. Simpson DI, Bowen ET, Way HJ, Platt GS, Hill MN, Kamath S, et al.
    Ann Trop Med Parasitol, 1974 Dec;68(4):393-404.
    PMID: 4155608
    Matched MeSH terms: Cross Reactions
  15. Tan NH, Fung SY, Yap YH
    PMID: 21983189 DOI: 10.1016/j.cbpb.2011.09.009
    A thrombin-like enzyme (termed albolabrase) was isolated in purified form from the venom of Cryptelytrops albolabris (white-lipped tree viper) using high performance anion ion exchange and gel filtration chromatography. The molecular mass of albolabrase was 33.7 kDa as determined by SDS-PAGE and 35.8 kDa as determined by Superose gel filtration chromatography. The N-terminal sequence was determined to be VVGGDECNINE which is homologous to many snake venom thrombin-like enzymes. Albolabrase exhibits both arginine ester hydrolase and arginine amidase activities and the enzyme is fastidious towards tripeptide chromogenic anilide substrates. The fibrinogen clotting activity was optimum at 3mg/mL bovine fibrinogen, and showed distinct species differences in the following decreasing order: bovine fibrinogen>dog fibrinogen≈human fibrinogen>goat fibrinogen. The enzyme failed to clot both rabbit and cat fibrinogens. Reversed-phase HPLC analysis on the breakdown products of fibrinogenolytic action of albolabrase indicated that the enzyme belongs to the AB class of snake venom thrombin-like enzyme. In the indirect ELISA, IgG anti-albolabrase reacted extensively with most crotalid venoms, except with Tropidolaemus wagleri and Calloselasma rhodostoma venoms. The double sandwich ELISA, however, showed that anti-albolabrase reacted strongly only with venoms from the Trimeresurus complex, and that the results support the proposed new taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Cross Reactions
  16. Khor CS, Mohd-Rahim NF, Hassan H, Tan KK, Zainal N, Teoh BT, et al.
    J Med Virol, 2020 08;92(8):956-962.
    PMID: 31814135 DOI: 10.1002/jmv.25649
    Dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV) are mosquito-borne flavivirus of medical importance in tropical countries such as Malaysia. However, much remains unknown regarding their prevalence among the underserved indigenous people (Orang Asli) living in communities in the forest fringe areas of Peninsular Malaysia. Information on the prevalence of diseases is necessary to elevate the effectiveness of disease control and preventive measures. This study aimed to determine the seroprevalence of the three major flaviviruses among the Orang Asli and investigate the association between demographic factors and seropositivities. Sampling activities were conducted in the Orang Asli villages to obtain serum samples and demographic data from consenting volunteers. The presence of DENV, JEV, and ZIKV immunoglobulin G (IgG) antibodies in the sera were examined using commercial enzyme-linked immunosorbent assay kits. A focus reduction neutralization assay was performed to measure virus-specific neutralizing antibodies. A total of 872 serum samples were obtained from the Orang Asli volunteers. Serological assay results revealed that DENV IgG, JEV IgG, and ZIKV IgG seropositivities among the Orang Asli were at 4.9%, 48.4%, and 13.2%, respectively. Neutralizing antibodies (FRNT50 ≥ 1:40) against JEV and ZIKV were found in 86.7% and 100.0%, respectively, out of the samples tested. Positive serology to all three viruses corresponded significantly to the age of the volunteers with increasing seropositivity in older volunteers. Findings from the study suggest that Orang Asli are at significant risk of contracting JEV and ZIKV infections despite the lack of active transmission of the viruses in the country.
    Matched MeSH terms: Cross Reactions
  17. Tan NH, Ponnudurai G
    Toxicon, 1994 Oct;32(10):1265-9.
    PMID: 7846697
    Indirect ELISA shows that the antibodies to Calloselasma rhodostoma venom hemorrhagin (CR-HMG), thrombin-like enzyme (CR-TLE) and L-amino acid oxidase (CR-LAAO) exhibited strong to moderate cross-reactions with most crotalid and viperid venoms, but only anti-CR-LAAO cross-reacted with the elapid venoms. However, the indirect ELISA failed to detect some antigenic similarities demonstrable by cross-neutralization study. The double-sandwich ELISA for the three anti-C. rhodostoma venom components exhibited a much lower level of cross-reactions than the indirect ELISA.
    Matched MeSH terms: Cross Reactions
  18. Hajissa K, Zakaria R, Suppian R, Mohamed Z
    BMC Infect Dis, 2017 12 29;17(1):807.
    PMID: 29284420 DOI: 10.1186/s12879-017-2920-9
    BACKGROUND: The inefficiency of the current tachyzoite antigen-based serological assays for the serodiagnosis of Toxoplasma gondii infection mandates the need for acquirement of reliable and standard diagnostic reagents. Recently, epitope-based antigens have emerged as an alternative diagnostic marker for the achievement of highly sensitive and specific capture antigens. In this study, the diagnostic utility of a recombinant multiepitope antigen (USM.TOXO1) for the serodiagnosis of human toxoplasmosis was evaluated.

    METHODS: An indirect enzyme-linked immunosorbent assay (ELISA) was developed to evaluate the usefulness of USM.TOXO1 antigen for the detection of IgG antibodies against Toxoplasma gondii in human sera. Whereas the reactivity of the developed antigen against IgM antibody was evaluated by western blot and Dot enzyme immunoassay (dot-EIA) analysis.

    RESULTS: The diagnostic performance of the new antigens in IgG ELISA was achieved at the maximum values of 85.43% and 81.25% for diagnostic sensitivity and specificity respectively. The USM.TOXO1 was also proven to be reactive with anti- T. gondii IgM antibody.

    CONCLUSIONS: This finding makes the USM.TOXO1 antigen an attractive candidate for improving the toxoplasmosis serodiagnosis and demonstrates that multiepitope antigens could be a potential and promising diagnostic marker for the development of high sensitive and accurate assays.

    Matched MeSH terms: Cross Reactions
  19. Mohd Jaafar F, Attoui H, Gallian P, Isahak I, Wong KT, Cheong SK, et al.
    J Virol Methods, 2004 Mar 01;116(1):55-61.
    PMID: 14715307
    Banna virus (BAV, genus Seadornavirus, family Reoviridae) is an arbovirus suspected to be responsible for encephalitis in humans. Two genotypes of this virus are distinguishable: A (Chinese isolate, BAV-Ch) and B (Indonesian isolate, BAV-In6969) which exhibit only 41% amino-acid identity in the sequence of their VP9. The VP7 to VP12 of BAV-Ch and VP9 of BAV-In6969 were expressed in bacteria using pGEX-4T-2 vector. VP9 was chosen to establish an ELISA for BAV, based mainly on two observations: (i). VP9 is a major protein in virus-infected cells and is a capsid protein (ii). among all the proteins expressed, VP9 was obtained in high amount and showed the highest immuno-reactivity to anti-BAV ascitic fluid. The VP9s ELISA was evaluated in three populations: French blood donors and two populations (blood donors and patients with a neurological syndrome) from Malaysia, representing the region where the virus was isolated in the past. The specificity of this ELISA was >98%. In mice injected with live BAV, the assay detected IgG-antibody to BAV infection 21 days post-injection, which was confirmed by Western blot using BAV-infected cells. The VP9 ELISA permits to determine the sero-status of a population without special safety precautions and without any requirements to propagate the BAV. This test should be a useful tool for epidemiological survey of BAV.
    Matched MeSH terms: Cross Reactions
  20. Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, et al.
    Cell Host Microbe, 2021 Nov 10;29(11):1634-1648.e5.
    PMID: 34610295 DOI: 10.1016/j.chom.2021.09.006
    Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
    Matched MeSH terms: Cross Reactions
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links